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Abstract
Fairness and explainability are important issues that must be addressed in multi-agent reinforcement learning
(MARL) systems. In this study, we propose a novel approach that directly incorporates fairness constraints and
layer-wise relevance propagation (LRP) into multi-agent training. Through the proposed method, explainability
and fairness can be addressed simultaneously, improving the interpretability of agent’s decisions and guaranteeing
that agents are assigned tasks equitably. We evaluate the performance of the proposed method based on a resource
allocation problem. The results show average fairness and explainability ratings of 0.921 and 0.931, respectively.
Preliminary results show that this strategy greatly enhances system fairness and explainability while maintaining
a competitive average system reward. Furthermore, by encouraging efficient resource use, the proposed method
advances the principles of green artificial intelligence.
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1. Introduction

The rapid advancement of artificial intelligence (AI) and, in particular, of machine learning (ML) has
transformed numerous sectors. Given the tremendous impact these technologies have on decision-
making processes, the concepts of fairness and explainability in AI have become a necessity. AI systems
have been shown to have biases [1, 2], that may be in many shapes and forms. To avoid their negative
impact, AI systems should aim toward fairness, i.e. the absence of any prejudice or favoritism toward an
individual or group based on their inherent or acquired characteristics [3]. This is especially significant
in multi-agent systems, as one agent’s decisions have direct consequences for others in the same
environment. Several studies have focused on fairness in machine learning algorithms (see [3, 4]).

On the other hand, the explainability of AI systems is another important research issue [5]. Explainable
AI (XAI) systems seek to provide humans with clear and transparent explanations for their actions,
which is essential for trusting and interacting with AI. Furthermore, by encouraging efficient resource
use, these methods advance the principles of green artificial intelligence.

Multi-agent reinforcement learning (MARL) is a powerful way to deal with complex and dynamic
environments where multiple agents interact and learn simultaneously. MARL can be used to generate
through continuous learning and adaptation. The underlying interactions and dependencies among
the agents, make it difficult to achieve both fairness and explainability simultaneously. The literature
extensively addresses both fairness [6] and explainability [7]; however, there is low emphasis on
satisfying both features at the same time. Different frameworks could be utilized to address fairness in
multi-agent systems, including Individual Fairness that ensures similar agents are treated similarly and
Group Fairness that seeks comparable results for various demographic groupings [8].
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Green AI highlights the need for AI systems that are not only powerful but also sustainable in terms
of the environment. As an example, lets consider the following multi-agent reinforcement learning
framework:

Example 1. Think of a MARL system where 𝑁 agents cooperate to accomplish 𝑀 activities in a shared
environment. The capability level 𝑐𝑖 of each agent 𝑖 ∈ {1, . . . , 𝑁} indicates its task-performance ca-
pacity (e.g., hardware availability). The difficulty level 𝑑𝑗 determines the characteristics of each task
𝑗 ∈ {1, . . . ,𝑀}. The task complexity and agent capacity match to determine the agent’s reward for
completing a task. Each agent aims to choose tasks that maximize its predicted cumulative reward, 𝐽𝑖(𝜋𝑖).

Agents are encouraged to choose tasks that are in line with their capabilities, which promotes effective
resource utilization. This is achieved by using the match between the agent’s capability and the task’s
difficulty as a metric for a given reward. The conventional objective is to maximize the total cumulative
rewards

∑︀𝑁
𝑖=1 𝐽𝑖(𝜋𝑖). Unlike the traditional methods, we propose to add fairness constraints to ensure

equitable (individual) reward distribution among agents and explainability constraints that guarantee
transparent decision-making processes.

This fair allocation of rewards among agents, independent of their innate capabilities, contributes
to preventing disadvantages for agents with lower capabilities. This is significant because many
stakeholders, geographical areas, or systems with differing resources and technological capabilities may
be represented by these agents. Let’s consider “World Community Grid” in our Example 1 as a sizable
distributed computer network for scientific research. The agents stand in for individual computers or
small clusters that have been donated by various global players. These systems’ computing power and
energy efficiency are reflected in their capability levels. If there was no fairness restriction, the system
might constantly assign the hardest jobs to the agents with the highest capabilities, which would result
in high energy usage and participation barriers. It should be emphasized that the major idea behind this
study is to integrate fairness and explainability into MARL. Depending on the application, the fairness
constraint may be defined differently.

On the other hand, understanding why certain decisions are made can lead to insights for improving
the system, potentially identifying more efficient allocation strategies. By combining fairness and
explainability, one can help to design more sustainable, efficient, and trustworthy AI systems that
adhere closely to the ideals of Green AI.

In this study, we address individual fairness in the context of algorithmic fairness, meaning similar
agents should receive similar treatment [3]. We use the concept of explainable guided learning (EGL) [9]
and apply it to multi-agent reinforcement learning. We integrate fairness and explainability constraints
directly into the learning process. We utilize layer-wise relevance propagation (LRP) to evaluate the
explainability of agents’ decisions and incorporate a fairness-driven reward adjustment mechanism to
maintain equity among agents.

The structure of this paper is as follows: In Section 2, we briefly address the most recent related works
and the preliminary. Section 3 outlines the problem statement, objective function, and proposed method.
Section 4 presents the experimental setup and results, demonstrating the efficacy of the proposed
algorithm. Finally, Section 5 concludes the paper, discussing the limits and future research direction.

