
Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Review of modern tools for edge computing systems
quality assurance
Viktor O. Maliarskyi1, Vasyl P. Oleksiuk1,2

1Ternopil Volodymyr Hnatiuk National Pedagogical University, 2 Maxyma Kryvonosa Str., Ternopil, 46027, Ukraine
2Institute for Digitalisation of Education of the NAES of Ukraine, 9 M. Berlynskoho Str., Kyiv, 04060, Ukraine

Abstract
Reviewing relevant QA tools is essential for improving efficiency, collaboration, and software quality while
reducing costs. It enables QA teams to meet the fast-changing demands of software development and deliver
reliable software on time and within budget. Strategic tool selection, emphasizing standardization, integration,
and alignment with business goals, streamlines processes and reduces complexity. Edge computing environments
require a fundamentally different approach to testing compared to traditional cloud or on-premise applications.
While traditional testing tools are valuable, edge computing requires specialized solutions that can handle
distributed architectures and variable network conditions. This paper aims to analyze challenges and key
approaches of Edge Computing systems’ testing, evaluate the most suitable QA tools, organize them, and
highlight their benefits to help QA teams identify tools that meet their requirements. Bibliometric analysis of
researched field discovered that the topic of quality assurance of different types of edge computing systems is
highly discussed and important nowadays. The main features of providing efficient quality assurance process
for edge computing systems is to set up appropriate testing of their performance, reliability, security, integrity
and usability. The authors have defined the criteria for selecting edge computing system testing tools, such as
scalability, compatibility, integrity, cost savings, licensing, and ease of use. For each of them, several indicators
are proposed that allow measuring the value of these indicators. The most relevant tools that match defined
criteria are suggested.

Keywords
Edge computing, quality assurance, tools, challenges, approaches, criteria and indicators

1. Introduction

Modern software applications are more complex than ever, involving multiple platforms, devices, APIs,
and integrations [1]. Modern businesses demand a greater transparency and accountability of their
products. Standardized QA tools provide consistent metrics and insights into testing progress and
quality. Also they enable traceability of bugs and test cases, which is crucial for audits and compliance.

Edge computing can be defined as an emerging technology that uses cloud computing to leverage
edge data centers to process, store, and analyze data close to the source. Traditional cloud computing
architectures are not designed for latency-critical applications such as AI (artificial intelligence) and
IoT (Internet of things) because they rely on low data volumes generated by applications running near
highly-populated areas [2].

Performing functional and integration testing, along with scalability and robustness assessments on
the codebases is generally limited to configurations involving a single or a small number of physical
servers. In contrast, edge architectures necessitate rigorous evaluation of functionalities designed to
address the challenges posed by geographically distributed infrastructures, particularly when architec-
tural models exhibit fundamentally distinct configurations. To ensure stable and reliable results, it is
advisable to adopt best practices from the scientific community.

Testing, should not only be rooted in precision engineering, but also involve creative problem-solving.
Low-level code testing, such as unit tests or API response validation, is relatively straightforward and
facilitates the creation of frameworks capable of executing automated test suites that meet criteria such

doors-2025: 5th Edge Computing Workshop, April 4, 2025, Zhytomyr, Ukraine
" maliarskyi_vo@fizmat.tnpu.edu.ua (V. O. Maliarskyi); oleksyuk@fizmat.tnpu.edu.ua (V. P. Oleksiuk)
~ https://tnpu.edu.ua/faculty/fizmat/oleksyuk-vasil-petrovich.php (V. P. Oleksiuk)
� 0009-0006-7289-7672 (V. O. Maliarskyi); 0000-0003-2206-8447 (V. P. Oleksiuk)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

67

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:maliarskyi_vo@fizmat.tnpu.edu.ua
mailto:oleksyuk@fizmat.tnpu.edu.ua
https://tnpu.edu.ua/faculty/fizmat/oleksyuk-vasil-petrovich.php
https://orcid.org/0009-0006-7289-7672
https://orcid.org/0000-0003-2206-8447
https://creativecommons.org/licenses/by/4.0/deed.en

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

as repeatability, replicability, and reproducibility. However, testing integrated systems to replicate the
configurations and operational conditions of production environments presents considerably greater
complexity [3].

Reviewing and continuous monitoring of modern QA tools is crucial for efficiency, collaboration,
cost savings, and quality improvement. It helps QA teams adapt to the fast-paced, dynamic demands of
software development while maintaining high standards of software reliability and user satisfaction.
With proper systematization, teams are better equipped to deliver exceptional software on time and
within budget [4]. To address this, QA teams must take a strategic approach to tool selection, focusing
on standardization, integration, and alignment with business goals. By managing this variety effectively,
organizations can streamline their QA processes and maintain high-quality software delivery without
unnecessary complexity. Modern QA increasingly relies on advanced features like AI-driven test
generation, defect prediction, and analytics. Systematized tools help QA teams stay up-to-date and
integrate innovative technologies without disrupting workflows [5].

The purpose of this article is to analyze and estimate the most suitable QA tools for edge computing
systems in 2024, review them and highlight their benefits to help QA teams to find tools that meet their
requirements.

2. Bibliometric analysis of research field

To explore the development of research in edge computing system’s quality assurance field and to define
the key concepts of the research by studying the keywords of related scientific papers and articles,
the bibliometric analyses was performed using data from two sources: Scopus and Web of Science
databases. As an example of bibliometric analysis workflow, the methodologies of Mintii and Semerikov
[6], Vinueza-Naranjo et al. [7] were used. In accordance with these methodologies, some search queries
were performed.

