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Abstract
The advent of large language models (LLMs) has revolutionized natural language processing, enabling unprece-
dented capabilities in text generation, reasoning, and human-machine interaction. However, their deployment on
resource-constrained edge devices presents significant challenges due to high computational complexity, large
model sizes, and stringent latency and privacy requirements. This survey provides a comprehensive examina-
tion of the emerging field of edge-based LLMs, exploring the techniques, frameworks, hardware solutions, and
real-world applications that enable their efficient deployment at the edge. We review key strategies such as
model quantization, pruning, knowledge distillation, and adapter tuning, alongside edge-cloud collaborative
architectures like EdgeShard, Edge-LLM, and PAC. Additionally, we analyze hardware acceleration solutions,
including Cambricon-LLM, AxLaM, and DTATrans/DTQAtten, and their role in overcoming resource limitations.
The survey highlights diverse applications, from IoT and smart cities to personalized services and multi-modal
intelligence, supported by case studies of real-world deployments. Finally, we discuss open challenges – such as
resource efficiency, privacy, security, and scalability – and propose future research directions to advance this
transformative technology.
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1. Introduction

The rapid advancements in deep learning and natural language processing have led to the development
of large language models (LLMs) that exhibit remarkable performance on a wide range of tasks, from
question answering and text generation to reasoning and dialogue [1]. These models, such as GPT-3
[2], BERT [3], and T5 [4], have achieved human-level performance on many benchmarks and have the
potential to transform various industries, including healthcare, education, and finance.

However, the deployment of LLMs in real-world scenarios often requires running these models on
edge devices, such as smartphones, IoT sensors, and embedded systems [5]. This is motivated by several
factors, including the need for low-latency inference in applications like virtual assistants and real-time
translation [6], the desire to preserve user privacy by processing data locally, without sending it to
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the cloud [7], and the requirement for offline functionality in scenarios with limited or no internet
connectivity [8].

In fact, deploying LLMs on edge devices is challenging due to their large model sizes, high compu-
tational requirements, and memory footprint [9]. For example, GPT-3 has 175 billion parameters and
requires 350GB of memory for inference [10]. This far exceeds the resources available on most edge
devices, which typically have limited CPU/GPU capabilities, memory (a few GB), and power constraints.

To address these challenges, there has been a growing interest in developing techniques and frame-
works for the efficient deployment of LLMs on edge devices [11, 6, 12]. This survey aims to provide an
overview of this emerging field, covering the key aspects of edge-based LLMs, from model compression
and acceleration techniques to collaborative frameworks and hardware solutions.

The rest of this survey is organized as follows. Section 2 provides an overview of LLMs for edge
deployment, discussing the key characteristics, challenges, and popular open-source frameworks. Sec-
tion 3 reviews the edge-cloud collaborative frameworks and architectures for optimized LLM inference.
Section 4 surveys the hardware acceleration solutions and chipsets for efficient LLM execution on edge
devices. Section 5 highlights the real-world applications and systems leveraging edge-based LLMs
across various domains. Section 6 discusses the open challenges, opportunities, and future research
directions in this field. Finally, section 7 concludes the survey and provides an outlook on the future of
edge-based LLMs.

2. Overview of LLMs for edge deployment

Large language models (LLMs) have demonstrated remarkable performance in various natural language
processing tasks, such as text generation, question answering, and sentiment analysis [10, 3, 4]. However,
deploying these models on edge devices presents unique challenges due to the resource constraints and
heterogeneity of edge environments [5, 8].

Deploying LLMs on edge devices presents several significant challenges due to their inherent charac-
teristics. One prominent difficulty stems from their substantial model size. LLMs frequently encompass
hundreds of millions, if not billions, of parameters, which translates into considerable storage and
memory demands. For instance, GPT-3, with its 175 billion parameters, requires approximately 350GB
of memory for inference – a requirement that far exceeds the capacity of most edge devices, typically
limited to just a few gigabytes of memory, as noted by Brown et al. [10] and Zhang et al. [9]. Another
hurdle arises from the high computational complexity involved in LLM inference. This process relies on
intricate matrix operations and attention mechanisms, resulting in substantial computational overhead,
as described by Vaswani et al. [13]. Such demands strain the limited CPU and GPU capabilities of
edge devices, further compounded by their restrictive power budgets, a challenge highlighted by Shen
et al. [11]. Latency requirements also pose a critical concern. Many edge applications, such as virtual
assistants and real-time translation tools, depend on rapid inference to ensure a seamless user experi-
ence, according to Cai et al. [6]. Yet, the computational intensity of LLMs often introduces significant
delays, particularly on resource-constrained hardware, as Yu et al. [12] observes, making it difficult
to meet these stringent timing needs. Finally, privacy considerations add another layer of complexity.
Edge devices frequently process sensitive user data, and transmitting this information to the cloud for
inference can raise substantial privacy risks, as Li et al. [7] points out. Consequently, there is a pressing
need for methods that facilitate local inference on edge devices while safeguarding user privacy, an
issue Qiao et al. [14] emphasizes as essential for practical deployment.

To address these challenges, various techniques and frameworks have been proposed for the efficient
deployment of LLMs on edge devices. These include model compression and acceleration techniques
(section 2.2), edge-cloud collaborative frameworks (section 3), and hardware acceleration solutions
(section 4).
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2.1. Popular open-source LLMs and frameworks

Several open-source LLMs and frameworks have been developed to facilitate the deployment of LLMs
on edge devices. These frameworks provide pre-trained models, tools, and techniques for efficient
inference and adaptation to edge environments. Table 1 provides an overview of popular open-source
LLMs and frameworks for edge deployment.

Table 1
Popular open-source LLMs and frameworks for edge deployment.

Framework Model Key features References

TinyAgent TinyAgent-1.1B/7B Accurate function calling, efficient inference Erdogan et al. [15]
MNN-LLM MNN-LLM Quantization, DRAM-Flash hybrid storage Wang et al. [16]
h2oGPT h2oGPT (7-70B) Fine-tuned models, no-code GUI Candel et al. [17]

TinyAgent [15] is a framework for training and deploying task-specific small language model agents
on edge devices. It provides pre-trained models, TinyAgent-1.1B and TinyAgent-7B, which achieve
accurate function calling and efficient inference by leveraging techniques like tool retrieval and quanti-
zation. TinyAgent also supports real-time interaction through voice input and output, making it suitable
for building intelligent personal assistants on edge devices.

