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Abstract
This paper introduces an alternative image model for video data that is represented as a series of images affected
by shot noise. This type of noise not only disrupts the current frame in the video sequence but also goes over to
subsequent frames, gradually diminishing over time until it vanishes. The shot-noise process is characterized by
a sequence of jumps that decay as time passes. Under specific conditions, this process converges to a Gaussian
distribution. To tackle this issue, the Kalman filter is proposed as a solution for removing noise and restoring the
compromised image sequence. Numerical experiments demonstrate the effectiveness of the proposed approach
in denoising videos corrupted by shot noise. The results of the proposed method were compared to the results
provided by spatial Wiener filter, median filter, bilateral filter and a multilayer perceptron model. PSNR was
calculated for the above methods.
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1. Introduction

In certain applications digital devices can introduce noise to the original image or sequence of images.
While there are various image denoising techniques that are effective at restoring noisy images, shot
noise still remains mostly unexplored. Currently, no satisfactory algorithm exists that can effectively
denoise images sequence of images affected by shot noise.

We propose a novel method for restoring images affected by shot noise. Unlike noise that vanishes
immediately, shot noise diminishes gradually over time. This type of noise arises from defects in the
hardware of a device or issues within the camera sensor [1]. Shot noise, driven by a Poisson process,
exhibits a specific pattern of gradual decay following each occurrence.

When the intensity of the underlying Poisson process is high, shot noise can be effectively approxi-
mated by Gaussian noise. Numerous algorithms have been proposed in the literature to address various
types of noise. These include linear filters, such as median and mean filters, as well as non-linear filters,
which are discussed in sources [2, 3, 4]. Analysis and comparison of different image denoising methods
is discussed in [5]. Such methods can also be employed for mitigating shot noise. If the jump rate is
significant and the individual jumps are relatively small, the resulting shot noise increasingly resembles
Gaussian noise. There are several established techniques for filtering Gaussian noise, including the
bilinear filter, anisotropic diffusion filter, and Kernel Regression filter, as detailed in [6, 7, 8, 9].

The goal is to create a method for restoring images affected by shot noise by utilizing a Gaussian
approximation of the shot-noise process in combination with Kalman filtering.
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2. Jump regression analysis for modeling noisy image

A standard two-dimensional grayscale image can be represented using the following jump regression
equation [10]:

𝐼𝑖𝑗 = 𝑓(𝑥𝑖, 𝑦𝑗) + 𝜖𝑖𝑗 , 𝑖 = 1, ..., 𝑛; 𝑗 = 1, ...,𝑚., (1)

where

• (𝑥𝑖, 𝑦𝑗) is the (𝑖, 𝑗)𝑡ℎ pixel;
• 𝑓(𝑥𝑖, 𝑦𝑗) is the true image intensity level at (𝑥𝑖, 𝑦𝑗);
• 𝜖𝑖𝑗 is the pointwise noise;
• 𝐼𝑖𝑗 is the observed image intensity level at (𝑥𝑖, 𝑦𝑗).

The sequence of 2-D images can be modeled in the following way:

𝐼𝑖𝑗𝑘 = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) + 𝜖𝑖𝑗𝑘, (2)

where

• 𝑖 = 1, ..., 𝑛; 𝑗 = 1, ...,𝑚., 𝑘 = 1, ..., 𝑙.

• (𝑥𝑖𝑘, 𝑦𝑗𝑘) is the (𝑖, 𝑗)𝑡ℎ pixel of the 𝑘𝑡ℎ image;
• 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) is the true image intensity level at (𝑥𝑖𝑘, 𝑦𝑗𝑘) of the 𝑘𝑡ℎ image;
• 𝜖𝑖𝑗𝑘 is the pointwise noise of the 𝑘𝑡ℎ image;
• 𝐼𝑖𝑗𝑘 is the observed image intensity level at (𝑥𝑖𝑘, 𝑦𝑗𝑘) of the 𝑘𝑡ℎ image.

Therefore, the sequences 𝑓𝑘(𝑥, 𝑦), 𝑘 = 1, 2, . . . , 𝑙 are the 2-D profiles, and monitoring the image
sequence is equivalent to monitoring the 2-D profile sequence.

2.1. Shot noise process and its approximation

Shot noise is a type of random noise marked by abrupt intensity fluctuations that dissipate over time.
This phenomenon frequently appears in real-time image processing, where individual pixels may
experience sudden intensity spikes caused by defects in image recording devices. The impact of shot
noise diminishes with time, resulting in reduced interference on the same pixel in subsequent frames of
the image sequence.