Scopus search query from January 6, 2025:

TITLE-ABS-KEY (software) AND TITLE-ABS-KEY ("Edge Computing")
AND TITLE-ABS-KEY (testing OR "quality assurance") AND (tool*)
AND PUBYEAR > 2014 AND PUBYEAR < 2026 AND (LIMIT-TO (SUBJAREA , "COMP")
OR LIMIT-TO (SUBJAREA , "ENGI") OR LIMIT-TO (SUBJAREA , "MATH")
OR LIMIT-TO (SUBJAREA , "DECI") OR LIMIT-TO (SUBJAREA , "ECON")
OR LIMIT-TO (SUBJAREA , "MULT")) AND (LIMIT-TO (DOCTYPE , "ar")
OR LIMIT-TO (DOCTYPE , "cp")) AND (LIMIT-TO (LANGUAGE , "English"))

Web of Science search query from January 6, 2025:

AK="Edge Computing" AND AK=(test* OR "quality assurance") AND AK=software

The Web of Science query line is much shorter than it is for Scopus, because the functionality of Web
of Science platform’s user interface is not automatically adding used checkbox filters to its searching
query. But all the searching conditions was the same for both sources. After uniting duplicate results,
the final documents list contained 70 files. VOSviewer [8] was used as a tool for bibliometric analysis.
Analysis was performed on keywords using default algorithm of clustering. The result of bibliometric
analysis is a map of 21 keywords divided into 4 clusters that is displayed on figure 1.

Analyzing the researched field’s keywords grouped by VOSviewer and identifying associated thematic
areas, we suggest to name formed clusters next way:

• Cluster 1 (red) – Edge computing system types and their performance.
• Cluster 2 (green) – Usage of machine learning in edge computing systems testing.
• Cluster 3 (Blue) – Open source systems.
• Cluster 4 (Yellow) – Network architecture.

68

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Figure 1: Network visualization of keywords relations in edge computing QA field.

To analyze generated map, we can use 4 main attributes:

• weight<Links> (wl) – the number of links of an element with other elements
• weight<Total link strength> (wtls) – general strength of links between target element and other

elements
• weight<Occurrences> (wo) – related to keywords it shows the number of their occurrences in

analyzed documents
• score<Avg. pub. year> (sapy) – average year of documents’ publication where target keyword is

used.

All the keywords and their analysis attributes values are visualized in table 1.
Analysis data discovers that keywords Edge Computing and Software Testing from cluster 2 have

the highest numbers of all attributes between all the other keywords (edge computing: wl – 20, wtls –
143, wo – 55; software testing: wl – 19, wtls – 70, wo – 27). It means that the topic of quality assurance
of different types of edge computing systems is highly discussed and important. Moreover it keeps
changing, developing and always requires new investigations due to average year of documents’
publication attribute values (edge computing: sapy – 2021,95; software testing: sapy – 2021.89).

The Internet of Things (IoT) is one of the largest and most influential network architectures. It
describes access and processing of the data given by devices with sensors via wired and wireless
networks. IoT requires scalable and flexible management of many interconnected devices and sensors
today [9]. Due to the analysis result (wl – 19, wtls – 61), it can be caused by the fact that its errors can
have direct and significant consequences on human lives. Addressing these errors requires rigorous

69

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Table 1
Attributes of bibliometric analysis of keywords.

Keyword Cluster wl w tls wo sapy
application programs 1 14 28 8 2022,50
benchmarking 1 11 27 9 2022,89
cloud-computing 1 14 29 7 2023,43
fog computing 1 13 22 5 2022,00
internet of things 1 19 61 18 2021,89
performance 1 9 17 5 2023,40
deep learning 2 10 24 10 2021,50
edge computing 2 20 143 55 2021,95
embedded systems 2 16 32 9 2022,56
integration testing 2 9 15 5 2022,20
machine learning 2 6 13 6 2021,50
software testing 2 19 70 27 2021,89
cloud computing 3 16 41 10 2021,10
digital storage 3 10 20 7 2022,14
open source software 3 14 35 9 2021,78
open systems 3 13 28 7 2021,29
software 3 11 18 6 2021,17
5g mobile comunication 4 9 16 7 2020,43
computer architecture 4 13 25 7 2021,71
network architecture 4 12 21 5 2022,20
software defined networking 4 8 13 5 2020,80

testing and validation processes; however, testing and validating a heterogeneous, dynamically evolving,
and planetary-scale ecosystem presents unique challenges [10]. Considering some challenges in testing
IoT architectures, such as the variety and large numbers of devices, dynamic environments, security
challenges, and real-time performance, the authors [11] designed the framework for modelling the
behaviour of the Internet of Things and edge computing environments. Its efficacy was validated using
a case study for an electricity management and billing application within a smart city [12].

Also due to Occurrences and Avg. Pub. Year attributes’ values we can note that the most relevant
and popular keywords of investigated field are cloud-computing systems (wo – 10, sapy – 2023,43) and
general edge computing system’s performance testing (sapy – 2023,40). It shows that the discussion of
cloud computing and edge computing systems’ synergy is developing and becoming more attractive
for developers and scientists in many fields such as distributed computing [13], software engineering
[14], computer networks [15], education [16, 17], etc. At the same time the problem of these systems’
performance is rising and its solution will allow to develop more efficient and useful projects.

The bibliometric analysis shows the rise of attention to such studies as the use of AI for deep learning
of edge devices [18], solving classification and segmentation tasks [19], reliability assessment of AI-
systems, vehicle control [20], video monitoring [21], etc. Another direction of current research is the
integration of Machine learning into the testing process of edge computing systems. This approach
extends and speeds up the analyzes of edge computing capabilities, enabling real-time data processing
and more intelligent decision-making.

3. Review of modern edge computing system’s testing challenges and
features

Edge computing environments become more popular and require a fundamentally different approach to
testing compared to traditional cloud or on-premise applications. As emphasized in the ISTQB Advanced
Level Test Automation Engineer syllabus [22], software designed for edge computing must be capable
of effectively managing challenges such as intermittent connectivity, resource-constrained devices, and

70

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

highly variable network conditions. These unique characteristics necessitate tailored testing strategies
to ensure reliability, performance, and resilience in edge deployments. Basic test strategies must be
expanded and account the requirements of edge computing environment (figure 2).

Figure 2: Edge computing’s testing strategy [23].

Edge computing applications, such as autonomous vehicles and smart manufacturing systems, demand
instantaneous data processing and response, leaving minimal tolerance for delay or error. Latency
in data handling can lead to critical safety risks or significant operational inefficiencies. Data testing
should ensure that systems meet the stringent time-sensitive requirements of edge environments by
validating that data is processed and acted upon within milliseconds. For instance, in an autonomous
vehicle, real-time testing verifies that the vehicle’s sensors and AI algorithms accurately detect obstacles
and respond promptly, thereby mitigating the risk of accidents and ensuring safe operation.