MNN-LLM [16] is a generic inference engine for fast LLM deployment on mobile devices. It addresses
the memory and latency challenges of edge inference by employing techniques like model quantization
and DRAM-Flash hybrid storage. MNN-LLM optimizes the inference process based on the characteristics
of mobile CPUs and GPUs, achieving significant speedups compared to other mobile-friendly LLM
frameworks.

h2oGPT [17] is an open-source ecosystem for state-of-the-art LLMs, providing a family of fine-tuned
models ranging from 7B to 70B parameters. It includes the H2O LLM Studio, a no-code GUI for efficient
model fine-tuning, evaluation, and deployment using advanced techniques. h2oGPT models are designed
to be scalable and adaptable to various edge environments, making them suitable for a wide range of
applications.

Figure 1 illustrates the comparative performance of these frameworks on a benchmark dataset,
highlighting their inference speed and memory efficiency on edge devices.
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Figure 1: Comparative performance of open-source LLM frameworks on edge devices.

As shown in figure 1, TinyAgent achieves the highest inference speed and memory efficiency
among the compared frameworks, making it a promising choice for real-time applications on resource-
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constrained devices. MNN-LLM and h2oGPT also demonstrate competitive performance, with MNN-
LLM focusing on mobile-specific optimizations and h2oGPT providing a wide range of fine-tuned
models for different scenarios.

The selection of an appropriate framework depends on factors such as the target application, device
capabilities, and performance requirements.

2.2. Techniques for efficient LLM deployment on edge devices

Various techniques have been proposed for model compression and acceleration to enable the efficient
deployment of LLMs on resource-constrained edge devices. These techniques aim to reduce the model
size, computational complexity, and memory footprint of LLMs while maintaining their performance
and generalization capabilities. Table 2 summarizes the key techniques for efficient LLM deployment
on edge devices.

Table 2
Techniques for efficient LLM deployment on edge devices.

Technique Key idea References

Quantization Reducing the precision of model weights and
activations

Shen et al. [18], Tambe et al. [19]

Pruning Removing redundant or less important model
parameters

Yu et al. [12], Bhardwaj et al. [8]

Knowledge distillation Transferring knowledge from a large teacher
model to a small student model

Sanh et al. [20]

Adapter tuning Fine-tuning small adapter modules while keep-
ing the base model fixed

Houlsby et al. [21]

Quantization and pruning are two widely used techniques for reducing the model size and compu-
tational complexity of LLMs [18, 19, 12]. Quantization reduces the precision of model weights and
activations from 32-bit floating-point to lower bit-widths (e.g., 8-bit or 4-bit integers), resulting in smaller
model sizes and faster inference. Pruning removes redundant or less important model parameters,
leading to sparse models with reduced computational and memory requirements.

For example, Shen et al. [18] propose HotaQ, a hardware-oriented token adaptive quantization
framework for LLMs. HotaQ achieves 4/8-bit quantization for weights and activations while maintaining
performance comparable to full-precision models. Yu et al. [12] introduce EDGE-LLM, a layer-wise
unified compression technique that generates pruning sparsity and quantization bit-width policies,
achieving significant speedups and memory savings on edge devices.

Knowledge distillation [22] is a technique for transferring knowledge from a large teacher model to
a small student model, enabling the deployment of compact and efficient models on edge devices. The
student model is trained to mimic the behaviour of the teacher model by minimizing the divergence
between their output distributions.

Sanh et al. [20] propose DistilBERT, a distilled version of BERT that achieves 95% of the teacher’s
performance while being 40% smaller and 60% faster. Jiao et al. [23] introduce TinyBERT, a two-stage
distillation framework that transfers knowledge from the pre-trained BERT model to a smaller student
model, achieving competitive performance on various NLP tasks.

Adapter tuning [21] is a parameter-efficient fine-tuning technique that adapts pre-trained LLMs
to downstream tasks by training small adapter modules while keeping the base model fixed. This
approach reduces the memory and computational requirements of fine-tuning, making it suitable for
edge deployment.

Qiao et al. [14] propose Tri-AFLLM, an adaptive asynchronous accelerated federated LLM framework
that leverages adapter tuning for efficient edge deployment. Tri-AFLLM updates only the adapter
parameters while keeping the base model frozen, achieving significant resource efficiency and accuracy
improvements in federated learning scenarios.
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Figure 2 visualizes the impact of these techniques on the model size and inference speed of LLMs,
highlighting their effectiveness in enabling edge deployment.
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Figure 2: Impact of efficient deployment techniques on LLM model size and inference speed.

As shown in figure 2, all four techniques effectively reduce the model size and improve the inference
speed of LLMs, with quantization and knowledge distillation achieving the most significant improve-
ments. Pruning and adapter tuning also demonstrate considerable benefits, especially when combined
with other techniques.

The choice of technique depends on various factors, such as the target device’s capabilities, perfor-
mance requirements, and the availability of pre-trained models or training data.

3. Edge-cloud collaborative frameworks and architectures

Deploying large language models on edge devices often necessitates a partnership between edge
and cloud environments to address the inherent resource constraints and performance limitations of
standalone devices, as explored by Zhou et al. [24] and Zhao et al. [25]. These edge-cloud collaborative
frameworks harness the distinct advantages of both edge and cloud computing, paving the way for
efficient and scalable LLM inference tailored to real-world applications, a concept further elaborated by
Yao et al. [26] and Cai et al. [6].

The drive toward edge-cloud collaboration in LLM deployment stems from several compelling factors.
One key incentive is scalability. By distributing computational workloads across multiple edge devices
and cloud servers, these frameworks enable LLMs to operate effectively in expansive, large-scale settings,
as Zhang et al. [9] demonstrates. Another advantage lies in efficiency. Offloading computationally
demanding tasks to the cloud while conducting local inference on edge devices allows these systems
to enhance overall performance and optimize resource use, a benefit underscored by Yao et al. [27].
Adaptability also plays a crucial role. This collaboration permits LLM inference to adjust dynamically
to fluctuating network conditions, varying device capabilities, and diverse application needs, according
to Cai et al. [6]. Privacy emerges as yet another vital consideration. Such frameworks can safeguard
sensitive data by processing it locally on edge devices and reserving the cloud for handling non-sensitive
computations, a strategy highlighted by Li et al. [7].

Despite these advantages, crafting effective edge-cloud collaborative frameworks for LLM deployment
is far from straightforward, presenting a range of obstacles. Heterogeneity stands out as a significant
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hurdle. Edge devices vary widely in their hardware and software configurations, complicating the
creation of frameworks capable of leveraging these diverse resources efficiently, as Friha et al. [5] points
out. Communication overhead poses another challenge. Transferring data and model parameters be-
tween edge devices and the cloud can generate substantial delays, particularly when network bandwidth
is limited, an issue raised by Zhang et al. [9]. Synchronization adds further complexity. Maintaining
consistency and coherence in model updates across edge devices and the cloud is essential to ensure
the stability and performance of these collaborative systems, a concern emphasized by Qiao et al. [14].
Security, too, demands attention. The interplay between edge and cloud introduces risks such as data
breaches and adversarial attacks during data transfer and processing across platforms, a problem noted
by Nazari et al. [28].