Shot noise 𝜆𝑡 is defined in the following way:

𝜆𝑡 = 𝜆0𝑒
−𝛿𝑡 +

𝑀𝑡∑︁
𝑖=1

𝑌𝑖𝑒
−𝛿(𝑡−𝑠𝑖) = 𝜆0𝑒

−𝛿𝑡 + 𝑒−𝛿𝑡
𝑀𝑡∑︁
𝑖=1

𝑌𝑖𝑒
𝛿𝑠𝑖 ,

where

• 𝜆0 is the initial value of 𝜆𝑡;
• {𝑌𝑖}𝑖=1,2,... is the sequence of iid random variables with distribution function 𝐹 (𝑦) and 𝐸(𝑌𝑖) =
𝜇1;

• {𝑠𝑖}𝑖=1,2,... is the sequence representing the event times of a Poisson process 𝑀𝑡 with constant
intensity 𝜌;

• 𝛿 is the rate of exponential decay.

The distribution of the random variables {𝑌𝑖} can be arbitrary, for example normal distribution or
beta distribution [11].

The expectation of the shot noise 𝜆𝑡, assuming that 𝜆0 is known, is as follows from [11]:

𝐸(𝜆𝑡) =
𝜇1𝜌

𝛿
+
(︁
𝜆0 −

𝜇1𝜌

𝛿

)︁
𝑒−𝛿𝑡 → 𝜇1𝜌

𝛿
𝑎𝑠 𝑡 → ∞, (3)
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and, moreover, if the initial value 𝜆0 equals 𝜇1𝜌/𝛿, then we have a stationary case and the mean value
𝐸(𝜆𝑡) will be equal to 𝜇1𝜌/𝛿 and will not depend on time 𝑡.

The variance of the shot noise process 𝜆𝑡 is as in [11]:

𝑉 𝑎𝑟(𝜆𝑡) =
𝜇2𝜌

2𝛿
(1− 𝑒−2𝛿𝑡) → 𝜇2𝜌

2𝛿
𝑎𝑠 𝑡 → ∞. (4)

Consider the following linear transformation:

𝑍
(𝑝)
𝑡 =

𝜆𝑡 − 𝜇1𝜌/𝛿√︀
𝜇2𝜌/2𝛿

. (5)

The main result of the paper [[11]] is that 𝑍(𝑝)
𝑡 (the normalization of shot noise or linear trans-

formation) converges to some 𝑍𝑡 that is normally distributed. Assume that 𝜌 → ∞ and that 𝜆0 is a
random variable independent of everything else, such that (𝜆0 − (𝜇1𝜌/𝛿))(𝜇1𝜌/2𝛿)

−1/2 converges in
distribution to 𝑍0. Then 𝑍

(𝑝)
𝑡 converges in law to 𝑍𝑡, where

𝑑𝑍𝑡 = −𝛿𝑍𝑡𝑑𝑡+
√
2𝛿𝑑𝐵𝑡, (6)

where 𝐵𝑡 is standard Brownian motion.
This implies that 𝑍𝑡 is normally distributed with mean 𝐸(𝑍𝑡) = 𝑍0𝑒

−𝛿𝑡 → 0 𝑎𝑠 𝑡 → ∞ and variance
𝑉 𝑎𝑟(𝑍𝑡) = 1− 𝑒−2𝛿𝑡 → 1 𝑎𝑠 𝑡 → ∞. If 𝜆0 = 𝜇1𝜌/𝛿, then 𝑍0 = 0 and, therefore, 𝐸(𝑍𝑡) = 0.

Following the linear transformation (5) the shot-noise process 𝜆𝑡 has the following form:

𝜆𝑡 =
𝜇1𝜌

𝛿
+ 𝑍𝜌

𝑡

√︂
𝜇2𝜌

2𝛿
.

Define 𝜆�̂� as Gaussian approximation of 𝜆𝑡 as follows:

𝜆�̂� =
𝜇1𝜌

𝛿
+ 𝑍𝑡

√︂
𝜇2𝜌

2𝛿
.

When the intensity of jumps is relatively high, shot noise can be effectively approximated as Gaussian
noise. This allows for the application of Kalman filtering techniques in real-time image restoration
processes. A series of 2-D images affected by shot noise can be represented through the following
model:

𝐼𝑖𝑗𝑘 = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) + 𝜆𝑖𝑗𝑘, (7)

where

• 𝑖 = 1, ..., 𝑛; 𝑗 = 1, ...,𝑚., 𝑘 = 1, ..., 𝑙.;
• (𝑥𝑖𝑘, 𝑦𝑗𝑘) is the (𝑖, 𝑗)𝑡ℎ pixel of the 𝑘𝑡ℎ image;
• 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) is the true image intensity level at (𝑥𝑖𝑘, 𝑦𝑗𝑘) of the 𝑘𝑡ℎ image;
• 𝜆𝑖𝑗𝑘 is the pointwise shot-noise of the 𝑘𝑡ℎ image;
• 𝐼𝑖𝑗𝑘 is the observed image intensity level at (𝑥𝑖𝑘, 𝑦𝑗𝑘) of the 𝑘𝑡ℎ image.

