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Abstract 
Dry beans, integral to the Fabaceae family, boast global significance with their diverse genetic heritage 
tracing back to their dissemination from America centuries ago. This study endeavors to develop an 
explainable dry bean classification model using a soft voting classifier, juxtaposing its performance against 
classic and ensemble machine learning algorithms. Data preprocessing ensured suitability for classification 
algorithms, with feature selection employing information gain and variance inflation factors. The class 
imbalance was addressed via SMOTE + Tomek methods. Evaluation metrics encompassed accuracy, 
precision, recall, and F1-score. XGBoost led with 92.5065% accuracy, while soft voting classifiers (LGBM, 
XGB, CatBoost, RF, and DT) closely followed at 92.691%. The soft voting classifier proved optimal for dry 
bean classification, aiding in model interpretation and decision-making processes. 
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1. Introduction 

Dry beans belong to the diverse Fabaceae family, sometimes referred to as Leguminosae, and they 
are the most important and the most produced pulse in the world [1]. It originated in America, while 
there is a wide genetic diversity in the world since, in the 15th and 16th centuries, they were 
transported to Europe and Africa and quickly spread to the rest of the globe [1]. The selection of dry 
beans plays an important role in the economy of agriculture-based countries like Bangladesh, India, 
Pakistan, etc. throughout the winter season. Currently, Dry bean is a staple food for many regions 
of the world and processing enables the consumption and incorporation of this nutrient-dense food 
in daily diets. Dry beans are the most known source of protein. In addition, they are low in fat and a 
rich source of fiber and other important nutrients [2][3]. Dry beans are important for environmental 
and human health benefits, such as improved soil fertility, reduced risk of chronic disease, and 
improved or promoted glycemic control [1]. There are several genetic diversities of dry beans, and 
it is the most produced one among the edible legume crops in the world. According to the Turkish 
Standards Institution, dry beans are classified as Barbunya, Battal, Bombay, Calı, Dermason, Horoz, 
Tombul, Selanik, and Seker” based on their botanical characteristics [4][5][6]. Plants are sensitive to 
the effect of climatic changes and they have a variety of resistance. Finding high-quality seed is the 
primary challenge facing dry bean producers and distributors or marketers. Using a lower quality 
seed in production will induce to lower quantity even if all the cultivation conditions are provided.  

 
A wide range of computational tools are available to regulate food and agricultural product 

quality. But most of them are done with the use of conventional techniques of the professionals. For 
example, different seed categorization is conducted based on human understanding, and determining 
the type of dry beans requires a skillful person to take a huge time manually, and passes a challenging 
process [6].  In particular, the color of various dry bean species varies, and geometrical data does not 
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reveal this color variation. Due to this reason, it is vital in economically technical aspects to build an 
automated technique to detect as well as categorize seed features rapidly and repeatedly. Even, it is 
difficult for a human operator to understand or handle the seeds except for specific tools or automatic 
software procedures. The main problem dry bean producers and marketers face is in ascertaining 
good seed quality. Lower quality of seeds leads to lower quality of produce. Seed quality is the key 
to bean cultivation in terms of yield and disease. In today’s world, the inspection of the quality of 
seeds, fruits, and vegetables along with the examination and categorization of seeds and grains have 
been performed worldwide to meet these demands with the help of machine learning and computer 
vision [4]. This is why we try to use a soft voting classifier and compare it with individual algorithms 
to classify dry beans. In recent years, machine learning algorithms have been used in the inspection, 
classification, prediction, and segmentation of food product quality. Classification techniques are 
becoming more popular in the fields of medicine, biostatistics, bioinformatics, agriculture, business, 
etc. as machine learning applications [7]. Machine learning is a subfield of artificial intelligence that 
enables computers to understand existing data and estimate the existence of unidentified targets. 
Seed quality is influential in crop production. Seed classification is important for both producers and 
marketers to provide the values of sustainable agricultural systems.  By applying predictive analysis 
to agricultural data, significant decisions can be taken and classifications can be made.  