System reliability is a critical consideration in edge computing, where edge devices function au-
tonomously, often without direct dependence on centralized data centers. Testing should identify
potential system failures before they escalate into critical issues. By continuously monitoring the
performance of edge devices, testing must detect early indicators of hardware malfunctions, software
anomalies, or network disruptions.

Security is a paramount concern in edge computing environments, where data is processed outside
the controlled and secure boundaries of traditional data centers. Data testing must enhance security
by continuous monitoring of data flows for vulnerabilities or breaches. For instance, real-time testing
can detect anomalous data patterns indicative of cyberattacks or unauthorized access to edge devices
[24]. By integrating real-time testing with robust security protocols, organizations can rapidly identify
and respond to potential threats, thereby protecting sensitive data and ensuring adherence to industry
compliance standards.

In edge computing, the seamless coordination and performance of multiple devices operating across
a distributed network are essential for ensuring smooth and efficient operations. Data testing plays
a crucial role in verifying that each component within the edge network functions optimally. This
involves validating the efficiency of inter-device communication, evaluating the speed and accuracy
of data processing, and identifying potential bottlenecks that could impair overall performance. By
implementing continuous testing, organizations can enhance the performance of their edge systems,
achieving greater speed, reliability, and operational effectiveness [25].

Edge computing applications often operate in dynamic and challenging environments, such as offshore
oil rigs, remote industrial sites, or aerospace systems. These settings pose unique difficulties, including
variable network connectivity, extreme environmental conditions, and restricted access to centralized
resources. Testing must address these challenges by validating the adaptability and resilience of edge
systems. We should ensure that edge devices maintain functionality and reliability under unstable
network conditions or harsh environmental factors, thereby supporting continuous and dependable
operations in critical applications.

Edge computing relies on uninterrupted data flow and processing to deliver the low-latency and high-
performance advantages it promises. Continuous monitoring and verifying that data flows seamlessly
from edge devices to local processing units is essential. This ongoing evaluation ensures that any
interruptions, delays, or inconsistencies in data transmission are promptly detected and resolved,
enabling edge systems to sustain a consistent and reliable flow of real-time data for optimal performance.

71

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

In edge computing, where data processing occurs closer to its source, real-time data testing plays a
pivotal role in ensuring systems operate with precision, efficiency, and dependability. Edge environ-
ments frequently manage time-critical data, where delays, inaccuracies, or failures can lead to severe
consequences, particularly in domains such as autonomous vehicles, industrial IoT, and healthcare
monitoring. By continuously validating the integrity, performance, and functionality of edge devices
and systems under live conditions, real-time data testing mitigates these risks, enabling reliable and
responsive operations in dynamic and high-stakes scenarios [26].

The primary objective of real-time data testing is to guarantee the accuracy and reliability of data
processed at the edge. In decentralized systems, edge devices—such as sensors, cameras, and smart
gateways—generate and collect substantial volumes of data. Real-time testing ensures that this data is
correctly formatted, transmitted, and synchronized across distributed networks. By detecting incon-
sistencies or corruptions in the data flow, real-time testing prevents potential inaccuracies that could
otherwise result in erroneous decisions or malfunctioning operations in edge-based applications.

Burn-in testing is a rigorous process aimed at identifying early failures in components and minimizing
the likelihood of defects and malfunctions during field operation. This testing subjects computing
components to extreme operating conditions, such as high and low temperature extremes, intensive
usage cycles, and elevated voltages. The goal is to identify and eliminate defective components or those
with inherently short lifespans before their deployment in operational systems. The primary purpose of
burn-in testing is to ensure that components can endure severe environmental and operational stresses,
demonstrating their durability and dependability under diverse and challenging conditions. By doing
so, burn-in testing helps prevent costly or potentially catastrophic system failures, thereby enhancing
the reliability and safety of mission-critical applications [27].

4. Tools for edge computing systems‘ testing review

Manual and automation testing leverages a wide array of tools designed to help QA engineers create,
organize, and track test cases, manage bugs, and ensure overall software quality. These tools can
focus on specific testing areas, such as functional, API, or web service testing, or be used for broader
approaches like exploratory testing. Comprehensive QA management systems support the entire
process, from planning and execution to analysis and reporting. They often integrate seamlessly with
collaboration platforms, making it easier to assign tasks and coordinate efforts within teams [28]. This
combination of tools and services allows specialists to streamline Edge Computing systems testing
workflows, improve efficiency, and optimize the software testing process.

In general we can categorize testing tools by their usage in different test types (functional, performance,
API, load, etc), by test management area (test case management, bug tracking, logging, monitoring, etc.)
and by general testing purposes (test data generation, device simulation, screen recording). Suggested
categorization is displayed on figure 3

Considering all the testing challenges and features of edge computing systems’ testing described at
previous chapter, we can formulate list of criteria to provide appropriate QA tools selection (table 2).

Most of the above indicators can be assessed based on official documentation from software vendors
or cloud service providers. However, such indicators as load handling, horizontal scaling, vertical
scaling, stress testing, latency maintenance and tool customizability should be determined based on
expert assessment with subsequent verification of the respondents’ degree of agreement. So, developing
a methodology for integrated assessment according to the criteria and indicators we have defined using
both approaches is advisable.

In general, QA team must aggregate full set of tools to be able to provide:

• functional testing;
• latency and performance testing;
• security testing;
• fault tolerance and resilience testing;

72

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Figure 3: Testing tool categories.

• monitoring and measurement.

To achieve a comprehensive coverage of special requirements to edge computing systems’ testing,
there is a need for detailed selection of appropriate tools. As a result of investigation, tools indicated in
table 3 can be suggested as the most suitable to perform needed workflows and assertions.

