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Abstract  
Unmanned Aerial Vehicles (UAVs) equiped with RGB cameras have emerged as effective tools for 
monitoring agricultural crops. However, motion blur in UAV images can affect the accuracy of subsequent 
image analysis tasks, such as disease detection in plant leaves. This study proposes a real-time image 
segmentation approach for analyzing UAV-captured maize leaf images. The algorithm evaluates image blur 
using the Laplacian variance, applies an adaptive Wiener filter for deblurring, segments maize leaves from 
the background using color transformations, and identifies diseased regions through Canny edge and 
contour detection. Experimental results demonstrate the lightweight and effectiveness of proposed 
approach with less than 1s runtime, improving image quality and allowing accurate disease detection of 
maize crops for real-time purpose. 
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1. Introduction 

Plant disease detection is a key application of UAVs and has been extensively researched [1]. One of 
the advantages of using UAVs is its ability to detect diseases early and prevent their spread, thereby 
reducing crop losses [2]. Decision-support systems that incorporate UAVs can lead to better decision-
making, increased production, improved product quality, and labor savings [3]. UAVs are utilized 
across various crop types and for detecting multiple diseases. Some diseases present visible 
symptoms, while others require temperature measurements for detection [4]. Early detection of pests 
and crop diseases provides farmers and other stakeholders with enough time to prevent potential 
epidemics and minimize yield losses. However, motion blur in UAV images generally caused by the 
camera movement during image capture, the combined effects of atmospheric turbulence, the 
shaking of the UAV platforms, high altitude or operation errors can affect the accuracy of subsequent 
image analysis tasks, such as disease detection in crop plant leaves [5]. This represents a common 
issue in UAV imagery and various methods have been proposed to address motion blur. 

On the other hand, recent advancements in deep learning (DL) have produced various methods 
for detecting and classifying plant diseases using images of infected plants [6]. However, they require 
huge datasets for advanced approaches such as CNN to produce good results and large image datasets 
result in increased accuracy rates [7]. 
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This study presents a real-time algorithm for the segmentation of UAV images, specifically 
targeting the detection of maize plant leaf diseases. The proposed method leverages motion blur 
detection, adaptive Wiener filtering, color conversion combined with morphological operations, 
Canny edge detection, Otsu color thresholding and contour area detection so that to isolate infected 
regions. The results demonstrate the algorithm's efficacy in identifying unhealthy plant areas in less 
than 1 second runtime, thereby providing a robust tool for precision agriculture in real-time. The 
rest of the paper is organized as follows: in section 2, we present the related works, section 3 outlines 
the proposed approach, the experimentation is introduced in section 4 and results and discussion are 
presented in section 5. Finally, section 6 provides a conclusion. 

2. Related works 

Successful disease estimation has been demonstrated in many UAV-based imagery applications such 
as [8], [9], [10]. These studies often used either the mean value of the vegetation index or the count 
of pixels below a certain threshold within a plot to estimate the disease score. 

Table 1 gives a synthetic comparative analysis of classical image classification techniques in plant 
leaves healthy and unhealthy area detection. 

Table 1 
Comparison of classical image classification techniques 

Classification 
Techniques Description Advantages Limits References 
Color 
thresholding 

Compares the distribution of 
colors in an image using a 
threshold. 

- Simple to implement  
- Fast computation 

- Limited discriminative 
power  
- Sensitive to changes in 
lighting conditions 

[1] 

Texture 
Analysis 

Analyzing textural patterns in 
an image to characterize 
healthy and unhealthy areas. 

- Captures subtle 
differences in texture  
- Robust against 
changes in lighting and 
color 

- Parameter tuning 
required  
- May be 
computationally 
intensive 

[2] 

Machine 
Learning 
Models 

Utilizing machine learning 
algorithms (e.g., SVM, 
Random Forest, CNN) to learn 
features and classify healthy 
and unhealthy areas. 

- High accuracy and 
robustness  
- Can automatically 
learn complex patterns 

- Requires large amounts 
of labeled data  
- Training and inference 
can be computationally 
costly 

[3] 

 
According to Table 1 the choice of classification algorithm depends on various factors, including the 
desired level of accuracy, computational resources, and the availability of labeled data. Color 
thresholding is simple and efficient but may lack the discriminative power of more complex methods 
like texture analysis and machine learning models. Texture analysis can capture subtle differences 
in texture but may require more computational resources. Machine learning models offer high 
accuracy but come with higher complexity and resource requirements, especially during training. 