Besides the classification model conducting explainability and interpretability of the classification 
model provide the professionals with insights into how the classifications are made, fostering trust 
in the model's decisions [8]. The explainable machine learning model impacts professionals more 
likely to trust and adopt understand and interpret the reasoning behind the model's 
recommendations by solving the black box nature of the algorithms. To handle this problem, several 
studies have been conducted to detect the quality of dry beans using various machine-learning 
techniques. For example, [4][5][6][7] conducted on dry bean classifications. The previous research 
on dry bean classification has largely neglected the crucial aspect of explainability and 
interpretability in their models. Instead, researchers predominantly focused on employing various 
algorithms without addressing the black box nature inherent in these methods. Classic machine 
learning approaches were commonly utilized, often with default parameter settings, despite evidence 
suggesting that optimizing these parameters could enhance classification performance [9]. 
Additionally, while some studies attempted to tackle class imbalance issues, they typically employed 
simplistic oversampling methods, which could lead to the generation of redundant data. Advanced 
techniques for addressing class imbalance were rarely explored. Furthermore, previous research 
overlooked feature selection methods, which could potentially improve model efficiency and 
interpretability. The absence of studies utilizing explainable techniques to handle black-box models, 
as well as the scarcity of research employing soft voting classifiers and tuned parameters, 
underscored the need for this study. Motivated by these gaps, this study endeavors to develop an 
explainable and interpretable classification model for dry beans. It seeks to utilize soft voting 
classifiers, a technique not extensively explored in previous research, and compare its performance 
with individual machine learning algorithms. By incorporating explainable and interpretable 
methods, this study aims to classify dry beans accurately while providing insights into the decision-
making process, thus facilitating evidence-based policies and interventions in the selection of 
appropriate dry bean classes. 

2. Related works 

Several studies such as [4] [5][6] and [7], investigated the dry bean classifications using machine 
learning algorithms. However, most of the previous researchers didn’t consider the explainability 
and the interpretability of the dry beans’ classification model, most of these previous studies 
developed a classification model by handling the class imbalance problem on the whole data and 
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developing the classification model without tuning relevant parameters. These studies did not 
conduct any feature selection methods, they developed the classification model by using all the 
features in the dataset. M. Koklu and I. A. Ozkan [4] develop multi-class dry bean classifiers using 
MLP, SVM, kNN, and DT, classification models. The overall correct classification rates have been 
determined as 91.73%, 93.13%, 87.92%, and 92.52% for MLP, SVM, kNN, and DT, respectively. The 
SVM classification model has the highest performance with the accuracy of the Barbunya, Bombay, 
Cali, Dermason, Horoz, Seker, and Sira bean varieties 92.36%, 100.00%, 95.03%, 94.36%, 94.92%, 94.67%, 
and 86.84%, respectively. However, this researcher didn’t consider the explainability and the 
interpretability of the dry beans’ classification model.  G. Słowiński [5] tried to classify dry beans 
using machine learning techniques: Multinomial Bayes, Support Vector Machines, Decision Trees, 
Random Forests, and Voting Classifier. The overall accuracies obtained were in the range: of 88.35 - 
93.61%. However, this researcher didn’t consider the explainability and the interpretability of the dry 
beans’ classification model. M. Salauddin Khan et al [7] aimed to construct a multiclass dry bean 
classification model using the eight most popular classifiers and compare their performances. The 
algorithms they used, were LR, NB, KNN, DT, RF, XGB, SVM, and MLP with balanced and imbalanced 
classes. The XGB classifier performed better than other classifiers with the balanced and imbalanced 
dataset of dry beans within each class. It performed an accuracy of 93.0% and 95.4% in imbalanced 
and balanced classes respectively. The overall performance is better than the previous studies, 
however, the researchers didn’t consider the explainability and the interpretability of the dry beans’ 
classification model. The researcher develops the model without tuning the parameters and 
developing the model without those parameters faces overfitting. Not only this but also, the 
researcher handles the class imbalance problems on the whole dataset before splitting it, and 
evaluating the model using those fabricated datasets. 

