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Abstract
Point-to-point (P2P) communication represents a critical messaging pattern in MQTT, enabling precise, reliable

one-to-one exchanges essential for IoT applications like real-time monitoring, command control, and secure data

transfer. As edge computing continues to expand, resource-constrained edge nodes demand high connection

density and low-latency messaging to support real-time data exchange and responsive operations. This paper

evaluates the performance of TBMQ, a scalable and fault-tolerant MQTT broker designed to meet the demands

of modern IoT ecosystems. By leveraging a distributed architecture built on Kafka and Redis, TBMQ efficiently

supports high-throughput P2P messaging while maintaining low latency and reliability. A series of performance

tests were conducted, scaling workloads from 200,000 to 1,000,000 messages per second. These tests revealed

TBMQ’s linear scalability, efficient resource utilization, and robust reliability under high traffic loads. The findings

position TBMQ as a powerful solution for IoT and edge computing environments requiring dependable P2P

communication. Future enhancements, including Redis optimizations and expanded edge computing integration,

are proposed to further improve performance and adaptability.
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1. Introduction

Message Queuing Telemetry Transport (MQTT) [1] is a lightweight protocol widely used in the Internet

of Things (IoT) ecosystem for connecting edge devices. Its point-to-point (P2P) communication pattern

facilitates direct and reliable one-to-one message exchanges, which are crucial for IoT applications like

private messaging, command delivery, and other direct interaction use cases.

Scaling and ensuring reliability in edge-based P2P messaging becomes increasingly challenging as

message loads grow to hundreds and millions of messages per second. Existing solutions often face

synchronous communication bottlenecks and the complexity of managing distributed architectures,

limiting their performance in high-demand IoT environments.

Recent research [2] highlights ThingsBoard as a leading open-source IoT platform widely adopted in

academia and industry. Building on insights from its extensive use, the platform’s developers created

TBMQ – a high-performance MQTT broker tailored to IoT needs [3]. Launched in 2020 and open-

sourced in 2023, TBMQ ensures reliability and scalability, handling 100 million connections and over 3

million messages per second, leveraging Kafka for efficient messaging.
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While modern brokers, like TBMQ, excel in handling massive connections and high throughput, P2P

messaging introduces unique challenges. These include direct message routing, increased connection

tracking, and ensuring low latency, and reliable delivery. Such scenarios demand efficient mechanisms

for managing dynamic client interactions and maintaining scalability under heavy loads.

The key objectives and contributions of this study are:

• Evaluating TBMQ’s ability to handle increasing P2P messaging loads for persistent DEVICE

clients, which use shared Kafka topics to optimize resource usage and Redis for reliable delivery.

Benchmark tests progressively scaled the system while increasing the message load from 200,000

to 1,000,000 messages per second.

• Providing a detailed performance analysis, including CPU utilization, latency, and resource

scaling, to validate TBMQ’s efficiency.

The results demonstrate that TBMQ provides reliable, scalable, and high-performance messaging,

making it an optimal solution for edge-based IoT ecosystems.

2. The P2P problem in the scalable broker context

2.1. Challenges of P2P messaging for brokers

The survey presented in [4] offers an extensive evaluation of MQTT brokers, covering aspects such as

protocol-specific features, security mechanisms, cloud deployment capabilities, and data visualization

tools, alongside a comparison of MQTT client libraries. However, the study does not delve into the

brokers’ performance or suitability in P2P messaging scenarios, leaving room for further exploration in

this area.

Effective resource management in P2P messaging systems, such as handling dynamic server availabil-

ity and message buffering, remains a challenge. As demonstrated by Ma et al. [5], the modeling of P2P

networks using queueing theory reveals how server availability fluctuations and preemptive priority

policies influence system performance and energy efficiency. The ‘free-riding’ behavior and energy

inefficiency represent significant obstacles for P2P messaging systems, especially in IoT environments.