To tackle these issues, researchers have put forward a variety of edge-cloud collaborative frameworks
and architectures in the literature. These efforts focus on critical aspects of LLM deployment, including
model partitioning, task offloading, and resource allocation, as evidenced by the work of Yao et al. [26],
Cai et al. [6], and Zhang et al. [9]. Such innovations aim to bridge the gap between the potential of
LLMs and the practical realities of edge environments, fostering robust and adaptable solutions.

3.1. Overview of collaborative frameworks

Table 3 provides an overview of representative edge-cloud collaborative frameworks for LLM deploy-
ment, highlighting their key features and target applications.

Table 3
Overview of edge-cloud collaborative frameworks for LLM deployment.

Framework Key features Target applications References

EdgeShard Model partitioning, adaptive de-
vice selection

Content generation, decision making Zhang et al. [9]

Edge-LLM Adaptive quantization, FM cache,
VDF scheduling

AI applications, QoS optimization Cai et al. [6]

PAC Parallel adapters, activation
cache, data parallelism

Personal LLM fine-tuning Ouyang et al. [29]

EdgeShard, as introduced by Zhang et al. [9], offers a collaborative edge computing framework
designed to facilitate the efficient deployment of computationally demanding large language models
on resource-constrained edge devices. This framework achieves its goals by dividing the LLM into
smaller, manageable shards, distributing them across edge devices and cloud servers according to their
computational capacities and prevailing network conditions. To enhance system performance, Edge-
Shard incorporates an adaptive algorithm that jointly optimizes device selection and model partitioning,
aiming to reduce inference latency while boosting throughput.

• The framework splits the LLM into smaller shards, enabling their execution on edge devices
despite limited resources. This partitioning approach carefully considers the computational
complexity and memory demands of various model components, such as attention layers and
feedforward networks, ensuring efficient operation.

• EdgeShard dynamically identifies the most suitable edge devices and cloud servers for collaborative
inference. This selection process adapts to current resource availability, network states, and input
data characteristics, ensuring optimal participation across the system.

• To streamline performance, EdgeShard employs a dynamic programming algorithm focused
on minimizing end-to-end inference latency and maximizing system throughput. This method
accounts for factors like communication overhead, computation duration, and memory limitations
inherent to each device.

EdgeShard finds application in diverse LLM-based tasks, including content generation and intelligent
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decision-making within IoT systems. Its implementation has yielded notable enhancements in latency
and throughput, outperforming traditional cloud-centric deployment strategies.

Edge-LLM, presented by Cai et al. [6], serves as a collaborative framework tailored for large-scale
language model deployment within edge computing contexts. By tapping into the computational
strengths of both edge devices and cloud servers, it accelerates LLM fine-tuning and inference under
resource-limited conditions, all while prioritizing quality of service (QoS) for end users.

• The framework adopts an adaptive quantization strategy, dynamically tailoring the precision of
model weights and activations. This adjustment aligns with the computational capabilities of
edge devices and the specific needs of the application, striking a balance between inference speed
and accuracy.

• Edge-LLM integrates a frequency-based model (FM) cache mechanism, storing frequently accessed
model parameters and intermediate results directly on edge devices. This approach cuts down on
communication overhead and reduces latency during collaborative inference.

• A value density first (VDF) scheduling algorithm guides Edge-LLM in prioritizing compute-heavy
tasks for execution on edge devices with superior capabilities. Less demanding tasks are shifted
to the cloud, optimizing resource use and overall system performance.

Edge-LLM has proven effective across various AI applications, including natural language process-
ing and computer vision. Compared to conventional edge computing methods, it delivers marked
improvements in computational speed, task throughput, and GPU overhead reduction.

PAC, short for Pluto and Charon, as outlined by Ouyang et al. [29], stands out as a time- and
memory-efficient collaborative edge AI framework focused on personal LLM fine-tuning. It harnesses
the computational resources of nearby edge devices to enable on-the-spot fine-tuning of personalized
LLMs, minimizing communication demands while upholding data privacy.

• PAC introduces parallel adapters, a novel fine-tuning technique that adapts pre-trained LLMs
to individual preferences and domains. By training small adapter modules concurrently while
keeping the base model unchanged, this method reduces the computational and memory burdens
of the fine-tuning process.

• An activation cache mechanism enhances efficiency in PAC by storing intermediate activations
from the base model during the forward pass. This storage eliminates redundant computations in
the backward pass, streamlining the fine-tuning of parallel adapters.

• The framework blends data parallelism with pipeline parallelism to distribute fine-tuning work-
loads across proximate edge devices. This hybrid approach minimizes communication overhead
and maximizes the use of available computational resources.

PAC excels in personal LLM applications, such as tailored language understanding and generation. Its
deployment has demonstrated substantial gains in fine-tuning speed and memory efficiency, surpassing
existing state-of-the-art techniques.

Figure 3 provides a comparative analysis of the three collaborative frameworks in terms of their
inference latency, throughput, and memory efficiency on representative edge devices and cloud servers.

As shown in figure 3, all three frameworks achieve significant improvements in inference latency,
throughput, and memory efficiency compared to traditional cloud-based deployment approaches.
EdgeShard demonstrates the lowest latency, while PAC achieves the highest throughput, and Edge-LLM
exhibits the best memory efficiency. The choice of framework depends on the specific requirements
and constraints of the target application and deployment scenario.

3.2. Techniques for optimized LLM inference

To further optimize the performance and efficiency of LLM inference in edge-cloud collaborative
frameworks, various techniques have been proposed in the literature, focusing on aspects such as
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Figure 3: Comparative analysis of collaborative frameworks for LLM deployment on edge devices.

Table 4
Techniques for optimized LLM inference in collaborative frameworks.

Technique Key idea References

Adaptive quantization Dynamically adjusting the precision of
model weights and activations

Cai et al. [6], Shen et al. [18]

Reinforcement learning-based
scheduling

Learning optimal task scheduling policies
through interaction with the environment

Yao et al. [27]

Vector databases and caching Storing and retrieving frequently accessed
model parameters and intermediate results

Yao et al. [27], Cai et al. [6]

adaptive quantization, scheduling, and caching. Table 4 summarizes the key techniques for optimized
LLM inference in collaborative frameworks.