3. Materials and Methods 

3.1. Data collection methods 

To conduct this study, we have used the publicly available dataset in the Kaggle repository. The 
extracted datasets consist of a total of 13,611 grains of 7 different registered dry beans with a total of 
17 features including the class level (see table 1 here below for the dataset descriptions) 
 
Table 1. Dataset descriptions 

No Feature Type Description 
1 Area Integer The area of a bean zone and the number of pixels within its boundaries 
2 Perimeter float Bean circumference is defined as the length of its border 
3 Major axis 

length 
float  The distance between the ends of a dry bean can be drawn from a bean the longest 

line that 
4 Minor axis 

length 
float The longest line that can be drawn from the bean while standing perpendicular to 

the main axis 
5 Aspect ratio float Defines the relationship between L and l 
6 Eccentricity Real The eccentricity of the ellipse having the same moments as the region 
7 Convex area Integer Number of pixels in the smallest convex polygon that can contain the area of a 

bean seed 
8 Equivalent 

diameter 
float The seed area diameter of a circle is the same area as a bean 

9 Extent float The ratio of the pixels in the bounding box to the bean area 
10 Solidity float The ratio of the pixels in the convex shell to those found in beans 
11 Roundness float Calculated with the following formula 
12 Compactness float Measures the roundness of an object 
13 ShapeFactor1 float Shape factor 1 
14 ShapeFactor2 float Shape factor 2 
15 ShapeFactor3 float Shape factor 3 
16 ShapeFactor4 float Shape factor 4 
17 Class Nominal Target class of the dry bean 
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3.2. Data preprocessing methods 

Data preparation involves data selection, data cleaning, data integration, feature selection, handling 
imbalances, and data transformation to make it available to extract value from those data [10][11]. 
In this subsection, we have detected the missing values, removed redundancies, detected outliers, 
and handled class imbalance problems from the dataset using statistical methods 

3.2.1. Data cleaning 

This is a way of removing noise, inconsistencies, redundancy, and missing values to carefully develop 
the model. Without cleaning the collected data, we can’t get an accurate result [12][13]. In the 
dataset, there are no missing values, though we have not applied any methods to handle the missing 
values. From the data, we have removed 68 redundant records using drop redundant methods. Most 
of the variables have a higher proportion of outliers including Area, Perimeter, Minor Axis Length, 
Eccentricity, Convex Area, EquivDiameter, and ShapeFactor4. To handle this outlier, we have used 
interquartile range and boxplot methods. 

3.2.2. Data transformation 

Where data are transformed and consolidated into forms appropriate for extracting by performing 
summary or aggregation operations. The data are transformed into forms appropriate for mining 
[14][15]. In these datasets, only the class level needs to be transformed for mining purposes, but all 
the remaining features don’t need to transform and we have used it as it is. To transform the class 
level, we have used the level encoding methods and encoded them into numeric values. We have 
encoded as ‘DERMASON’ = 0, ’SIRA’ = 1, ’SEKER’ = 2, ’HOROZ’ = 3, ’CALI’ = 4, ’BARBUNYA’ = 5, 
and ’BOMBAY’ = 6.  

3.2.3. Feature selection 

In this method, we have checked the importance of all the features by using information gain, (see 
Fig 1 here below), from the 16 features the last three, features (ShapeFactor4, Solidity, and Extent) 
were the least important, but it is not mean that they are not valuable for the model. We have checked 
the multicollinearity of the feature using the variance inflation factor, and the variance inflation 
factor shows that all of the features were significant to the model. Due to this, we have not dropped 
them for their usefulness and we used all of the 16 features for developing the classification model. 