Applying the Gaussian approximation of the shot noise we obtain the following model of the sequence
of the 2-D images:

𝐼𝑖𝑗𝑘 = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) + �̂�𝑖𝑗𝑘 = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) +
𝜇1𝜌

𝛿
+ 𝑍𝑡

√︂
𝜇2𝜌

2𝛿
, (8)

where

• 𝑍𝑡 is normally distributed with mean 0 and variance 1 as 𝑡 → ∞;
• 𝜇1 and 𝜇2 are first and second initial moment of the random variable 𝑌 ;

111



Oleg Kobylin et al. CEUR Workshop Proceedings 109–117

• 𝜌 is the intensity of the underlying Poisson process;
• 𝛿 is the rate of exponential decay.

There occurs a correction term 𝜇1𝜌
𝛿 in equation (8), which is constant additive part to the image

intensity. Therefore

𝐼𝑖𝑗𝑘 = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) + �̂�𝑖𝑗𝑘 = 𝑔𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) + 𝑍𝑡

√︂
𝜇2𝜌

2𝛿
, (9)

where
𝑔𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) +

𝜇1𝜌

𝛿
. (10)

2.2. Compound Poisson process and its approximation

Compound Poisson noise process is defined in the following way:

𝐽𝑡 =

𝑀𝑡∑︁
𝑖=1

𝑌𝑖.

This definition is a special case of the shot-noise process with 𝛿 = 0.
We recall the result from previous subsection:

𝑉
(𝜌)
𝑡 =

𝐽𝑡 − 𝜇1𝜌√
𝜇2𝜌

→ 𝐵𝑡, 𝑎𝑠 𝜌 → ∞,

where 𝐽𝑡 =
∑︀𝑀𝑡

𝑖=1 𝑌𝑖, 𝑀𝑡 is Poisson process with intensity 𝜌 and 𝐵𝑡 is Brownian motion.
This means that compound Poisson process

𝐽𝑡 =
√︀

𝜇2𝜌/𝑉
𝜌
𝑡 + 𝜇1𝜌

can be approximated by
𝐽 𝑡 = 𝐵𝑡

√
𝜇2𝜌+ 𝜇1𝜌

.
Applying the Gaussian approximation of the compound Poisson noise process we obtain the following

approximate model of the sequence of the 2-D images. Therefore

𝐼𝑖𝑗𝑘 = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) + 𝐽 𝑖𝑗𝑘 = 𝑔𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) +𝐵𝑡
√
𝜇2𝜌, (11)

where
𝑔𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) = 𝑓𝑘(𝑥𝑖𝑘, 𝑦𝑗𝑘) +

𝜇1𝜌

𝛿
. (12)

It can be noticed that both shot-noise and compound Poisson noise process both have Gaussian
approximations, but these noise processes have different impact on the images. Shot noise decays and
disappears as time passes. But the Compound Poisson noise process does not disappear, its effect stays
at that part of the image where it occurred.

Both types of noise can be filtered out using Kalman filter if the intensity of the underlying Poisson
process is high and thus the Gaussian approximation holds.

2.3. Kalman filtering for image restoration

Kalman filtering is used to estimate the variables of the control system subject to stochastic disturbances
caused by noisy measurements of the input variables [12, 13, 14, 15]. There are two kinds of equations
in Kalman filter: time update equations and measurement update equations. The time update equations
obtain a priory estimates of the state and covariance matrix. The measurement update equations
improve the estimate of the state by using new measurement.
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We assume that the image sequence is captured by several cameras and the noise interferes during
the image acquisition process. Then the image sequence is processed for further analysis. The aim is to
construct the filter that would efficiently denoise the image sequence and would produce acceptable
results with such kind of noise. The representation of the image for the Kalman filter is pixelwise.

The noise free pixel value is 𝑓𝑘, which is assumed to be the first order autoregression model. The
process looks as follows:

𝑓𝑘+1 = 𝛼𝑓𝑘 + 𝑣𝑘, (13)

where

• 𝛼 is a constant and depends on signal parameters;
• 𝑣𝑘 is Gaussian noise with zero mean and 𝜎2 variance.