Adaptive quantization and scheduling are two key techniques for optimizing the performance and
resource utilization of LLM inference in edge-cloud collaborative frameworks. Adaptive quantization
dynamically adjusts the precision of model weights and activations based on the computational capa-
bilities of edge devices and the requirements of the target application, achieving a balance between
inference speed and accuracy [6, 18]. For example, Cai et al. [6] propose an adaptive quantization
strategy in the Edge-LLM framework, which dynamically selects the optimal quantization scheme for
each model layer based on the computational capabilities of the target edge device and the performance
requirements of the application.

Reinforcement learning-based scheduling learns optimal task scheduling policies through interaction
with the environment, considering factors such as the communication overhead, computation time,
and resource constraints of each device [27]. Yao et al. [27] introduce a reinforcement learning-based
scheduling algorithm in the VELO framework, which learns to optimize the task offloading decisions
and resource allocation policies through trial and error, adapting to the dynamic network conditions
and workload characteristics.

Vector databases and caching mechanisms are essential for reducing the communication overhead
and latency of LLM inference in edge-cloud collaborative frameworks. Vector databases store and
retrieve frequently accessed model parameters and intermediate results, enabling efficient reuse of
computations across different inference requests [27]. Caching mechanisms, such as the FM cache in
Edge-LLM [6], store recently accessed data and models on edge devices, reducing the need for redundant
data transfers and computations.

For example, Yao et al. [27] propose a vector database-assisted caching mechanism in the VELO
framework, which stores the results of recent LLM inference requests on edge devices and reuses
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them for similar requests in the future, significantly reducing the response time and computational
cost of the system. Cai et al. [6] introduce the FM cache mechanism in Edge-LLM, which maintains a
frequency-based model cache on edge devices, storing the most frequently accessed model parameters
and intermediate results for fast retrieval and reuse.

Figure 4 illustrates the impact of these optimization techniques on the inference latency and through-
put of LLMs in edge-cloud collaborative frameworks, highlighting their effectiveness in improving the
performance and efficiency of the system.
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Figure 4: Impact of optimization techniques on LLM inference latency and throughput in collaborative frame-
works.

As shown in figure 4, all three optimization techniques effectively reduce the inference latency
and improve the throughput of LLMs in edge-cloud collaborative frameworks. Adaptive quantization
achieves the most significant latency reduction, while vector databases and caching mechanisms
demonstrate the highest throughput improvement. Reinforcement learning-based scheduling also
shows considerable benefits in terms of both latency and throughput optimization.

The choice of optimization technique depends on the specific characteristics and requirements of
the target application and deployment scenario. In practice, these techniques are often used in combi-
nation to achieve the best performance and efficiency for LLM inference in edge-cloud collaborative
frameworks.

4. Hardware acceleration solutions and chipsets

Deploying large language models on edge devices demands efficient hardware acceleration solutions to
navigate the computational and memory limitations inherent to these resource-constrained platforms,
as noted by Bhardwaj et al. [8]. Crafting and implementing such accelerators for edge-based LLMs,
however, is no small feat, entailing a complex interplay of challenges and requirements. Achieving high
computational performance stands as a primary concern. These accelerators need to support real-time
inference and response generation, all while adhering to the stringent power and thermal boundaries of
edge devices, a point emphasized by Yu et al. [30]. Equally critical is the pursuit of energy efficiency. To
extend battery life and curtail operational costs, LLM accelerators must minimize power consumption
for each computational task, a goal highlighted by Glint et al. [31]. Memory efficiency also plays a
pivotal role. Given the scarce on-chip and off-chip memory resources available, these accelerators are
tasked with optimizing the memory footprint and bandwidth demands of the models, as Wang et al.
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[16] underscores. Flexibility emerges as another essential requirement. With the diverse array of LLM
architectures and applications in play, edge accelerators must offer programmability, scalability, and
adaptability to accommodate varying workload characteristics, according to Tambe et al. [19]. Lastly,
minimizing latency is crucial. The accelerators must streamline the entire inference pipeline – from data
transfer to preprocessing and postprocessing – to deliver responsive and interactive user experiences;
a necessity pointed out by Yang et al. [32]. To meet these multifaceted challenges and requirements,
researchers and industry experts have proposed an assortment of hardware acceleration solutions and
chipsets. These innovations draw on techniques like specialized processing units, optimized memory
hierarchies, and tailored dataflow architectures, as evidenced by the work of Yu et al. [30], Glint et al.
[31], and Yang et al. [32], paving the way for more effective LLM deployment at the edge.

4.1. Overview of hardware solutions

Table 5 provides an overview of representative hardware acceleration solutions and chipsets for edge
LLM deployment, highlighting their key features and performance characteristics.

Table 5
Overview of hardware acceleration solutions and chipsets for edge LLM deployment.

Solution Key features Performance References

Cambricon-LLM Hybrid architecture, NPU,
NAND flash

3.44 tokens/s (70B), 36.34 tokens/s
(7B)

Yu et al. [30]

AxLaM POSIT-based multipliers, HBM 9x energy reduction, 58% area re-
duction

Glint et al. [31]

DTATrans/DTQAtten Dynamic mixed-precision,
VSSA

16.04x speedup, 3.62x energy sav-
ing

Yang et al. [32]

Cambricon-LLM, as introduced by Yu et al. [30], presents a chiplet-based hybrid architecture tailored
for on-device inference of large language models with up to 70 billion parameters. This design integrates
a neural processing unit (NPU) with a dedicated NAND flash chip, striking a balance between high
performance and energy efficiency while reducing the data movement overhead between processing
and memory elements. The framework capitalizes on the NPU’s robust computing power alongside the
substantial data capacity of the NAND flash, enabling efficient execution of large-scale LLMs directly
on edge devices. To further enhance its capability, the NAND flash chip incorporates innovative in-
flash computing and on-die error correction code (ECC) techniques. These advancements facilitate
lightweight processing within the chip itself, significantly cutting down on data transfer demands
between the NPU and flash storage.

Additionally, Cambricon-LLM employs a hardware-tiling strategy to streamline data movement and
computation scheduling between these components. This approach minimizes memory access latency
and maximizes resource utilization, ensuring optimal performance. In practice, Cambricon-LLM delivers
an impressive on-device inference speed of 3.44 tokens per second for 70B LLMs and 36.34 tokens per
second for 7B LLMs – performance levels that surpass existing flash-offloading technologies by 22 to 45
times – demonstrating its prowess in enabling large-scale LLM deployment on edge devices.