3. Proposed Approach 

Figure 1 describes the proposed approach. 
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Figure 1: Scheme of the proposed method. 
The proposed algorithm involves several key steps and each step is based on specific mathematical 
operations and image processing techniques to ensure accurate segmentation and detection. 

3.1. UAV Image Acquisition from field 

First, UAVs equipped with high-resolution RGB cameras capture images of maize fields. The UAV 
images were collected between 4:45 p.m. and 6:00 p.m., on July 14, 2024, whereas it was sunny and 
windless. The DJI Mini 3 Pro, a quadcopter UAV system, was used to collect aerial images of maize 
leaves from a field. This system carried an automated RGB sensor (Quad Bayer CMOS camera) which 
was developed for agricultural applications. 

3.1.1. Image Preprocessing  

The second step in the algorithm involves preprocessing the UAV-captured images to enhance their 
quality and reduce noise. This is crucial for improving the accuracy of subsequent image analysis 
steps. 

1. Motion Blur Detection and Assessing: the Laplacian variance [14] is used to detect motion 
blur. When detected, an adaptive Wiener filter is applied to deblur the images. To assess the 
degree of motion blur in the UAV images, we calculate the Laplacian variance of the 
grayscale image: 

𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝐼) = ∑ ቀ
డమூ

డ௫మ +
డమூ

డ௬మ ቁ,       (1) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
ଵ

ே
∑ (𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛(𝑖, 𝑗) − 𝜇)ଶ  ,      (2) 

where I is the grayscale image, μ is the mean of the Laplacian image, and N is the total number of 
pixels. 

The variance provides a measure of image sharpness, with lower values indicating higher blur 
levels. 

2. Image Deblurring by Adaptive Wiener Filter: if the image is found to be blurred, an adaptive 
Wiener filter is applied to reduce noise and enhance details. The Wiener filter operates as 
follows: 
 Normalize grayscale image: 

𝐼 =
ூೝೌ

ଶହହ.
        (3) 
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 Create averaging kernel: 

𝐾 =
ଵ

మ 1×        (4) 

 Compute local mean and variance: 

𝜇 = 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒2𝑑(𝐼, 𝐾, ’𝑠𝑎𝑚𝑒’)     (5) 

 Compute overall variance: 

       𝜎
ଶ = 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒2𝑑(𝐼

ଶ , 𝐾, ’𝑠𝑎𝑚𝑒’) − 𝜇
ଶ    (6) 

 Apply Wiener filter 

𝐼௪  = (𝐼 − 𝜇) ⋅ (
ೡೝೌ

మ

ఙೌ
మ ାఙೡೝೌ

మ ) + 𝜇   (7) 

 Denormalize:     

 𝐼 ௗ௨ௗ = 𝐼௪ ⋅ 255      (8) 

3.1.2. Image Segmentation 

The third step in the algorithm relates to segmentation which plays a crucial role in identifying 
regions of interest within UAV images, such as healthy and infected areas of maize plant leaves, for 
further analysis. 

1. HSV Color Segmentation: the deblurred image is then converted to the HSV (Hue, Saturation, 
Value) color space to facilitate segmentation based on color characteristics [15]. The green 
color range corresponding to healthy maize leaves is defined in the HSV space, and a binary 
mask is created to isolate these regions: 

𝑀𝑎𝑠𝑘 = ቄ
1   𝑖𝑓 𝑟𝑎𝑛𝑔𝑒1 ≤ 𝐻𝑆𝑉(𝑥, 𝑦) ≤ 𝑟𝑎𝑛𝑔𝑒2
0                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (9) 

where 𝑟𝑎𝑛𝑔𝑒1 and 𝑟𝑎𝑛𝑔𝑒2 define the HSV range for green color. 
Morphological operations, including opening and closing, are applied to the binary  

mask to remove noise and smooth the segmented regions. 
      𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑦(𝐼) = (𝐼 ⊙ 𝐾) ⊕ 𝐾     (10)   

where ⊙ denotes morphological opening and ⊕ denotes closing, and 𝐾 is the structuring 
element. 

2. Division into Patch: the preprocessed image is divided into a specified number of equal-sized 
patches for localized analysis of disease symptoms. The number of patches here is 10.  

Calculate patch dimensions: 

ℎ =
ு

ଶ
   (11) ;                             𝑤 =

ௐ

ହ
   (12)  

where 𝐻 is the height and 𝑊 is the width of the patch 
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3. Cany Edge Detection: each patch undergoes further analysis to detect and classify objects of 
interest. The edges of potential diseased regions are detected using the Canny edge detection 
algorithm [16], which identifies boundaries based on gradients in the image: 

𝐸𝑑𝑔𝑒𝑠(𝑥, 𝑦) = ቄ
1  𝑖𝑓 𝐺(𝑥, 𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (13)  

where G(x,y) is the gradient magnitude at pixel (x,y). 