Studies such as [6] demonstrate how these issues can undermine system performance, necessitating

advanced strategies like repairable breakdown models and differentiated service levels to optimize

overall network behavior.

P2P messaging introduces distinct challenges for brokers due to several key aspects:

1. Direct Message Routing: In P2P interactions, messages are sent directly from a specific publisher

to a specific subscriber, bypassing shared topics or group routing. This requires brokers to

accurately track which clients are interacting and ensure low-latency delivery.

2. Increased Broker Load: In P2P scenarios, each message may be unique to a specific recipient,

significantly increasing the number of routed connections. This adds extra load on brokers to

manage sessions, connections, and queues efficiently.

3. Scalability: With potentially hundreds of thousands or even millions of simultaneous P2P con-

nections, brokers must handle each connection quickly and reliably. This necessitates efficient

mechanisms for state management, load balancing, and latency handling.

4. Reliability assurance: For many IoT applications, message loss is unacceptable, particularly in

P2P scenarios where there is no group duplication. Brokers must ensure reliable delivery with

minimal delay, even under high traffic conditions.

5. Decentralization requirements: In certain P2P scenarios (e.g., ensuring privacy or fault tolerance),

brokers need to operate effectively without relying on a centralized node. This complicates the

implementation of traditional MQTT mechanisms.

Thus, the core challenge of P2P messaging for brokers lies in enabling scalable, reliable, and low-

latency message routing across numerous real-time connections.
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2.2. Limitations of existing solutions

The scalability of existing communication protocols remains a challenge, particularly in large-scale

IoT deployments. As noted in [7], cloud and fog computing solutions require efficient protocols, yet

many—including MQTT—were not originally designed for decentralized P2P environments. This leads

to scalability constraints and inefficiencies in handling massive direct connections. Although MQTT is

widely used, its effectiveness in distributed deployments remains an active research topic.

While innovative queuing-based approaches [6] contribute to energy efficiency and help address

free-riding behavior, their dependence on intricate mathematical models and parameter tuning might

pose challenges to scalability in real-world MQTT broker environments.

To address the limitations of static routing technologies in P2P-based edge clouds, adaptive routing

approaches like ARPEC have been proposed [8]. By combining message activity analysis, network

topology, and minimum cost maximum flow (MCMF) graph mapping, ARPEC improves performance

metrics such as user latency and node resource utilization in edge IoT systems. Although adaptive

routing approaches such as ARPEC [8] improve Edge Cloud performance, their reliance on complex

algorithms like MCMF and predictive models may hinder real-time scalability and adoption in resource-

constrained IoT environments.

Standard encryption methods may impose a significant overhead on MQTT brokers in P2P environ-

ments. Alternative approaches, such as Value-to-HMAC, could be more efficient in resource-constrained

conditions [9].

Despite advancements, existing brokers face significant limitations in supporting P2P messaging for

edge environments:

• Synchronous Persistence Bottlenecks: Many brokers rely on synchronous mechanisms (e.g., disk-

based storage or synchronous Redis clients), causing delays in high-throughput P2P scenarios.

• Scalability Constraints: Distributed architectures often introduce complexities in cluster manage-

ment, limiting seamless scaling for P2P messaging.

• Edge Environment Challenges: Resource limitations at the edge constrain brokers’ ability to

maintain high-throughput, low-latency communication.

• Latency Sensitivity: Real-time P2P communication requires ultra-low latency, which existing

brokers struggle to achieve consistently under heavy message loads.

3. Methodology for scalability and efficiency testing of TBMQ in P2P
scenarios

The methodology for testing the scalability and efficiency of TBMQ builds upon the approaches used

in prior evaluations of MQTT brokers under stress testing, as outlined in [10]. This study examined

brokers like Mosquitto, ActiveMQ, HiveMQ, and others, focusing on metrics such as CPU usage, latency,

and message rate, which are critical for analyzing broker performance in resource-constrained and high-

throughput environments. Incorporating these methods ensures a robust and comparative assessment

of TBMQ in P2P messaging scenarios.