AxLaM, detailed by Glint et al. [31], emerges as an energy-efficient accelerator crafted for language
models on edge devices, harnessing approximate fixed-point POSIT-based multipliers and high band-
width memory (HBM) to deliver both high performance and low power consumption. This design
leverages POSIT-based multipliers to simplify the computational complexity and energy demands of
matrix operations central to language models, all while preserving acceptable accuracy levels. Com-
plementing this, AxLaM incorporates high bandwidth memory to efficiently manage the storage and
retrieval of model parameters and intermediate activations. This setup reduces memory access latency,
thereby boosting overall performance. The accelerator also features a dataflow architecture meticu-
lously tuned to the specific needs of language model workloads. By optimizing the flow of data, AxLaM
maximizes the efficiency of its processing units and minimizes unnecessary data movement overhead.
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When benchmarked against the state-of-the-art Simba accelerator, AxLaM achieves a remarkable 9-fold
reduction in energy use and a 58% decrease in area, underscoring its suitability for deployment in
resource-constrained edge environments.

DTATrans, described by Yang et al. [32], and DTQAtten, outlined by Yang et al. [33], represent
hardware-software co-designed solutions aimed at efficient transformer-based LLM inference on edge
devices. These approaches leverage dynamic mixed-precision quantization and a variable-speed systolic
array (VSSA) architecture to achieve exceptional performance and energy efficiency. Central to their
design is a dynamic mixed-precision quantization scheme that adjusts the precision of model weights
and activations based on their significance and the computational capacity of the target device, striking
an effective balance between accuracy and efficiency. The accelerators employ a variable-speed systolic
array architecture, which dynamically tunes the processing speed and parallelism of matrix operations
to match workload characteristics and available resources, thereby optimizing both performance and
energy use. Furthermore, DTATrans and DTQAtten benefit from a tight integration of hardware
and software, encompassing the compiler, runtime, and programming model. This co-design ensures
efficient mapping and scheduling of LLM workloads onto the hardware, enhancing overall effectiveness.
In terms of results, DTATrans delivers a 16.04-fold speedup and a 3.62-fold energy saving over the
earlier Eyeriss accelerator, while DTQAtten achieves a 3.62-fold speedup and a 4.22-fold improvement
in energy efficiency compared to the state-of-the-art SpAtten accelerator, highlighting their significant
contributions to edge-based LLM inference.

Figure 5 compares the performance and energy efficiency of the three hardware acceleration solutions,
highlighting their effectiveness in enabling efficient LLM deployment on edge devices.
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Figure 5: Comparison of hardware acceleration solutions in terms of speed and energy efficiency.

As shown in figure 5, all three hardware acceleration solutions achieve significant improvements
in speed and energy efficiency compared to baseline edge devices without specialized accelerators.
Cambricon-LLM demonstrates the highest speedup, while AxLaM and DTATrans/DTQAtten exhibit
better energy efficiency. The choice of hardware solution depends on the specific requirements and
constraints of the target application and deployment scenario, such as the model size, latency, and
power budget.

4.2. Emerging trends and future directions

The domain of hardware acceleration for deploying large language models on edge devices is advancing
at a brisk pace, unveiling a host of emerging trends and future research avenues aimed at enhancing the
performance, efficiency, and scalability of these solutions. One notable direction involves the melding
of diverse specialized accelerators – such as neural processing units, graphics processing units, and
field-programmable gate arrays – into a single chip or package. This heterogeneous integration, as
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explored in [34], facilitates the efficient handling of varied workload types and adapts seamlessly to the
dynamic demands of edge LLM applications. Another promising development centres on in-memory
computing, where innovative memory technologies like non-volatile memory and computational RAM
are harnessed to perform computations directly within the memory itself. This approach, detailed in
[19], significantly cuts down on data movement overhead between processing units and the memory
hierarchy, boosting overall efficiency.

Equally compelling is the focus on exploiting sparsity within LLM structures. Researchers are delving
into sparsity-aware hardware architectures and dataflows that capitalize on the inherently sparse nature
of these models, thereby reducing both computational and memory demands during inference, as
discussed by Bhardwaj et al. [8]. Alongside this, the concept of adaptive precision is gaining traction.
This involves crafting accelerators capable of dynamically adjusting computational precision based on
workload specifics and desired accuracy levels, a strategy outlined in [18] that minimizes energy use
while maximizing system performance. Furthermore, the synergy of hardware and software through co-
design is proving vital. By jointly optimizing the hardware architecture, software stack, and algorithms,
this approach – highlighted in [32] – tailors solutions to the unique constraints and characteristics of
target devices and applications, ensuring a more cohesive deployment process.

These evolving trends and forward-looking directions underscore the importance of a comprehensive
strategy for hardware acceleration in edge LLM deployment. They emphasize the intricate interplay
among hardware, software, and application layers, suggesting that a holistic perspective is essential for
progress. By embracing these advancements, future edge devices stand poised to support increasingly
sophisticated and efficient LLM-based applications, opening the door to novel use cases and enriched
user experiences.

5. Applications and real-world systems

The deployment of large language models on edge devices has enabled a wide range of applications
and real-world systems across various domains, such as IoT, personalized services, and multi-modal
interaction [11, 35, 36]. These applications leverage the capabilities of edge-based LLMs to provide
intelligent, responsive, and context-aware services to users while preserving privacy and reducing
latency.

5.1. IoT and smart city applications

The integration of LLMs with IoT devices and smart city infrastructure has enabled the development
of intelligent and adaptive systems that can process and analyze real-time data streams, providing
actionable insights and optimized decision-making [24, 37]. Table 6 summarizes representative IoT and
smart city applications of edge-based LLMs.

Table 6
Representative IoT and smart city applications of edge-based LLMs.

Application Key features Impact References

Traffic forecasting Spatio-temporal modeling, edge-
cloud collaboration

Improved traffic management Rong et al. [38]

Anomaly detection Unsupervised learning, real-time
processing

Enhanced system reliability Zhang and Shi [37]

Edge-based LLMs have been applied to traffic forecasting and management systems to enable accurate
and timely prediction of traffic conditions, optimizing the use of transportation infrastructure and
reducing congestion [38]. These systems leverage the spatio-temporal modelling capabilities of LLMs to
capture the complex dependencies between traffic flow, weather conditions, and road network topology,
adapting to the dynamic and heterogeneous nature of urban environments.
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For example, Rong et al. [38] propose a lightweight spatio-temporal generative LLM (LSGLLM) for
large-scale traffic flow forecasting, which is deployed on edge devices and collaborates with cloud
servers to process and analyze real-time traffic data efficiently. The LSGLLM model achieves superior
performance compared to traditional baselines, demonstrating the effectiveness of edge-based LLMs in
traffic management applications.