While traditional testing tools are valuable, edge computing requires specialized solutions that can
handle distributed architectures and variable network conditions. Based on the papers analyzed above
and our own experience, we offer the set of essential tools for edge computing QA:

The Linux-based network emulation tool NetEm (Network Emulator) [29] simulates network
conditions such as latency, packet loss, duplication, and jitter. It is commonly employed to test application
performance under adverse network scenarios. By configuring kernel parameters, it allows developers to
mimic real-world network behaviors, enabling testing of edge systems in highly dynamic and unreliable
network environments, such as those seen in remote or mobile edge nodes.

NetEm’s flexibility and granular control make it a valuable tool for testing the resilience of edge
applications under challenging conditions. It helps developers assess system behavior during network
disruptions, which is critical for applications requiring high reliability and low latency.
WANem (Wide Area Network Emulator) [30] is an open-source tool designed to replicate WAN

characteristics such as high latency, limited bandwidth, and network congestion. It is widely used to
test distributed applications that operate over wide geographic distances. WANem offers a user-friendly
interface for creating scenarios that emulate the communication between edge nodes and cloud data
centers, allowing organizations to assess system behavior in geographically distributed edge computing
setups.

WANem provides a straightforward approach to emulating WAN scenarios, ensuring that edge
systems can handle bandwidth constraints and varying latency. While it is effective for general testing,
it may lack some advanced features required for highly specific edge environments.

Simple yet effective tool for injecting network faults into local network communications is Clumsy
[31]. It allows users to introduce packet drops, latency, corruption, and duplication into a network to
test the resilience of software or devices. While primarily designed for smaller-scale or local testing
environments, Clumsy can be highly useful for edge system developers to evaluate edge device behavior
under adverse network conditions during early-stage development.

Clumsy provides basic but effective network emulation, making it ideal for testing small edge
deployments. Its limited feature set may not suffice for more complex distributed environments, but it’s
a good starting point for basic network testing.

For performance testing Apache JMeter [32] is a powerful open-source tool that supports a wide
range of protocols, including HTTP, FTP, JDBC, and SOAP. It is used to measure application performance,
load, and scalability under various conditions. In the context of edge computing, JMeter is particularly

73

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Table 2
Edge computing systems’ testing tools selection criteria.

Criteria Indicators

1. Scalability

1.1 Load Handling: Maximum number of concurrent users, devices, or data streams the
tool can manage.
1.2 Horizontal Scaling: Support for distributed environments by adding more edge nodes
or servers.
1.3 Vertical Scaling: Ability to optimize performance by increasing resource utilization
(CPU, memory, storage) on existing nodes.
1.4 Stress Testing: Performance under high data loads, network traffic, or concurrent
operations.
1.5 Latency Maintenance: Ability to maintain low latency as the system scales.

2. Compatibility

2.1 Multi-Platform Support: Compatibility with operating systems and hardware archi-
tectures
2.2 Protocol Support: Support for edge-specific protocols
2.3 Containerization: Support for container technologies (e.g., Docker, Kubernetes) often
used in edge deployments.
2.4 Interoperability: Integration with different IoT platforms, cloud backends, and mid-
dleware.
2.5 Real-Time Processing: Support for real-time data processing and decision-making
capabilities.

3. Integrity

3.1 CI/CD Support: Compatibility with CI/CD tools like Jenkins, GitLab CI/CD, GitHub
Actions, Azure DevOps, or CircleCI.
3.2 Automated Test Execution: Capability to trigger tests automatically during build,
deployment, or code changes.
3.3 Version Control Integration: Compatibility with version control systems like Git for
managing code and configurations.

4. Cost saving

4.1 Upfront Cost: Competitive price of purchasing the tool or system.
4.2 Subscription Model: Availability of flexible pricing models, such as pay-as-you-go or
annual subscriptions.
4.3 Free Trial or Open Source: Availability of free versions or open-source alternatives.

5. Licensing 5.1 Licensing Transparency: Support for commercial, academic, or non-profit licensing.

6. Ease of Use

6.1 User Interface (UI): Presence of an intuitive and visually accessible graphical interface.
6.2 Documentation: Availability of comprehensive user guides, tutorials, and knowledge
bases.
6.3 Support Channels: Availability of help via chat, forums, email, or phone support.
6.4 Customizability: Flexibility to tailor the tool’s settings, workflows, or reports to
specific needs.

valuable for testing APIs, microservices, and edge-based web applications, helping organizations ensure
these components can handle real-world traffic loads and response times.

JMeter’s ability to simulate heavy user loads and test APIs ensures thorough performance validation
in edge environments. While it excels in scalability testing, it may struggle to handle complex distributed
setups without additional configuration.

As for the load testing Gatling[33] is a popular open-source tool specifically designed for high-
throughput HTTP applications. Known for its performance and efficiency, Gatling is widely used
to simulate concurrent user behavior and analyze response times. For edge systems, Gatling can be
employed to test the responsiveness of services that require low latency, such as real-time IoT data
processing or edge-based decision-making systems.

Gatling’s intuitive interface and efficient resource usage make it a strong choice for edge performance
testing. While it requires some initial learning, it provides comprehensive insights into system behavior
under load.

Python-based load testing tool that enables developers to simulate user behavior across distributed
systems is Locust [34]. It supports thousands of concurrent simulated users, making it an excellent
choice for edge environments with multiple devices or nodes. Locust’s flexibility allows for custom test

74

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Table 3
Systematized tools suitable for edge computing systems’ testing.

Type Name Benefits for edge computing systems’ testing
Network em-
ulators

Linux NetEM Simulates real-world network conditions like latency, packet loss, and
jitter, helping to test edge systems’ performance under diverse and
challenging network scenarios.

WANem Provides an easy-to-use interface for emulating wide-area network
conditions, enabling the testing of edge system performance under
unreliable and constrained connectivity.

Clumsy Allows network fault injection (latency, packet drops, etc.), ensuring
robustness and reliability of edge systems operating in fluctuating
network environments.

Performance
and load
testing

JMeter Simulates high user loads to evaluate edge systems’ performance, scal-
ability, and ability to process simultaneous requests effectively.

Gatling Delivers detailed performance metrics for edge systems by testing
data processing speeds, throughput, and response times under varying
loads.

Locust Facilitates distributed load testing, ideal for edge environments with
numerous connected devices, to ensure the scalability of the overall
system.