 

Fig. 1. Feature importance 

3.2.4.  Handling class imbalance 

By nature, the class level of the collected data is imbalanced see Figure 2 here below. To overcome 
the imbalanced class distributions problem, we can add samples to or remove samples from the data 
set [16]. Sampling can be achieved in two ways, Under-sampling, randomly removing the majority 
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class, oversampling the minority class, or by combining over and under-sampling techniques 
[16][17]. The extracted dataset class level has 7 values, from these values, some of them have the 
least values see Figure 2 here below. In the class distribution, the “BOMBAY” class has the least value 
when we compare it with other classes. To conduct this research, we used the synthetic minority 
over-sampling technique (SMOTE) + Tomek methods to handle the class imbalance of the class levels 
of the dataset. The main reason that we use SMOTE + Tomek is, it avoids the loss of valuable 
information [16][17]. In SMOTE + Tomek, the SMOTE combines the SMOTE ability to generate 
synthetic data for the minority class and the Tomek ability to remove the data that are identified as 
Tomek links from the majority class [18][19]. 

 

Fig. 2. Class imbalance 

3.3. Train test split 

In model building, the researcher needs to develop datasets for training and testing to learn and 
evaluate the machine appropriately [20][21]. To conduct this study, we used the stratified splitting 
technique to split the whole dataset to train and test data and split the dataset into 80:20 train test 
ratios. 

3.4.  Parameter tuning 

In the process of machine learning and deep learning algorithms, the performance of the algorithm 
highly depends on the selection of hyperparameters, which has always been a crucial step in the 
process of machine learning [22][23][24]. To improve the performance rate for each algorithm a 
collection of hyperparameters has been tuned using grid search methods. Gird search is commonly 
used as an approach to hyper-parameter tuning that will methodologically build and evaluate a 
model for each combination of algorithm parameters specified in a grid [24]. Here, we used the grid-
search with GridSearchCV for selecting tuning parameters for a homogeneous ensemble machine 
learning algorithm.  

Table 2.   Tuned parameters 

No  
Algorithms  

Parameters  

1  Soft voting 
classifier  

 Default parameters 

2 LGBM 
classifier 

Default parameters 

3 Random 
Forest 

criterion='entropy’,max_features='sqrt',min_samples_split=3,n_estimators=500,rando
m_state=0,max_depth=20, max_leaf_nodes=400, n_jobs=-1 

4 Cat boost  random_state=42, learning_rate=0.1, l2_leaf_reg=4, iterations=600, depth= 6  

5 xgboost 
 

random_state=42, verbosity=0, min_child_weight=2, max_depth=4, 
learning_rate=0.15, gamma=0.22, colsample_bytree=0.5 

6 Decision tree max_depth=20, criterion='gini',max_features='sqrt',splitter='best', max_leaf_nodes=100 
,min_samples_split=3 
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3.5. Classification model 

In this study, to construct a dry bean classification model we have used a soft voting classifier in 
both the balanced and the unbalanced dataset. To compare that the soft voting classifier can perform 
better than other machine learning algorithms, another model was developed using decision tree 
algorithms and other ensemble learning classifiers namely random forest, catboost XGBoost, and 
LGBM classifiers. To improve each algorithm's performance rate, a collection of hyperparameters 
has been tuned using grid search methods. The performance of each classification model was 
evaluated using accuracy, precision, recall, and F1- score. 

3.6. Model explainability 

To enhance the explainability of the classification model, we have employed various feature 
relevance explanation techniques like Local Interpretable Model-agnostic Explanations (LIME) and 
Shapley Additive Explanation (SHAP) to highlight the most influential features and regions in the 
input data, and to explain the quality of the inner functioning of deep learning models and decisions 
by calculating the influence of each input variable and producing relevant scores. Global 
interpretability techniques, such as feature importance analysis or rule extraction, are employed to 
reveal the underlying patterns and decision rules learned by the model [8].  