To assess the TBMQ’s ability to handle point-to-point communication at scale, five performance

tests measuring throughput, efficiency, and latency under progressively increasing workloads were

performed. The test environment, illustrated in Figure 1, supported a maximum throughput of 1 million

messages per second. Throughput refers to the total number of messages per second, including both

incoming and outgoing messages.

The performance environment was deployed on an Amazon Web Services Elastic Kubernetes Service

(AWS EKS) cluster with horizontal scaling to accommodate growing demands. The TBMQ cluster

included 5 nodes (16 virtual central processing units (vCPU), 32 GiB random-access memory (RAM)

each), supported by 5 Kafka instances (2 vCPU, 4 GiB RAM each) [11, 12, 13] and 11 Redis instances

(2 vCPU, 4 GiB RAM each) [14]. Drawing on the comparison between Redis and MS SQL presented
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Figure 1: Architecture of the TBMQ cluster and test environment.

in the work [15], Redis is incorporated into the methodology for efficient state and message tracking,

enabling high-throughput communication scenarios with minimal latency and resource overhead.

The tests simulated 500,000 publishers and subscribers, with each client pair operating at 1 message

per second using Quality of Service (QoS) 1 for reliable delivery. Subscribers were configured with

clean_session=false, ensuring that messages were retained and delivered even during offline periods.

Published messages were 62 bytes in size, assigned to unique topics such as "europe/ua/kyiv/$number",

with corresponding subscriptions to "europe/ua/kyiv/$number+", where $number identified each publisher-

subscriber pair.

3.1. Test agent design for simulating TBMQ performance

To evaluate TBMQ’s performance under increasing message traffic, a test agent architecture was

designed to simulate large-scale publisher and subscriber activity. The test agent consisted of two main

components: runner pods and an orchestrator pod. Each component was deployed on Amazon

Elastic Compute Cloud (EC2) instances, a scalable virtual computing service provided by AWS [16, 17].

EC2 enables users to provision virtual machines with configurable CPU, memory, and network capacity,

offering flexibility to handle varying workloads.

Runner pods

Runner pods were specialized for either publishing or subscribing. The number of publisher pods always

matched the number of subscriber pods, ensuring symmetry in message flow. Pods were deployed

on EC2 instances, with the number of instances and pods per instance adjusted based on the desired

throughput.

Table 1
Scaling configuration of EC2 instances for runner pods.

Throughput (msg/sec) Pods/Instance Number of EC2 Instances
200k 5 1
400k 5 1
600k 10 1
800k 5 2
1M 5 4

As shown in table 1, throughput increases were managed by scaling the number of EC2 instances or

pods per instance. For example, a throughput of 1 million messages per second required 4 instances,

each hosting 5 pods.
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Orchestrator pod

The orchestrator pod managed the execution and coordination of runner pods and was hosted on a

dedicated EC2 instance. This instance also supported auxiliary monitoring tools, including:

• Kafka Redpanda Console: For real-time broker monitoring.

• Redis Insight: For analyzing database performance.

This modular architecture allowed the test agent to adapt dynamically to increasing traffic demands.

By effectively distributing workloads across EC2 instances, it maintained consistent performance and

reliable message delivery, even at high throughput levels.

3.2. Infrastructure overview

This section provides an overview of the test environment, highlighting the hardware specifications

of the services utilized and the distribution of EKS cluster pods across AWS EC2 instances. EKS is a

managed platform that simplifies the deployment and management of containers using the popular

Kubernetes system [18]. It automates the orchestration of containerized applications, allowing them

to run efficiently on scalable infrastructure. Kubernetes has become a cornerstone for deploying and

managing large-scale distributed systems, offering advanced features such as horizontal pod autoscaling,

rolling updates, and resource quotas. In our test environment, services such as TBMQ, Kafka, and Redis

were deployed in containers within an EKS cluster and distributed across AWS EC2 virtual machines.