Edge-based LLMs have also been employed in anomaly detection and predictive maintenance systems
for IoT and industrial applications, enabling the early identification of potential faults and the optimiza-
tion of maintenance schedules [37]. These systems utilize the unsupervised learning capabilities of
LLMs to model the normal behaviour of IoT devices and industrial equipment, detecting deviations and
anomalies in real-time and triggering appropriate actions.

For instance, Zhang and Shi [37] propose a blockchain-based edge intelligence framework that
integrates large AI models and IoT devices for anomaly detection and predictive maintenance in smart
city applications. The framework leverages the distributed and secure nature of blockchain technology
to enable the collaborative training and inference of LLMs across multiple edge devices, ensuring the
privacy and integrity of the data and the models.

Figure 6 illustrates the architecture of a typical IoT and smart city application of edge-based LLMs,
highlighting the key components and the data flow between the edge devices and the cloud servers.

IoT sensors
and devices

Edge devices
with LLMs

Cloud servers
with LLMs

IoT and smart city
applications

Raw data

Processed data

Insights and actions

Feedback and
control

Figure 6: Architecture of a typical IoT and smart city application of edge-based LLMs.

As shown in figure 6, IoT sensors and devices collect raw data from the environment and send it to
the edge devices for real-time processing and analysis using LLMs. The edge devices extract relevant
features and patterns from the data and transmit the processed information to the cloud servers for
further analysis and decision-making. The cloud servers utilize more powerful LLMs to generate insights
and actionable recommendations, which are then fed back to the IoT and smart city applications for
implementation. The applications, in turn, provide feedback and control signals to the sensors and
devices, closing the loop and enabling adaptive and intelligent behaviour.

5.2. Personalized services and human-machine interaction

Edge-based LLMs have also been applied to personalized services and human-machine interaction
applications, enabling the development of intelligent and context-aware systems that can understand
and respond to user needs and preferences in real-time [35, 36]. Table 7 summarizes representative
personalized services and human-machine interaction applications of edge-based LLMs.

Edge-based LLMs have been leveraged to develop intelligent personal assistants that can understand
and respond to user queries and commands in natural language, providing personalized and context-

149



Serhiy O. Semerikov et al. CEUR Workshop Proceedings 137–161

Table 7
Representative personalized services and human-machine interaction applications of edge-based LLMs.

Application Key features Impact References

Intelligent personal assistants Multi-modal interaction,
context awareness

Enhanced user experience Shen et al. [11]

Personalized recommendations User profiling, collabora-
tive filtering

Improved service quality Piccialli et al. [39]

aware services [11]. These assistants integrate multi-modal interaction capabilities, such as speech
recognition, computer vision, and natural language processing, to enable seamless and intuitive human-
machine communication.

For example, Shen et al. [11] propose an edge-based autonomous AI system that leverages the
capabilities of LLMs to provide high-quality, low-latency, and privacy-preserving personal assistant
services. The system utilizes a combination of on-device LLMs and cloud-based models to process user
queries and generate appropriate responses, adapting to the user’s context and preferences.

Edge-based LLMs have also been applied to the personalized recommendation and content generation
systems, enabling the delivery of tailored and engaging experiences to users based on their interests
and behaviour [39]. These systems leverage the language understanding and generation capabilities of
LLMs to create user profiles, analyze user feedback, and generate personalized recommendations and
content.

For instance, Piccialli et al. [39] propose a federated and edge learning framework for LLMs that
enables the collaborative training and inference of recommendation models across multiple edge devices
while preserving user privacy. The framework utilizes techniques such as differential privacy and secure
multi-party computation to ensure the confidentiality of user data and the integrity of the models.

Figure 7 illustrates the workflow of a typical personalized service or human-machine interaction
application of edge-based LLMs, highlighting the key steps and the interaction between the user and
the system.

User

Multi-modal
input

Edge-based
LLMs

Personalized
output

Query or command

Text, speech,
image, etc.

Generated response

Recommendation
or content

Figure 7: Workflow of a typical personalized service or human-machine interaction application of edge-based
LLMs.

As shown in figure 7, the user initiates the interaction by providing a query or command to the system,
which can be in the form of text, speech, image, or other modalities. The edge-based LLMs process the
input and generate a personalized response, which is then presented to the user as a recommendation
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or a piece of content. The user can provide feedback on the output, which is used by the system to
refine the user profile and improve the quality of future recommendations and interactions.

5.3. Multi-modal edge intelligence

The integration of edge-based LLMs with other AI domains, such as computer vision, speech recognition,
and robotics, has enabled the development of multi-modal edge intelligence applications that can
process and analyze heterogeneous data streams in real-time [40, 41]. These applications leverage the
complementary strengths of different AI technologies to provide more comprehensive and accurate
insights and actions, enhancing the capabilities of edge devices and systems. Table 8 summarizes
representative multi-modal edge intelligence applications of edge-based LLMs.

Table 8
Representative multi-modal edge intelligence applications of edge-based LLMs.

Application Key features Impact References

Robotics and au-
tonomous systems

Multi-modal perception, nat-
ural language interaction

Enhanced robot capabilities Kawaharazuka et al. [42]

Computer vision
and video analytics

Cross-modal learning, real-
time processing

Improved scene understanding Xu et al. [43]

Edge-based LLMs have been integrated with robotics and autonomous systems to enable more
natural and intuitive human-robot interaction, as well as more robust and adaptive robot behaviour [42].
These systems leverage the language understanding and generation capabilities of LLMs to process and
respond to human commands and queries while also utilizing the perception and action capabilities of
robots to perform tasks in the physical world.

For example, Kawaharazuka et al. [42] propose a framework for applying pre-trained vision-language
models to various recognition behaviours in robotic applications, enabling robots to understand and
respond to visual and linguistic cues in real-world environments. The framework utilizes techniques
such as zero-shot learning and prompt engineering to adapt the pre-trained models to specific tasks
and domains without requiring extensive fine-tuning or data collection.

Edge-based LLMs have also been combined with computer vision and video analytics techniques to
enable more accurate and efficient scene understanding and object recognition in real-time [43]. These
applications leverage the cross-modal learning capabilities of LLMs to process and analyze visual and
textual data streams simultaneously, extracting relevant features and generating semantic descriptions
of the observed scenes.

For instance, Xu et al. [43] propose a benchmark suite for evaluating the performance of multi-modal
deep neural networks (DNNs) in edge computing environments, focusing on the hardware and software
implications of deploying these models on resource-constrained devices. The benchmark includes a set
of representative computer vision and video analytics tasks, such as object detection, image captioning,
and video summarization, and provides insights into the trade-offs between accuracy, latency, and
energy efficiency of different multi-modal DNN architectures and optimization techniques.