Security test-
ing

NMap Scans edge devices for open ports, which is key strategy to find network
vulnerabilities or system miss-configurations.

Shodan Search engine that can be used to scan IoT devices connected to the
same network and find potential threats or vulnerabilities.

Metasploit Framework for penetration testing to simulate attacks on edge devices
and applications by supporting exploit matching, execution, and devel-
opment.

Monitoring
& metrics

Prometheus Enables real-time monitoring of edge devices and applications, iden-
tifying performance bottlenecks and ensuring reliable data collection
and processing.

Grafana Provides visual analytics and dashboards for edge system metrics,
allowing quick identification of anomalies or performance trends.

ELK Stack Offers comprehensive logging, monitoring, and data analysis for edge
systems, ensuring efficient troubleshooting and root cause analysis in
distributed environments.

NewRelic Delivers full-stack monitoring for edge devices, providing actionable
insights on system health, performance, and end-user experiences.

Nagios Monitors the health, uptime, and performance of edge devices and in-
frastructure, ensuring early detection of issues in critical environments.

AI/ML
frameworks

TensorFlow Ex-
tended (TFX)

Supports the end-to-end testing of AI/ML pipelines in edge environ-
ments, ensuring accurate model deployment, data integrity, and con-
sistent predictions in real-time.

DataRobot Provides automated AI/ML model testing and monitoring, ideal for
validating the performance of intelligent systems deployed at the edge.

Test automa-
tion

Katalon Studio Simplifies functional, API, and UI testing for edge applications, ensuring
robust performance across diverse device configurations.

scripts, making it highly adaptable for edge applications that demand specific interaction patterns, such
as smart manufacturing or autonomous vehicle networks.

Locust’s flexibility and scalability allow for detailed performance evaluations of edge systems. Its re-
liance on scripting requires programming knowledge but enables highly customizable testing scenarios.

Moving to network security testing tools, we can suggest Nmap [35]. Open-source network scanning
tool that provides detailed insights into hosts, open ports, and potential vulnerabilities. It is widely used
to assess the security posture of edge devices and detect misconfigurations that could expose systems
to cyber threats.

75

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Nmap’s scripting engine enables automated scans and custom security assessments, making it
highly effective for distributed edge environments. Its command-line interface may be intimidating for
beginners, but its versatility and accuracy in network reconnaissance make it a crucial tool for security
professionals.

Another useful tool is Shodan [36]. A search engine for internet-connected devices that provides
visibility into exposed edge systems, open ports, and security risks. It is widely used to identify
vulnerable IoT devices, industrial control systems, and cloud-connected edge nodes.

Shodan’s ability to scan and categorize devices based on their fingerprints makes it invaluable for
cybersecurity teams. Its premium features can be costly, but its powerful search capabilities make it an
essential tool for identifying and securing publicly exposed edge infrastructure.

Penetration testing is a crucial stage of system’s security assurance flow. Metasploit [37] is an
open-source security testing framework that allows teams to simulate real-world cyberattacks on edge
computing systems. It is widely used to exploit vulnerabilities in networks, applications, and connected
devices to assess their resilience against threats.

Metasploit’s extensive exploit database and automation features make it a powerful tool for proactive
security testing. Its complexity may require a learning curve for new users, but its ability to simulate
advanced attack scenarios makes it indispensable for ethical hackers and security teams.

Really useful would be Prometheus [38]. It’s an open-source monitoring and alerting toolkit
designed for collecting and querying time-series data. It integrates well with edge systems to monitor
the health and performance of edge devices and microservices. Prometheus is particularly suited for
edge testing environments that require real-time insights into resource usage, network conditions, or
system availability.

Prometheus’s detailed metrics and real-time alerts make it indispensable for maintaining edge system
reliability. Its complexity can pose a challenge for new users, but its integration with other tools like
Grafana enhances its utility.

As an alternative tool for Prometheus, we can use Grafana [39] – open-source data visualization
and monitoring tool that integrates with Prometheus and other data sources. It allows users to create
dynamic dashboards for real-time analysis. In edge computing, Grafana is invaluable for visualizing
metrics such as latency, throughput, and resource utilization across distributed edge systems.

Grafana’s customizable dashboards provide clear insights into edge system performance. It requires
time to set up effectively, but its visualization capabilities make it a valuable monitoring tool.

Also, the powerful kit is ELK Stack [40], a combination of three powerful tools Elasticsearch for log
storage and search, Logstash for log collection and processing, and Kibana for visualization. This suite
is widely used for centralizing and analyzing logs from distributed systems. In edge environments, ELK
helps manage the extensive logging generated by edge devices and microservices, ensuring insights
into system performance and error tracking.

It handles large volumes of log data efficiently, aiding in debugging and performance optimization.
Its resource intensity requires robust infrastructure, but its analytical power is unmatched for log-based
insights.

One more monitoring tool is New Relic [41], a cloud-based observability platform offering per-
formance monitoring, distributed tracing, and analytics. It is widely used to analyze application and
system behavior in real-time, making it highly applicable for edge computing systems. New Relic
provides end-to-end visibility across the entire system, including edge devices, microservices, and cloud
backends, helping to ensure seamless and reliable operations.

New Relic simplifies observability with intuitive dashboards and detailed traces, ensuring edge
systems operate smoothly. Its licensing costs and dependency on the internet may limit its applicability
for some teams.

For infrastructure monitoring we would use Nagios [42]. It is an open-source system monitoring
tool that provides real-time insights into network, server, and application performance. It is widely used
to monitor the health and availability of edge devices and nodes. Nagios can alert teams to hardware
failures, software issues, or network disruptions in edge environments, ensuring proactive problem
resolution.

76

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

Nagios’s customization options ensure effective monitoring of distributed edge systems. It’s dated
interface may deter some users, but its reliability and plugin ecosystem are significant advantages.

When working with artificial intelligence and machine learning systems, it’s important to use specific
tools, that are able to process models assessment and validation.

End-to-end platform for deploying and managing machine learning models in production is Tensor-
Flow Extended (TFX) [43]. It is often used in edge environments where AI models must run locally
on edge devices, such as image recognition in smart cameras or predictive analytics in industrial IoT.
TFX enables model testing, validation, and monitoring, ensuring robust and accurate AI deployment at
the edge.