4. Result and discussion 

Experiments have been carried out to develop a dry bean classification model by using a soft voting 
classifier and comparing it with other classic and ensemble machine learning algorithms. To 
construct a classification model for dry beans, we conducted two experiments on the imbalance data 
and the balanced data using a soft voting classifier, RF, cat boost, XGB, LGBM, and DT. Each 
experiment was conducted using 16 features and by using all the tuned parameters using grid search 
(see Table 2). This experiment is multiclass classification because the dataset by nature has seven 
class levels. In these experiments, we evaluated all the classification models using accuracy, 
precision, recall, and f1_score evaluation metrics. Finally, we have explained the model using LIME 
and SHAP feature relevancy explanation techniques. 
 

Experiment# 1: Imbalanced dataset 
 

This experiment was conducted by using the imbalanced dataset or without applying any data 
imbalance handling methods. We have developed the model by using DT, RF, Catboost, XGB, LGBM, 
and a soft voting classifier. We have also evaluated those models’ using accuracy, precision, recall, 
and f1_score (see Table 3 here below) 

Table 3. Model performance using the imbalanced dataset 

Algorithms                                            Metrics 
 Accuracy Precision Recall F1_score 
Decision tree 0.910668 0.920002 0.920301 0.920069 
Random forest 0.923588 0.936018 0.933484 0.934621 
Cat boost 0.927649 0.939536 0.939268 0.938353 
XGBoost 0.928756   0.940888   0.938008   0.939343 
LGBM classifier 0.92285    0.936619   0.935014   0.935765 
Soft voting classier (LGBM, 

cat boost, XGB, RF, DT)  
0.92691 0.940701 0.93913 0.939856 

Soft voting classier (cat boost, 
XGB) 

0.927649 0.939835 0.93874 0.93922 

Soft voting classier (LGBM, 
cat boost)  

0.925065 0.93902 0.936754 0.937815 

Soft voting classier (RF, DT) 0.90993 0.920326 0.919321 0.919589 
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As we see from Table 3 above, the XGBoost algorithm outperforms the best result with accuracy 
precision, and f1_score of 0.928756%, 0.940888%, and 0.938008% respectively. But in the case of recall 
cat boost algorithm performs the best with 0.939268%.  When we see the soft voting classifiers, the 
soft voting of the algorithms LGBM, cat boost, XGB, RF, and DT performs better than the soft voting 
with other algorithms.  In the soft voting algorithms, the voting that contains cat boost and XGBoost 
algorithm performs a better result. 

 
Experiment# 2: balanced dataset 
 

This experiment is conducted by balancing the dataset using SOMTE + Tomek methods on the 
training set only and developing the model using DT, RF, Catboost, XGB, LGBM, and soft voting 
classifiers. We have also evaluated those models’ using accuracy, precision, recall, and f1_score (see 
Table 4 below).   
 

Table 4. Model performance using the balanced dataset 

Algorithms                                                Metrics 
   Accuracy  Precision  Recall  F1_score  
Decision tree 0.921004 0.932629 0.933324 0.932835 
Random forest 0.921004 0.932629 0.933324 0.932835 
Cat boost 0.925434 0.9367 0.938996 0.937794 

XGBoost 0.925065 0.936134 0.93809 0.937017 
LGBM classifier 0.924695 0.937783 0.937861 0.937776 
Soft voting classier (LGBM, cat boost, XGB, RF, 

DT)  
0.926541 0.936982 0.938738 0.937805 

Soft voting classier (cat boost, XGB) 0.925065 0.936067 0. 93803 0.93695 
Soft voting classier (LGBM, cat boost)   0.926541  0.938991  0.940395 0.939642 
Soft voting classier (RF, DT)  0.906238  0.916778    0.919568  0.917991 

  
Finally, in this experiment developing the model by handling the imbalance problem is not always a 
good solution to get a better performance. 