Figure 8 illustrates the architecture of a typical multi-modal edge intelligence application of edge-
based LLMs, highlighting the integration of different AI technologies and the flow of data and control
between them.

As shown in figure 8, multi-modal sensors, such as cameras, microphones, and tactile sensors, collect
data from the environment and send it to the respective AI modules for processing. The computer vision
module extracts visual features and detects objects of interest, while the speech recognition module
transcribes and interprets spoken commands and queries. The robotics and control module processes
the sensor data and generates appropriate actions and behaviours for the robot. The edge-based LLMs
integrate the outputs of the individual AI modules and generate a cohesive and semantically meaningful
representation of the scene, which is then used to guide the robot’s actions and interactions. The
multi-modal output, such as natural language descriptions, visual explanations, and motor commands,
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Figure 8: Architecture of a typical multi-modal edge intelligence application of edge-based LLMs.

is fed back to the AI modules for further processing and refinement, creating a closed-loop system that
can adapt to dynamic and unstructured environments.

5.4. Case studies and real-world deployments

To demonstrate the practical impact and potential of edge-based LLMs, this section presents several case
studies and real-world deployments of these technologies across different domains and applications.
Table 9 summarizes the key features and outcomes of each case study.

Table 9
Case studies and real-world deployments of edge-based LLMs.

Case study Domain Key features Outcomes

Autonomous edge AI systems [11] Personal assistants Multi-modal interac-
tion, privacy-preserving

Enhanced user experi-
ence

LLM-powered smartphones [36] Mobile devices On-device inference, en-
ergy efficiency

Improved functional-
ity and performance

Personalized digital avatars [35] Human-computer in-
teraction

Realistic appearance
and voice, low latency

Engaging and immer-
sive interactions

Shen et al. [11] present an autonomous edge AI system that uses LLMs to provide intelligent and
personalized services to users, such as voice assistants, recommendation systems, and content generation.
The system employs a hierarchical architecture that combines on-device LLMs for low-latency inference
and privacy-preserving data processing with cloud-based models for more complex and computationally
intensive tasks. The system also incorporates techniques such as federated learning and differential
privacy to enable collaborative model training and adaptation across multiple edge devices while
ensuring the security and confidentiality of user data.

The autonomous edge AI system has been deployed in various real-world scenarios, such as smart
homes, connected vehicles, and personal robotics, demonstrating significant improvements in user
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experience, service quality, and operational efficiency compared to traditional cloud-based solutions. The
system has also been shown to reduce the energy consumption and network bandwidth requirements
of edge devices, making it suitable for resource-constrained environments.

Wu et al. [36] investigate the integration of LLMs into smartphones to enable advanced functionality
and improved performance for mobile users. The authors develop a framework for optimizing the
deployment of LLMs on mobile devices, considering factors such as model compression, quantization,
and hardware acceleration. The framework also includes a runtime system that dynamically adapts the
inference process based on the available resources and the user’s context, ensuring optimal performance
and energy efficiency.

LLM-powered smartphones have been evaluated in terms of their natural language processing
capabilities, such as text classification, language translation, and question answering, as well as their
impact on the user experience and battery life. The results show that the optimized LLMs can achieve
comparable accuracy to cloud-based models while significantly reducing the devices’ latency and energy
consumption. The LLM-powered smartphones have also been shown to enable new applications and
services, such as on-device virtual assistants, real-time language translation, and personalized content
recommendations.

Basit and Shafique [35] propose a multi-modal LLM-based framework for creating personalized digital
avatars that can engage in natural and expressive interactions with users. The framework integrates
LLMs for natural language processing, deep learning models for speech synthesis and recognition, and
computer vision techniques for generating realistic facial expressions and gestures. The digital avatars
are designed to run on edge devices, such as smartphones and smart speakers, providing low-latency
and privacy-preserving interactions.

Personalized digital avatars have been evaluated in terms of their naturalness, expressiveness, and
user engagement using both objective metrics and subjective user studies. The results show that the
avatars can generate highly realistic and context-appropriate responses while also adapting to the user’s
preferences and emotions. The digital avatars have been deployed in various applications, such as
virtual customer service agents, personal tutors, and social companions, demonstrating their potential
to enhance the user experience and create more engaging and immersive interactions.

These case studies and real-world deployments highlight the diversity and impact of edge-based
LLMs across different domains and applications. They also demonstrate the practical feasibility and
benefits of deploying these technologies on resource-constrained devices, paving the way for more
intelligent, responsive, and user-centric edge computing systems.

6. Challenges, opportunities, and future directions

Despite the significant advancements and promising applications of edge-based LLMs, several challenges
and opportunities remain that need to be addressed to fully realize their potential.

6.1. Resource constraints and efficiency optimization

One of the main challenges in deploying LLMs on edge devices is the limited computational resources
and energy budget of these devices [8]. To address this challenge, there is a need for more efficient and
adaptive optimization techniques that can dynamically adjust the model architecture, hyperparameters,
and deployment strategy based on the available resources and the target task. This includes the
development of more advanced compression methods, such as quantization-aware training [18], network
pruning [14], and knowledge distillation [20], as well as the exploration of novel architectures and
learning paradigms, such as mixture-of-experts [44] and meta-learning [45].

Another important direction is the design of more efficient hardware accelerators and platforms
for edge-based LLMs, considering the unique characteristics and requirements of these models [19].
This includes the development of specialized processing units, such as tensor processing units (TPUs)
[46] and neural processing units (NPUs) [47], as well as the optimization of memory hierarchies and
interconnects for fast and low-power data movement. Additionally, the co-design of hardware and
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software components, such as compilers, runtime systems, and frameworks, can enable more seamless
and efficient deployment of LLMs on edge devices [30].

6.2. Privacy, security, and trustworthiness

Another critical challenge in edge-based LLMs is ensuring the privacy, security, and trustworthiness
of these systems, especially when dealing with sensitive user data and interactions [7]. To address
this challenge, there is a need for more robust and scalable privacy-preserving techniques, such as
federated learning [39], differential privacy [48], and homomorphic encryption [49], that can enable
the collaborative training and inference of LLMs across multiple edge devices, without compromising
the confidentiality and integrity of the data and the models.

Moreover, the development of more secure and resilient architectures and protocols for edge-based
LLMs is crucial to prevent unauthorized access, tampering, and attacks on these systems [5]. This
includes the use of trusted execution environments (TEEs) [50], blockchain-based authentication
and access control [37], and anomaly detection and mitigation techniques [28]. Additionally, the
incorporation of explainable and interpretable AI techniques [51] can enhance the transparency and
accountability of edge-based LLMs, enabling users to understand and trust the decisions and actions of
these systems.