TFX ensures robust model validation and deployment in edge AI setups. Its steep learning curve
requires expertise but offers unmatched reliability and performance for AI-driven edge applications.

Also, it’s worth mentioning DataRobot [44], an automated machine learning (AutoML) platform
designed to simplify and accelerate the development and deployment of AI models. In edge computing,
it helps create models that can operate locally on edge devices, enabling predictive analytics, anomaly
detection, or AI-based decision-making directly at the edge. DataRobot ensures that models are efficient,
accurate, and optimized for deployment in resource-constrained edge environments.

DataRobot accelerates AI development for edge applications, providing robust model validation. Its
cost and limited customization may pose challenges for small teams, but its capabilities significantly
enhance edge AI operations.

As an optimal test automation tool we would suggest Katalon Studio [45]. It’s a versatile platform
that supports web, mobile, API, and desktop applications. For edge computing, Katalon can automate
functional testing of applications running on edge devices or microservices. Its simplicity and versatility
make it ideal for testing interfaces, workflows, and APIs in edge environments.

Katalon simplifies functional and API testing for edge applications. While limited for system-level
testing, its ease of use and automation capabilities are ideal for validating workflows.

To perform real-time testing on edge computing systems like IoT sensors that require continuous
data streaming it is necessary to use systems that allow to create custom data pipelines and analyze
them. For that porpose we would offer to use Apache products: Kafka [46] and Flink [47]. Though
these are not a testing tools but their usage can bring great benefits to QA processes.

Apache Kafka is a distributed messaging system designed for real-time data streaming. It is commonly
used in edge computing to facilitate the movement of data between edge devices, processing nodes, and
cloud systems. Kafka is particularly useful for building scalable and fault-tolerant edge architectures
that handle high volumes of real-time data from IoT devices or edge sensors.

Kafka’s high throughput and scalability make it essential for edge data streaming. Its configuration
complexity requires expertise, but its ability to handle real-time data flows ensures reliable edge
operations.

Apache Flink is a distributed stream-processing framework optimized for real-time analytics. It
supports low-latency processing of data streams, making it an excellent choice for edge applications
like predictive maintenance, real-time monitoring, and analytics. Flink’s ability to process massive data
streams in distributed environments ensures reliable edge data handling and analysis.

Flink’s low-latency processing capabilities make it a top choice for edge applications requiring
real-time insights. Its complexity makes it suitable for advanced use cases and experienced teams.

5. Conclusions

Today, edge computing introduces challenges, including decentralized operations, time-sensitive data
processing, and security vulnerabilities, all of which demand robust testing strategies.

Due to performed bibliometric analysis we can note that current state of edge computing system’s
quality assurance field is mostly oriented on IoT, cloud-computing, embedded and open-source systems
testing. But the problems of justification and definition criteria for selections edge computing systems’

77

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

testing tools are still releavant. At the same time, it is necessary to consider the specifics of modern
peripheral devices.

Continuous validation of system reliability, adaptability to harsh environments, and seamless data
flow are essential to maintaining operational efficiency and safeguarding against failures or breaches.
These testing approaches collectively ensure that edge systems meet stringent performance, safety, and
security requirements, supporting their deployment in mission-critical and dynamic environments.

Burn-in testing and real-time data testing are fundamental methodologies in ensuring the reliability
and performance of edge computing systems, particularly in critical applications. Burn-in testing
identifies and eliminates defective components through rigorous stress testing, which enhances the
durability and dependability of hardware in challenging operational environments. Real-time data
testing, on the other hand, plays a pivotal role in validating the integrity, accuracy, and responsiveness
of edge devices, ensuring smooth operations in dynamic and high-stakes scenarios.

To provide appropriate QA tools selection, next list of criteria is suggested: scalability, compatibility
with edge architectures, integration with CI/CD pipelines, cost suitability, licensing and ease of use.
Most of these criteria can be estimated by checking tool’s documentation or by their exploratory use.
But the assessment of more complicated and data-driven indicators require expert analysis which can
be discovered in future investigations.

So the main task for QA teams is to aggregate full set of tools to be able to provide functional
latency, performance, security, fault tolerance, and resilience testing. Also, the tools for monitoring and
measurement are required.
Author Contributions: Conceptualization, Viktor O. Maliarskyi and Vasyl P. Oleksiuk; writing – original draft, Viktor O.

Maliarskyi; writing—review and editing, Vasyl P. Oleksiuk. All authors have read and agreed to the published version of the

manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analysed during this study. Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Declaration on Generative AI: While preparing this work, the authors used ChatGPT and Grammarly to improve sentence

structure and word choice.

References

[1] F. Okezie, I. Odun-Ayo, S. Bogle, A Critical Analysis of Software Testing Tools, Journal of Physics:
Conference Series 1378 (2019) 042030. doi:10.1088/1742-6596/1378/4/042030.

[2] V. B. Ramu, Edge Computing Performance Amplification, arXiv:2305.16175 (2023). doi:10.48550/
arXiv.2305.16175.

[3] B. Cohen, G. Csatári, S. Huang, B. Jones, A. Lebre, D. Paterson, I. Váncsa, Edge Computing:
Next Steps in Architecture, Design and Testing, 2023. URL: https://www.openstack.org/use-cases/
edge-computing/edge-computing-next-steps-in-architecture-design-and-testing.

[4] R. Timbó, Best QA Testing Tools in 2023, 2023. URL: https://www.revelo.com/blog/qa-testing-tools.
[5] R. Sujatha, 10 AI Testing Tools to Streamline Your QA Process in 2024, 2024. URL: https://www.

digitalocean.com/resources/articles/ai-testing-tools.
[6] I. Mintii, S. Semerikov, Optimizing Teacher Training and Retraining for the Age of AI-Powered

Personalized Learning: A Bibliometric Analysis, in: E. Faure, Y. Tryus, T. Vartiainen, O. Danchenko,
M. Bondarenko, C. Bazilo, G. Zaspa (Eds.), Information Technology for Education, Science, and
Technics, volume 222 of Lecture Notes on Data Engineering and Communications Technologies,
Springer Nature Switzerland, Cham, 2024, pp. 339–357. doi:10.1007/978-3-031-71804-5_23.