3.1.3. Image Classification  

The detected edges are used to identify contours, which are then classified as healthy or unhealthy 
based on their area. A threshold is applied to differentiate between large healthy regions and smaller 
unhealthy spots. Contours are then extracted and classified based on their area, with larger areas 
typically indicating healthy regions and smaller areas potentially indicating diseased regions. 

Following equations explain the classification process: 
               𝐴𝑟𝑒𝑎 = ∑ ∑ 𝐼

ேିଵ
ୀ

ெିଵ
ୀ     (14) 

where 𝐼is the pixel value within a contour. 
 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = ൜
𝐻𝑒𝑎𝑙𝑡ℎ𝑦             𝑖𝑓 𝐴𝑟𝑒𝑎 > 𝐴 ௧௦ௗ  
𝑈𝑛ℎ𝑒𝑎𝑙𝑡ℎ𝑦                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (15) 

where 𝐴 ௧௦ௗ is fixed here to 500. 
 

Below is the detailed algorithm: 
Algorithm 1: Lightweight Segmentation for maize leave disease detection 
  Input: x,y, I(x, y), ctg(), clv(), avf(), rhsv(), sgr(), mo(), dpp(), ced(), fdc() --image of leaves 
  Begin 
  1: Initialize Image Processing  
  Output: Result -- Segmented and classified plant regions 
  2: I(x, y) ← ctg(I(x, y)))  -- Convert the UAV image to a grayscale image 
  3: σ² ← clv(I(x, y)) -- Calculate the Laplacian variance to assess image sharpness 
  4:  if σ² < Threshold then  
  5:       I(x, y) ← avf(I(x, y)) -- Apply the adaptive Wiener filter if Variance  < threshold 
  6:  end if 
  7: IHSV ← rhsv(I(x, y))  --Resize the image and convert it to the HSV color space 
  8: ILeaves ← sgr(IHSV) -- Segment green plant regions using predefined HSV ranges 
  9: Imo ←mo(IMorph--Apply morphological operations to enhance segmentation 
 10: Patch [ ] ← dpp(Imo)  -- Divide the processed image into smaller patches  
 11: for each patch in Patch do 
 12:     Edge [ ] ← ced(patch) -- Canny edge detection of each patch 
 13:     Cntrs [ ] ← fdc(Edge [ ]) -- Classify detected edges based on health status 
 14: end For 

4. Experimentation 

The characteristics of the UAV employed for the flight mission and the computer used for testing 
resulting aerial images are shown in Table 2 below.  

4.1. Characteristics of UAV used for data acquisition 

The mini-sized, mega-capable DJI Mini 3 Pro is just as powerful as it is portable. Weighing less than 
249 g and with upgraded safety features, it is not only regulation-friendly but also the safest in its 
series [17]. With a 1/1.3-inch sensor and top-tier features, it redefines what it means to fly Mini. 

Table 2 shows the specifications of the small UAV used for acquiring the images of the maize 
plants leaves used for constructing the dataset [18]. 
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Table 2  
Characteristics of the DJI Mini 3 Pro used for experimentation 

Characteristics  Specifications 
Model DJI Mini 3 Pro 
Weight Under 250g 
Camera 1/1.3" (0.77") 48MP f1.7 Quad Bayer CMOS Sensor 
Frame per second (fps) 4K 60 fps with HDR; 1080p 120fps 
Camera Orientation Horizontal and Fully Vertical camera orientations 
Sensors Obstacle Avoidance Sensors 
Flight Mode Intelligent 
Flight times Up to 47 minutes (with the optional larger batter) or 25-

30 minutes with the standard supplied batteries. 
Controller New Smart with 1080p 30fps 
Maximum flight speed 16 m/s 
Maximum flight height 4000m 
Maximum horizontal range 8KM 

 
4.2. Experimentation site localization 

The images were accessed on 14 July 2024 and acquired on board the UAV, in the village of Dodji-
Sèhè inside Sekou in the town of Allada, Benin Republic. Following Figure 2 and Figure 3 give 
additional details on the site of study. 

 
    
 
 
 

 
 
Figure 2 : Acquisition site localization,  Figure 3 : Dodji-Sèhè village, Sékou District. 
Benin Republic Map. 

4.3. Dataset 

The dataset consists of 266 images. When the images are captured in the state of stabilization of the 
device they are usually clear. On the other hand, the images captured during flight time are subject 
to motion blur. 