4.1. Model comparison 

As a result, the researcher compared the performance of algorithms to classify the dry bean using a 
soft voting classifier and other classic and ensemble machine learning algorithms using both 
imbalanced and balanced datasets. The dataset has seven classes. Then, the researcher used overall 
accuracy, precision, recall, and f1_score as an evaluation for classification model comparison. 
According to the overall performance, the classification algorithm that registered the highest 
performance is selected as the best algorithm for the classification model for the dry bean. As 
indicated in Table 3 and Table 4 above, the experiments are conducted on classification algorithms 
for classifying the dry bean. The XGB algorithms registered the highest accuracy of 92.8756% in the 
imbalanced dataset and the soft voting classifiers of the algorithm LGBM, cat boost, XGB, RF, and 
DT performed an accuracy of 92.6541% using the imbalanced datasets. The soft voting classifiers of 
LGBM, XGB, Cat boost, RF, and DT perform the best result next to XGBoost algorithms with overall 
accuracy, precision, recall, and f1_score of 92.691%, 94.0701%, 93.913%, and 93.986% respectively. The 
decision tree algorithm is registered with the lowest performance in both the imbalanced and the 
balanced datasets, see Table 3 and Table 4. Therefore, the XGBoost algorithm is selected as the best 
classifier as compared to other classic and ensemble machine learning algorithms, and the soft voting 
classifiers of LGBM, XGB, Cat boost, RF, and DT are selected as the best classifier where we compared 
with other voting classifiers. 

4.2. Model explainability 

To enhance the explainability of the classification model, we have employed various techniques. We 
have explained and interpreted the classification model developed with each algorithm to make the 
trust of how it achieves the result. The explainable AI approach with LIME and SHAP frameworks 
is implemented to understand how the model predicts the final results. To explain the model, we 
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have randomly selected the rows 100, 150, 200, 250, and 300 in the dataset. But this row was selected 
randomly and we can select any other rows in the dataset. 

           
 

            

Fig. 3. Model Explanation with LIME for row 100         
Fig.5. Model Explanation with LIME for row 150 

                         

               

 
Fig. 4. Model Explanation with LIME for row 200        Fig.6.  Model Explanation with LIME for row 
250 

 

 

    Fig. 7. Model Explanation with LIME for row 300 

The figures 3, 4, 5, 6, and 7 above depict interpretations of an XGBoost model using the LIME 
explainable AI method for classifying specific types of dry beans. In each case, the model achieves 
100% accuracy in classifying the beans into their respective classes. Here are the key findings from 
each interpretation: 
Class 'BOMBAY' (Figure 3): The model identifies dry beans as 'BOMBAY' based on specific features 
such as perimeter, shape factors, minor axis length, convex area, and area. For instance, the beans 
are classified as 'BOMBAY' when perimeter > 0.83, ShapeFactor1 <= 0.78, MinorAxisLength > 0.91, 
Convex Area > 0.94, and Area > 0.94. 
Class 'SEKER' (Figure 4): The model correctly classifies dry beans as 'SEKER' by considering features 
like shape factors, minor axis length, and compactness. For instance, beans are categorized as 'SEKER' 
when ShapeFactor4 > 0.33, ShapeFactor1 < -0.15, MinorAxisLength < -0.24, ShapeFactor3 > 0.45, and 
Compactness > 0.44. 
Class 'HOROZ' (Figure 5): Dry beans are accurately classified as 'HOROZ' based on features such as 
roundness, perimeter, convex area, equivalent diameter, and area. For example, beans are classified 
as 'HOROZ' when roundness <= -0.82, Perimeter > 0.24 & <= 0.83, ConvexArea > -0.21 & <= 0.19, 
EquivDiameter > -0.23 & <= 0.19, and Area > -0.21 & <= 0.20. 
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Class 'SIRA' (Figure 6): The model identifies dry beans as 'SIRA' considering attributes like perimeter, 
roundness, minor axis length, shape factors, and shape factor 3. For instance, beans are classified as 
'SIRA' when Perimeter > 0.24 & <= 0.83, roundness > -0.22 & <= -0.12, MinorAxisLength > -0.24 & 
<= 0.09, ShapeFactor1 > -0.15 & <= -0.08, and ShapeFactor3 > -0.65 & <= -0.64. 
Class 'BARBUNYA' (Figure 7): Dry beans are correctly classified as 'BARBUNYA' based on features 
like roundness, perimeter, minor axis length, shape factor 1, and convex area. For example, beans are 
categorized as 'BARBUNYA' when roundness <= -0.82, Perimeter > 0.83, MinorAxisLength > 0.91, 
ShapeFactor1 <= -0.78, and ConvexArea > 0.94. 
These interpretations provide insights into how the model makes its predictions, highlighting the 
specific features that are influential in classifying different types of dry beans. 
Figures 8, 9, 10, 11, and 12 below show the decisions generated by the XGBoost model for the 
randomly selected rows of 100, 150, 200, 250, and 300 respectively. Based on the decisions generated 
by the XGBoost model, the class value for rows 100, 150, 200, 250, and 300 is 6, 2, 3, 1, and 5 
respectively.  to check the name of the class, see section 3.2.2.  
 