[7] P. G. Vinueza-Naranjo, J. Chicaiza, R. Rumipamba-Zambrano, Fog Computing Technology Research:
A Retrospective Overview and Bibliometric Analysis, ACM Comput. Surv. 57 (2024). doi:10.1145/
3702313.

[8] N. J. van Eck, L. Waltman, VOSviewer Manual, 2023. URL: https://www.vosviewer.com/
documentation/Manual_VOSviewer_1.6.20.pdf.

78

http://dx.doi.org/10.1088/1742-6596/1378/4/042030
http://dx.doi.org/10.48550/arXiv.2305.16175
http://dx.doi.org/10.48550/arXiv.2305.16175
https://www.openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing
https://www.openstack.org/use-cases/edge-computing/edge-computing-next-steps-in-architecture-design-and-testing
https://www.revelo.com/blog/qa-testing-tools
https://www.digitalocean.com/resources/articles/ai-testing-tools
https://www.digitalocean.com/resources/articles/ai-testing-tools
http://dx.doi.org/10.1007/978-3-031-71804-5_23
http://dx.doi.org/10.1145/3702313
http://dx.doi.org/10.1145/3702313
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf
https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

[9] T. A. Vakaliuk, O. V. Andreiev, O. F. Dubyna, O. L. Korenivska, Y. O. Andreieva, Wireless
technologies in IoT projects with distributed computing, in: T. A. Vakaliuk, S. O. Semerikov
(Eds.), Proceedings of the 4th Edge Computing Workshop (doors 2024), Zhytomyr, Ukraine,
April 5, 2024, volume 3666 of CEUR Workshop Proceedings, CEUR-WS.org, 2024, pp. 4–13. URL:
https://ceur-ws.org/Vol-3666/paper01.pdf.

[10] F. Nikolaidis, A. Chazapis, M. Marazakis, A. Bilas, Event-Driven Testing For Edge Applications,
2022. URL: http://arxiv.org/abs/2212.12370v1.

[11] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula, S. Garg, D. Puthal,
P. James, A. Zomaya, S. Dustdar, R. Ranjan, IoTSim-Edge: A simulation framework for modeling
the behavior of Internet of Things and edge computing environments, Software - Practice and
Experience 50 (2020) 844 – 867. doi:10.1002/spe.2787.

[12] K. Alwasel, D. N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dustdar, M. Villari,
P. James, E. Solaiman, R. Ranjan, IoTSim-Osmosis: A framework for modeling and simulat-
ing IoT applications over an edge-cloud continuum, Journal of Systems Architecture 116 (2021).
doi:10.1016/j.sysarc.2020.101956.

[13] V. Daneshmand, K. C. Subratie, R. J. Figueiredo, PolyNet: Cost- and Performance-Aware Multi-
Criteria Link Selection in Software-Defined Edge-to-Cloud Overlay Networks, in: 2024 IEEE 10th
International Conference on Network Softwarization (NetSoft), 2024, pp. 127–135.

[14] B. Varghese, P. Leitner, S. Ray, K. Chard, A. Barker, Y. Elkhatib, H. Herry, C.-H. Hong, J. Singer,
F. P. Tso, E. Yoneki, M.-F. Zhani, Cloud Futurology, Computer 52 (2019) 68–77. doi:10.1109/MC.
2019.2895307.

[15] O. S. Holovnia, V. P. Oleksiuk, Selecting cloud computing software for a virtual online laboratory
supporting the Operating Systems course, in: A. E. Kiv, S. O. Semerikov, M. P. Shyshkina (Eds.),
Proceedings of the 9th Workshop on Cloud Technologies in Education, CTE 2021, Kryvyi Rih,
Ukraine, December 17, 2021, volume 3085 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp.
216–227.

[16] S. Papadakis, S. O. Semerikov, A. M. Striuk, H. M. Kravtsov, M. P. Shyshkina, M. V. Marienko, H. B.
Danylchuk, Embracing digital innovation and cloud technologies for transformative learning
experiences, CEUR Workshop Proceedings 3679 (2024) 1–21. URL: https://ceur-ws.org/Vol-3679/
paper00.pdf.

[17] S. O. Semerikov, T. A. Vakaliuk, I. S. Mintii, V. A. Hamaniuk, O. V. Bondarenko, P. P. Nechypurenko,
S. V. Shokaliuk, N. V. Moiseienko, Designing an immersive cloud-based educational environment
for universities: a comprehensive approach, CEUR Workshop Proceedings 3844 (2024) 107 – 116.
URL: https://ceur-ws.org/Vol-3844/paper09.pdf.

[18] S. Busaeed, I. Katib, A. Albeshri, J. M. Corchado, T. Yigitcanlar, R. Mehmood, LidSonic V2.0:
A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the
Visually Impaired, Sensors 22 (2022) 7435. doi:10.3390/s22197435.

[19] K. Memon, N. Yahya, M. Z. Yusoff, R. Remli, A.-W. M. M. Mustapha, H. Hashim, S. S. A. Ali,
S. Siddiqui, Edge Computing for AI-Based Brain MRI Applications: A Critical Evaluation of
Real-Time Classification and Segmentation, Sensors 24 (2024) 7091. doi:10.3390/s24217091.

[20] S. Grigorescu, T. Cocias, B. Trasnea, A. Margheri, F. Lombardi, L. Aniello, Cloud2Edge Elastic AI
Framework for Prototyping and Deployment of AI Inference Engines in Autonomous Vehicles,
Sensors 20 (2020) 5450. doi:10.3390/s20195450.

[21] F. P. Scalcon, R. Tahal, M. Ahrabi, Y. Huangfu, R. Ahmed, B. Nahid-Mobarakeh, S. Shirani, C. Vidal,
A. Emadi, AI-Powered Video Monitoring: Assessing the NVIDIA Jetson Orin Devices for Edge
Computing Applications, in: 2024 IEEE Transportation Electrification Conference and Expo, ITEC
2024, 2024. doi:10.1109/ITEC60657.2024.10598994.