The selected images were in the JPG file format and 4032 x 3024 pixels (see Figure 4). 
 

                   
(a)    (b)           (c)          (d) 

                     
(e)   (f)          (g)          (h) 

Figure 4 : Example of UAV images of maize leaves from the dataset. Image from (a) to (d) appear to 
be sharp whereas those from (e) to (h) are motion-blurred.  
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5. Results and discussion 

5.1. Preprocessing steps 

Below we present a sample of image from the dataset with preprocessing steps as follows: 

                           
         (a)          (b)                (c)                            

  
Figure 5: (a) Original image, (b) Adaptive Wiener deblurred image of (a), (c) histogram of b  

Table 3 indicates the performances characteristics of the deblurred image. 
Table 3 
Performances of the Adaptive Wiener Filter image deblurring step 

Image Quality Index Value 
Image Entropy 6.508706806116296 
MSE 704.7281638886699 
PSNR 19.65058732797596 
SSIM 0.853058838351285 

This deblurred image is characterized by an Entropy of 6,50; a Minimun Square Error of 704,72; a 
Peak Signal to Noise Ratio of 19,65 and a Structural Similarity Index Measure of 0,85, which indicates 
generation of an image of better quality. 

5.2. HSV color segmentation 

We perform here plant leaves segmentation using color transformations based on HSV color space 
combined with morphological operations. Figure 7 shows the result of extracted maize leaves from 
background. 

                                                          
Figure 6 : Original image of maize leaves.     Figure 7 : Maize Leaves Extracted from background. 

We perform here plant leaves segmentation using color transformations based on HSV color 
space combined with morphological operations. 

Color transformations provides a reliable means to segment maize leaves from the background, a 
critical step for accurate disease detection. 

5.3. Division into patches and Canny Edge Detection 

The preprocessed image is divided into a specified number of equal-sized patches for localized 
analysis of disease symptoms. The number of patches here is 10. Each patch undergoes Canny edge 
algorithm to detect objects of interest. 

Figure 8 shows the resulting image after this combined process. 
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    (a)   (b)  (c)  (d)            (e) 

                 
         (f)                (g)            (h)         (i)             (j)   

Figure 8 : Division into 10 patches and Canny Edge Detection. 

5.4. Health classification 

Figure 9 below shows the health classification results generated for the 10 patches of the sample 
image used above. 

                     
(a)  (b)  (c)  (d)  (e) 

                      
(f)            (g)  (h)  (i)  (j) 

Figure 9: Health classification results. For each pacth generated from a to j, note a = (Patch1and 
Res(Patch1)),  j = (Patch10, Res(Patch10)) where Res(Patch1) is the result after Canny edge detetion 
and classification as healthy (green pixels) and unhealthy (red spots (non-green diseased areas) and 
double red contours for leaves damaged on edges. 

Table 4 below presents the runtime of the program for a previously clear image. 
Table 4  
Performance Analysis of classification results of tested UAV maize leaves images. 

Performance criteria Value 
Runtime of the program 0.863659143447876 seconds 

According to Table 4, the classification results are otained in 0,86 second less than 1 second 
runtime, which ensures low computation performance of the proposed approach, crucial condition 
for real-time application and decision-making. 

The proposed approach addresses several key challenges in UAV-based crop monitoring. By 
evaluating and correcting image blur, we ensure that the subsequent segmentation and analysis steps 
are based on high-quality data. The use of adaptive Wiener filtering is particularly beneficial for real-
time applications due to its efficiency and effectiveness in varying noise conditions. Color 
transformations provide a reliable means to segment maize leaves from the background, a critical 
step for accurate disease detection. The division of the image into patches allows for detailed 
localized analysis, making it possible to detect early signs of disease that might be missed in a full-
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image analysis. Canny edge detection and color thresholding leverages both structural and color 
information, enhancing speed and robustness of disease detection in 0,86 second. 

6. Conclusion 

This study presents a comprehensive real-time image processing algorithm for analyzing UAV-
captured images of maize leaves. First, we leverage adaptive Wiener filtering to address image 
motion blur, then use color space transformation to segment maize leaves and finally patch-based 
analysis to detect diseased regions through a combination of edge detection and color analysis. The 
proposed method offers a promising solution for automated crop health monitoring, enabling timely 
interventions and improving agricultural productivity, forming a fast and effective tool for precision 
agriculture with less than 1 second. Future work will focus on optimizing the algorithm for different 
crop types and integrating it into a real-time UAV-based monitoring system. 
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