This setup ensures optimal resource allocation, scalability, and performance during the testing process.

AWS RDS (Amazon Web Services Relational Database Service) is used for managing our PostgreSQL

database. RDS is a managed service that simplifies the setup, operation, and scaling of relational

databases in the cloud.

Table 2 below presents the hardware specifications for the services used in our tests:

Table 2
Hardware specifications for the services used in the tests.

Service name TBMQ Kafka Redis AWS RDS (PostgreSQL)
Instance type c7a.4xlarge c7a.large c7a.large db.m6i.large

vCPU 16 2 2 2
Memory (GiB) 32 4 4 8
Storage (GiB) 20 30 8 20

Network bandwidth (Gibps) 12.5 12.5 12.5 12.5

Note: To minimize costs during the load testing phase, only the Redis master nodes were used without

replicas. This configuration enabled us to focus on achieving the target throughput without excessive

resource provisioning.

Instance scaling was adjusted during each test to match workload demands, as described in the next

section.

4. Results

TBMQ’s performance was tested in phases, starting at 200k msg/sec and increasing by 200k each time,

up to 1M msg/sec. In each phase, the number of TBMQ brokers and Redis nodes was scaled. For the 1M

msg/sec test, the number of Kafka nodes was also scaled to handle the corresponding workload. The

test configurations are summarized in table 3.

Key takeaways from the tests include:

• Scalability: TBMQ demonstrated linear scalability. Reliable performance was maintained as the

message throughput increased from 200k to 1M msg/sec by incrementally adding TBMQ nodes,

Redis nodes, and Kafka nodes at higher workloads.
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Table 3
The test configurations are summarized.

Throughput (msg/sec) Publishers/Subscribers TBMQ nodes Redis nodes Kafka nodes
200k 100k 1 3 3
400k 200k 2 5 3
600k 300k 3 7 3
800k 400k 4 9 3
1M 500k 5 11 5

• Efficient Resource Utilization: CPU utilization on TBMQ nodes remained consistently around

90% across all test phases, indicating that the system effectively used available resources without

overconsumption.

• Latency Management: The observed latency across all tests remained within two-digit bounds.

This was predictable given the QoS 1 level chosen for our test, applied to both publishers and

persistent subscribers. We also tracked the average acknowledgment latency for publishers,

which stayed within single-digit bounds across all test phases.

• High Performance: TBMQ’s one-to-one communication pattern showed excellent efficiency,

processing about 8900 msg/s per CPU core. We calculated this by dividing the total throughput

by the total number of CPU cores used in the setup.

Additionally, the following table and screenshots provide a comprehensive summary of the key

elements and results of the final 1M msg/sec test.

Table 4
Summary of the key elements and results of the final 1M msg/sec test.

QoS Msg latency Avg Pub Ack Avg TBMQ CPU Avg Payload (bytes)
1 75ms 8ms 91% 62

Where:

• TBMQ CPU Avg: The average CPU utilization across all TBMQ nodes.

• Msg Latency Avg: The average duration from when a message is transmitted by the publisher to

when it is received by the subscriber.

• Pub Ack Avg: The average time elapsed between the message transmission by the publisher and

the reception of the PUBACK acknowledgment.

For detailed results of the performance evaluation, including insights into CPU utilization, Java

Management Extensions (JMX) monitoring, and Redis instance metrics, please refer to the official

documentation [19].

5. Discussion

Performance testing of TBMQ under extreme-scale P2P messaging revealed critical limitations in the

existing broker architecture. A key issue encountered was the inefficiency of the Redis client library

Jedis, which created a bottleneck due to its synchronous nature. Addressing this challenge required a

migration to Lettuce, an asynchronous Redis client designed for high-concurrency scenarios.

The following sections describe this migration process, its technical challenges, and its impact on

system performance.