[22] ISTQB® Certified Tester Advanced Level – Test Automation Engi-
neering certification, 2023. URL: https://www.istqb.org/certifications/
certified-tester-advanced-level-test-automation-engineering-ctal-tae-v2-0/.

[23] B. Fellows, How to Test Software for Edge Computing Environments, 2024. URL: https://www.
workwithloop.com/blog/how-to-test-software-for-edge-computing-environments.

79

https://ceur-ws.org/Vol-3666/paper01.pdf
http://arxiv.org/abs/2212.12370v1
http://dx.doi.org/10.1002/spe.2787
http://dx.doi.org/10.1016/j.sysarc.2020.101956
http://dx.doi.org/10.1109/MC.2019.2895307
http://dx.doi.org/10.1109/MC.2019.2895307
https://ceur-ws.org/Vol-3679/paper00.pdf
https://ceur-ws.org/Vol-3679/paper00.pdf
https://ceur-ws.org/Vol-3844/paper09.pdf
http://dx.doi.org/10.3390/s22197435
http://dx.doi.org/10.3390/s24217091
http://dx.doi.org/10.3390/s20195450
http://dx.doi.org/10.1109/ITEC60657.2024.10598994
https://www.istqb.org/certifications/certified-tester-advanced-level-test-automation-engineering-ctal-tae-v2-0/
https://www.istqb.org/certifications/certified-tester-advanced-level-test-automation-engineering-ctal-tae-v2-0/
https://www.workwithloop.com/blog/how-to-test-software-for-edge-computing-environments
https://www.workwithloop.com/blog/how-to-test-software-for-edge-computing-environments

Viktor O. Maliarskyi et al. CEUR Workshop Proceedings 67–80

[24] J. Malik, F. Pastore, An empirical study of vulnerabilities in edge frameworks to sup-
port security testing improvement, Empirical Software Engineering 28 (2023). doi:10.1007/
s10664-023-10330-x.

[25] J. Beilharz, P. Wiesner, A. Boockmeyer, L. Pirl, D. Friedenberger, F. Brokhausen, I. Behnke, A. Polze,
L. Thamsen, Continuously Testing Distributed IoT Systems: An Overview of the State of the Art,
in: Service-Oriented Computing – ICSOC 2021 Workshops, Springer International Publishing,
2022, pp. 336–350. doi:10.1007/978-3-031-14135-5_30.

[26] P. Gupta, Edge Computing and Real-Time Data Testing: Enhancing System Reliability, 2023. URL:
https://fpgainsights.com/test-measurement/edge-computing-and-real-time-data-testing.

[27] S. Durrett, Ensure Reliability in Edge Computing with Burn-In Testing,
2023. URL: https://www.smithsinterconnect.com/smiths-interconnect-blog/
ensure-reliability-in-edge-computing-with-burn-in-testing.

[28] T. Khomenko, Top 15 Manual Testing Tools Checklist To Know In 2024, 2023. URL: https://testomat.
io/blog/top-15-manual-testing-tools-to-know/#what-tools-are-used-in-manual-testing.

[29] Linux NetEM manual, 2025. URL: https://man7.org/linux/man-pages/man8/tc-netem.8.html.
[30] The Wide Area Network emulator, 2014. URL: https://wanem.sourceforge.net/.
[31] Clumsy 0.3, 2021. URL: https://jagt.github.io/clumsy/.
[32] Apache JMeter™, 2024. URL: https://jmeter.apache.org/index.html.
[33] Gatling Official Page, 2025. URL: https://gatling.io/.
[34] Locust Official Page, 2025. URL: https://locust.io/.
[35] Nmap Official Page, 2021. URL: https://nmap.org/.
[36] Shodan Official Page, 2023. URL: https://www.shodan.io/.
[37] Metasploit Official Page, 2025. URL: https://www.metasploit.com/.
[38] Prometheus Official Page, 2025. URL: https://prometheus.io/.
[39] Grafana Official Page, 2025. URL: https://grafana.com/.
[40] Elastic Stack Official Page, 2025. URL: https://www.elastic.co/elastic-stack.
[41] NewRelic Official Page, 2025. URL: https://newrelic.com/.
[42] Nagios Official Page, 2025. URL: https://www.nagios.org/.
[43] TensorFlow Extended (TFX) Official Page, 2025. URL: https://www.tensorflow.org/tfx/.
[44] DataRobot Official Page, 2025. URL: https://www.datarobot.com/.
[45] Katalon Studio Official Page, 2025. URL: https://katalon.com/.
[46] Apache Kafka Official Page, 2025. URL: https://kafka.apache.org/.
[47] Apache Flink Official Page, 2025. URL: https://flink.apache.org/.

80

http://dx.doi.org/10.1007/s10664-023-10330-x
http://dx.doi.org/10.1007/s10664-023-10330-x
http://dx.doi.org/10.1007/978-3-031-14135-5_30
https://fpgainsights.com/test-measurement/edge-computing-and-real-time-data-testing
https://www.smithsinterconnect.com/smiths-interconnect-blog/ensure-reliability-in-edge-computing-with-burn-in-testing
https://www.smithsinterconnect.com/smiths-interconnect-blog/ensure-reliability-in-edge-computing-with-burn-in-testing
https://testomat.io/blog/top-15-manual-testing-tools-to-know/#what-tools-are-used-in-manual-testing
https://testomat.io/blog/top-15-manual-testing-tools-to-know/#what-tools-are-used-in-manual-testing
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://wanem.sourceforge.net/
https://jagt.github.io/clumsy/
https://jmeter.apache.org/index.html
https://gatling.io/
https://locust.io/
https://nmap.org/
https://www.shodan.io/
https://www.metasploit.com/
https://prometheus.io/
https://grafana.com/
https://www.elastic.co/elastic-stack
https://newrelic.com/
https://www.nagios.org/
https://www.tensorflow.org/tfx/
https://www.datarobot.com/
https://katalon.com/
https://kafka.apache.org/
https://flink.apache.org/

	1 Introduction
	2 Bibliometric analysis of research field
	3 Review of modern edge computing system’s testing challenges and features
	4 Tools for edge computing systems` testing review
	5 Conclusions