Such a model is often used to represent pixel values in video signals.
The measured signal is given by the following equation:

𝐼𝑘 = 𝑓𝑘 + 𝑤𝑘, (14)

where 𝑤𝑘 the independent of 𝑣𝑘 additive zero mean Gaussian white noise with variance 𝜎2.
We need to construct a linear unbiased estimate 𝑓𝑘 of 𝑓𝑘 having the observations 𝐼1, 𝐼2, ..., 𝐼𝑘. The
estimation error is denoted by 𝑓𝑘 = 𝑓𝑘 − 𝑓𝑘 . The variance of the error is denoted by �̃�𝑘 and defined as
follows:

�̃�𝑘 = 𝐸[(𝑓𝑘)
2].

The discrete Kalman filter is assessed through the iterative application of the following equations:

• filter equations;
𝑓*
𝑘 = 𝑎2𝑓𝑘−1, (15)

𝑓𝑘 = 𝑓*
𝑘 +𝐾𝑘{𝐼𝑘 − 𝑓*

𝑘}; (16)

• variance of the estimation error and the coefficient 𝐾 ;

𝑝*𝑘 = 𝑎2�̃�𝑘−1 + 𝜎2
𝑣 , (17)

𝐾𝑘 = 𝑝*𝑘{𝑝*𝑘 + 𝜎2
𝑤}−1, (18)

�̃�𝑘 = 𝑝*𝑘 −𝐾𝑘𝑝
*
𝑘. (19)

Note that 𝑝*𝑘+1 = 𝐸[(𝑎2𝑓𝑘 + 𝜎𝑣)
2]. This algorithm is applied to each pixel and at each time instant.

The estimated pixel value 𝑓𝑘 the output for each iteration 𝑘. It provides the filtered image for the
further analysis.

We consider the following parameters for the shot-noise process:

• intensity of the Poisson process equals 1.04,
• jump size y is normally distributed N(0, 0.007).

The shot-noise and compound Poisson process look as shown in figures 1 and 2.
The example consists of a sequence of 2D RGB images, where certain pixels in the video are affected

by a shot noise process, leading to corruption as noted in [16]. A Kalman filter is then employed to
process the sequence of images corrupted by shot noise, effectively restoring them. Figures 3 and 4
illustrate the example.

Figure 3 shows one image taken from the original video sequence of images. The original image
sequence is not corrupted by any noise. Figure 4(a) shows the same image as in figure 3 but corrupted
by the additive shot-noise. One can see that not the whole image is corrupted but only a part of it (the
upper part). This means that not every pixel is noisy but only the pixels on the upper side. In real
life this may occur due to the problems with the camera sensor. Next, the shot-noise corrupted image
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Figure 1: Compound Poisson process.

Figure 2: Shot noise process.

sequence is denoised using the Kalman filtering techniques. In figure 4(b) the corresponding denoised
image is shown. By comparing figures 3 and 4(b) (calculating the MSE), one can evaluate the quality of
restoration. Although, the noise is not removed completely, the quality of the image becomes much
better. The similar results concerning compound Poisson noise are show in figures 4(c) and 4(d).

The results of the performance of other denoising techniques, such as spatial Wiener filter, median
filter, bilateral filter, multilayer perceptron model, comparing to the proposed approach are provided in
table 1.

The higher PSNR value value means the better image filtration quality, therefore, the use of proposed
filtering approach (Kalman filtering) gave better results amoung other filters.
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Figure 3: Original image.

(a) (b) (c) (d)

Figure 4: (a) shot noise corrupted image, (b) restored image without shot noise, compound Poisson noise
corrupted image, (d) restored image without compound Poisson noise removed.
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Table 1
Comparison of results in PSNR(dB).

Filters PSNR(dB) value

The proposed filtering approach 39.36
Spatial Wiener filter 35.71

Median filter 37.93
Bilateral filter 36.55

Multilayer perceptron model 38.97

3. Conclusion

In this paper we have solved the problem of filtering the pixels of the video corrupted by shot-noise
and compound Poisson noise. Shot noise brings the effect of instant jump of the pixel value that
slowly decays as time passes. Compound Poisson noise gives the effect of the instant jump of the pixel
intensity that does not decay as time passes. Therefore it is very important to filter this kind of noise.
Standard filtering techniques would not work well for such type of noise. Therefore, we considered
approximating shot-noise and compound Poisson noise with Gaussian process and applying Kalman
filtering to remove shot noise from the sequence of images. Kalman filtering uses the filtered image
from the previous step to denoise (filter) the image on the current step. The graphical illustration was
shown on several figures. In average, the shot noise corrupted image sequence is 90% restored using
Kalman filter comparing to the original image sequence. For compound Poisson process the filtering
quality is 80% on average.

The central result of this paper allows to model the effects of the random shot-noise and compound
Poisson jumps that corrupts the video data, to approximate the both kinds of noise by Gaussian noise
and to apply the Kalman filtering techniques for the video restoration.

Declaration on Generative AI: The authors have not employed any generative AI tools.
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