5.1. Migrating from Jedis to Lettuce: overcoming a key testing challenge

One of the most significant challenges during performance testing was overcoming the limitations of

the Jedis library, whose synchronous nature became a bottleneck in high-throughput scenarios. The
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Jedis library is a popular Java client for Redis, which is an in-memory data structure store often used as

a database, cache, or message broker. Jedis provides a straightforward API for interacting with Redis,

allowing developers to perform operations like reading and writing data, managing keys, and executing

Redis commands within Java applications. With Jedis, each Redis command is sent and processed

sequentially, meaning the system has to wait for each command to complete before issuing the next

one. This approach significantly limited Redis’s potential to handle concurrent operations and fully

utilize available system resources [20].

Solution: migrating to Lettuce

Lettuce is a scalable thread-safe Redis client for synchronous, asynchronous and reactive usage. Multiple

threads may share one connection if they avoid blocking and transactional operations. To address

the Jedis issue, migration was made to the Lettuce client, which leverages Netty under the hood for

efficient asynchronous communication [21, 22]. Unlike Jedis, Lettuce allows multiple commands to

be sent in parallel without waiting for their completion, enabling non-blocking operations and better

resource utilization. This architecture made it possible to fully exploit Redis’s performance capabilities,

especially under high message loads.

Challenges during migration

The migration, however, was not trivial. It required:

• Rewriting a substantial portion of the codebase to transition from synchronous to asyn-

chronous workflows.

• Restructuring how Redis commands were issued and handled.

Careful planning and rigorous testing ensured that these changes maintained system reliability and

correctness.

By migrating to Lettuce, the bottleneck caused by Jedis was resolved, enabling the full utilization of

Redis’s potential in high-load scenarios. Although the migration process was challenging and required

significant effort, it delivered substantial improvements in system performance.

5.2. Planned optimizations for Redis performance

Current State: Currently, Lua scripts are used in Redis to process messages, ensuring the atomicity of

operations such as saving, updating, and deleting messages. This approach is critical for maintaining

data consistency. However, due to the limitations of the Redis Cluster architecture, each script operates

on a single client. This restriction arises because all keys accessed within a script must reside in the

same hash slot [23].

Planned optimizations: Future plans include modifying the hashing mechanism for client identifiers

(client IDs) to group more clients into the same Redis hash slot. This adjustment would allow a single

Lua script to process multiple clients within the same hash slot. Such an approach is expected to reduce

overhead and improve the efficiency of Redis operations while adhering to the cluster’s constraints.

Future work in enhancing MQTT brokers for edge computing could benefit from incorporating

dynamic data serialization methods [24, 25] and leveraging advanced state synchronization techniques

like CRDTs [26]. These approaches could further address challenges in IoT scalability, interoperability,

and real-time data consistency in distributed environments.

6. Conclusion

The evaluation of TBMQ in point-to-point (P2P) messaging scenarios has demonstrated its capability to

meet the demands of scalable, reliable, and low-latency communication in IoT applications. By leveraging

a robust architecture built on Kafka and Redis, TBMQ has shown linear scalability and efficient resource
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utilization, maintaining performance across a wide range of throughput conditions—from 200,000 to 1

million messages per second.

Key performance insights include consistent CPU utilization at 90% under high loads, efficient

memory management, and low message latency even during peak operations. The migration from Jedis

to Lettuce was instrumental in overcoming bottlenecks in Redis communication, enabling asynchronous

workflows and higher concurrency. Additionally, planned optimizations for Redis, such as refining Lua

scripting mechanisms, are expected to further enhance TBMQ’s operational efficiency.

The results position TBMQ as a powerful solution for edge-based IoT ecosystems, addressing the

unique challenges of P2P messaging, including direct message routing, dynamic client management,

and reliability. Future developments, focusing on Redis optimizations and enhanced integration with

edge computing frameworks, will strengthen TBMQ’s adaptability to evolving IoT requirements.

In conclusion, TBMQ emerges as a scalable and dependable MQTT broker, setting a new benchmark

for P2P communication in distributed IoT environments.
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