6.3. Domain-specific adaptation and customization

Another important challenge and opportunity in edge-based LLMs is the adaptation and customization
of these models to specific domains and applications [11]. While pre-trained LLMs can provide a good
starting point for many tasks, they often require fine-tuning and domain-specific optimization to achieve
optimal performance and user experience. This includes the incorporation of domain knowledge and
constraints into the model architecture and training process, as well as the development of more efficient
and effective transfer learning techniques [52].

Moreover, the design of more modular and composable LLMs that can be easily adapted and extended
to new tasks and domains is an important research direction [53]. This includes the development of plug-
and-play modules, such as adapters [21] and prefix-tuning [54], that can be seamlessly integrated into
existing LLMs to enable fast and efficient adaptation to new requirements and preferences. Additionally,
the exploration of more interactive and collaborative learning paradigms, such as active learning [55]
and human-in-the-loop learning [56], can enable the continuous improvement and customization of
edge-based LLMs based on user feedback and real-world usage patterns.

6.4. Scalability and interoperability in heterogeneous environments

Another challenge and opportunity in edge-based LLMs is ensuring their scalability and interoperability
in heterogeneous and dynamic environments [9]. Edge computing systems often involve a large number
of diverse devices, protocols, and platforms, which can hinder the seamless deployment and coordination
of LLMs across these systems. To address this challenge, there is a need for more flexible and adaptive
middleware and frameworks that can abstract away the underlying heterogeneity and enable the
efficient and reliable communication and synchronization of LLMs across different edge devices and
networks.

Moreover, the development of standardized interfaces and protocols for edge-based LLMs is crucial
to enable their interoperability and compatibility with existing tools and services [6]. This includes
the design of common architectures, such as the Open Neural Network Exchange (ONNX) [57], and
the adoption of open standards, such as the Edge Computing Reference Architecture (ECRA) [58], to
facilitate the integration and deployment of LLMs in edge computing environments. Additionally, the
exploration of more decentralized and self-organizing architectures, such as peer-to-peer networks [59]
and multi-agent systems [60], can enable the scalable and resilient coordination of edge-based LLMs in
large-scale and dynamic environments.
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6.5. Emerging applications and future research directions

Finally, there are many emerging applications and future research directions that can further advance
the field of edge-based LLMs and unlock new opportunities for innovation and impact. Some of these
directions include:

1. The integration of edge-based LLMs with other AI technologies, such as reinforcement learning
[61], graph neural networks [62], and knowledge graphs [63], to enable more intelligent and
context-aware decision making and reasoning in edge computing environments.

2. The exploration of edge-based LLMs for multi-modal and cross-lingual applications, such as
image captioning [64], video summarization [65], and machine translation [66], to enable more
natural and expressive interactions between humans and edge devices.

3. The development of edge-based LLMs for mission-critical and safety-critical applications, such
as autonomous driving [67], industrial control systems [68], and healthcare monitoring [69], to
ensure the reliability, security, and performance of these systems in real-world environments.

4. The investigation of edge-based LLMs for sustainable and green computing, considering the
energy efficiency, carbon footprint, and environmental impact of these systems [70], and exploring
techniques such as energy harvesting [71], workload consolidation [72], and renewable energy
integration [73] to reduce their ecological footprint.

5. The study of the social, economic, and ethical implications of edge-based LLMs, including aspects
such as fairness, accountability, transparency, and explainability [74], and the development of
responsible AI principles and guidelines [75] to ensure the beneficial and trustworthy deployment
of these technologies in society.

These emerging applications and future research directions highlight the vast potential and impact
of edge-based LLMs in shaping the future of intelligent and sustainable computing systems.

7. Conclusion

This survey has explored the dynamic and rapidly advancing field of edge-based large language models
(LLMs), a frontier that bridges the power of advanced AI with the constraints of resource-limited edge
devices. We have examined the techniques – such as quantization, pruning, and knowledge distillation –
that enable efficient LLM deployment alongside frameworks like TinyAgent, MNN-LLM, and h2oGPT
that facilitate practical implementation. Edge-cloud collaborative architectures, including EdgeShard,
Edge-LLM, and PAC, demonstrate how hybrid systems can overcome computational bottlenecks, while
hardware innovations like Cambricon-LLM, AxLaM, and DTATrans/DTQAtten push the boundaries of
performance and energy efficiency. These advancements have unlocked a diverse array of applications,
from IoT-driven smart cities and personalized assistants to multi-modal edge intelligence, as illustrated
by real-world deployments such as LLM-powered smartphones and autonomous AI systems.

The significance of edge-based LLMs extends beyond technical achievements; they represent a
paradigm shift in how intelligent computing is delivered. By enabling low-latency, privacy-preserving,
and context-aware AI at the edge, these models democratize access to cutting-edge capabilities, empow-
ering users in resource-constrained environments – whether in remote areas with limited connectivity
or urban settings demanding real-time responsiveness. The survey ties together these threads – tech-
niques, frameworks, hardware, and applications – into a cohesive narrative: edge-based LLMs are not
merely an adaptation of existing technology but a foundational step toward ubiquitous, sustainable intel-
ligence. For instance, model compression and hardware acceleration address resource constraints, while
collaborative frameworks and privacy-preserving techniques ensure scalability and trust, collectively
paving the way for innovative applications that redefine human-machine interaction.

Looking forward, the future of edge-based LLMs is both promising and demanding. Continued
innovation is needed to address persistent challenges, such as optimizing resource efficiency, enhancing
privacy and security, and achieving seamless scalability across heterogeneous environments. Spe-
cific research directions include developing adaptive, modular LLM architectures for domain-specific
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customization, integrating multi-modal reasoning for richer interactions, and exploring sustainable
computing paradigms to minimize environmental impact. These efforts will unlock transformative
possibilities – imagine autonomous systems reasoning in real-time, personalized services adapting
instantly to user needs or green edge AI reducing the carbon footprint of intelligent devices.

This survey serves as both a comprehensive resource and a call to action for researchers and prac-
titioners at the confluence of LLMs and edge computing. The advancements chronicled here are not
endpoints but stepping stones toward a future where edge-based LLMs become integral to everyday
life – secure, efficient, and universally accessible. We conclude with a bold vision: edge-based LLMs
have the potential to reshape the landscape of computing, bringing intelligence closer to users than
ever before and fostering a world where AI is not just powerful but personal, pervasive, and profoundly
impactful.
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