 

 
 

 
Fig.8. Decisions for row 100 

 

 
Fig. 9. Decisions for row 150 
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Fig. 10.  Decisions for row 200 

 
 

 
Fig. 11.  Decisions for row 250 
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Fig. 12. Decisions for row 300  
 
The figure 13 below shows the importance of each feature for each class in constructing the 
classification model. Based on the result above we have decided that XGBoost is the best 
classification model to classify the dry beans. So, we have explained the XGBoost model using SHAP 
explainable AI methods that explain the model using the feature relevancy in the model. As we see 
here below the figure shows the feature importance of each feature for each class.  

 
Fig. 13. Explainable AI with SHAP 
 

5. Conclusion and Recommendation 

Dry beans belong to the diverse Fabaceae family, sometimes referred to as Leguminosae, and they 
are the most important and the most produced pulse in the world. It is originally from America, 
while there is a wide genetic diversity in the world since, in the 15th and 16th centuries, they were 
transported to Europe and Africa and quickly spread to the rest of the globe. There are numerous 
genetic diversities of dry beans, and it is the most produced one among the edible legume crops in 
the world. According to the Turkish Standards Institution, dry beans are classified as Barbunya, 
Battal, Bombay, Calı, Dermason, Horoz, Tombul, Selanik, and Seker” based on their botanical 
characteristics. This study aimed to develop an explainable and interpretable classification model for 
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dry beans using a soft voting classifier and compare the performance with other classic and ensemble 
machine learning algorithms. The data source for this research is publicly available datasets on 
Kaggle. After applying the data preprocessing task, out of 13611 instances with 16 features and one 
class level, 13543 instances with 16 features were used for developing the classification model, and 
after handling class imbalance using SMOTE + Tomek, 7655 instances were used for the model. We 
checked the multicollinearity of each feature using variance inflation factors to check the 
significance of each feature, and we concluded that all the features were significant. The proposed 
model was constructed using soft voting classifiers, decision trees, random forests, extreme gradient 
boosting, cat boost, and LGBM algorithms using the balanced and unbalanced dataset. To conduct 
this study, we have done a total of twelve experiments. The performances of the models are evaluated 
using accuracy, precision, recall, and f1_score evaluation metrics. We have also explained the 
classification model using LIME and SHAP feature relevancy explanation techniques, to enhance the 
explainability and interpretability of the classification model by solving the black-box nature of the 
algorithms. In this study, the best classification model is identified using the accuracy of the 
developed classification model. Then, XGBoost is selected as the best algorithm that classifies the 
dry bean using the balanced dataset with 92.5065% accuracy. At the end of this conclusion, the 
researcher recommended that other researchers do: A dry bean classification model by including 
additional features of the dry bean like 3D features or the suture axis of the bean. The future 
researcher can also conduct a dry bean classification model using any other advanced algorithms to 
improve the performances and develop a mobile application. 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools. 
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