2. Literature Review

Cimpean et al. [10] propose a universal framework for the establishment of fairness in RL agents,
targeting fairness. Their methodology formulates the fairness as a sequential problem through Markov
decision process (MDP), incorporating historical data on states, actions, rewards, and feedback. Pozanco
and Borrajo [11] extend fairness considerations to cooperative multi-agent planning, known as MAP,
with a focus on fair distribution of goals among the agents. They come up with two approaches:
first, a fairness-driven optimization method for preprocessing the goals that have to be assigned to
the agents, and second, a planning-based compilation to solve the assignment of goals and planning
together. Fairness in RL through reward shaping has been explored by Jabbari et al. [12]. They use



a mechanism to adjust rewards to achieve fair outcomes. Weng et al. [13, 14] discuss fairness in
RL by developing policies that account for multiple fairness constraints simultaneously. Chen et al.
[15] bring fairness to actor-critic RL by putting forward modifications to the learning algorithm that
ensure fair outcomes. Rodriguez-Soto et al. [16] study ethical behavior in multi-agent systems through
multi-objective reinforcement learning.

Explainability in AI is critical for understanding decision-making processes. Traditional approaches
often focus on post-hoc explanations, where the decisions of pre-trained models are interpreted. How-
ever, such methods come short in dynamic interactions where interpretable and transparent decisions
must be made in a continuous fashion. Current research efforts, like LRP [17], try to decompose
neural network decisions back to input features, hence making them more transparent. Most existing
approaches, however, do not make explainability an integral part of the learning process and might
therefore not be applicable in real-time decision scenarios. In a comprehensive survey, Milani et al. [7]
categorize explainable reinforcement learning (XRL) techniques at a high level into three categories:
Feature Importance, Markov decision process (MDP), and Policy-Level. They stress the importance of ex-
plainability in RL and discuss the recent techniques, including SHAP and LIME, to provide feature-level
explanations and discuss various challenges.

In short, the existing methods mainly focus on fairness and explainability as independent issues.
Therefore, we propose a single framework that could handle both in multi-agent systems simultaneously.
Continuing, we provide some preliminary definitions:

• Agent: A multi-agent system entity that learns and makes decisions according to its environment
and follows policy. An agent 𝑖 can be represented by a tuple ⟨𝑆𝑖, 𝐴𝑖, 𝜋𝑖, 𝑅𝑖⟩ where 𝑆𝑖 is the set
of states, 𝐴𝑖 is the set of actions the agent can take, 𝜋𝑖 : 𝑆𝑖 → 𝐴𝑖 is the policy that maps states to
actions, and 𝑅𝑖 : 𝑆𝑖 ×𝐴𝑖 → R is the reward function that provides feedback to the agent based
on its actions in a given state.

• Environment: The environment or context within which agents act and interact. It is typically
modeled by a Markov decision process (MDP) defined by a tuple ⟨𝑆,𝐴, 𝑃,𝑅⟩ where 𝑆 is the set
of all possible states of the environment, 𝐴 is the set of all possible actions that agents can take,
𝑃 : 𝑆 ×𝐴× 𝑆 → [0, 1] is the state transition probability function, where 𝑃 (𝑠′|𝑠, 𝑎) denotes the
probability of transitioning to state 𝑠′ from state 𝑠 after taking action 𝑎, and 𝑅 : 𝑆 ×𝐴→ R is
the reward function that assigns a reward based on the current state and action taken.

• Fairness: A measure ensuring that no agent is unjustly disadvantaged or advantaged in terms
of the rewards obtained. Fairness can be measured through many metrics, such as equality
of opportunity and demographic parity (e.g., race, gender). It should be noted that different
frameworks exist for fairness in multi-agent systems, while we focus on individual fairness.

• Explainability: The explanation capacity of the model for the agent’s decisions. Explainability is
achievable through techniques that describe the process of the decision itself, like counterfactuals
or feature attribution methods.

3. System Model

We consider a set of 𝑁 agents interacting within a common environment. Each agent 𝑖, where 𝑖 ∈ [1..𝑁 ],
acts according to a policy 𝜋𝑖 that specifies its actions as a function of observed states of the environment.
The goal is to maximize the collective reward function while maximizing the agents’ overall performance
under fairness and explainability constraints. The problem is defined as follows:

max
𝜋1,𝜋2,...,𝜋𝑁

𝑁∑︁
𝑖=1

𝐽𝑖(𝜋𝑖),

subject to: 𝐹 (𝐽1, 𝐽2, . . . , 𝐽𝑁 ) ≥ 𝛿, 𝐸(𝜋𝑖) ≥ 𝜖, ∀𝑖, (1)

where 𝐽𝑖(𝜋𝑖) is the expected cumulative reward (objective function) of agent 𝑖, 𝐹 measures the fairness
across the agents, 𝛿 is the threshold of fairness, 𝐸 measures the explainability of the decisions, and 𝜖 is



the minimal level of explainability. The fairness constraint requires the equal treatment of all agents
in terms of the rewards they receive for their actions. The explainability for the actions performed by
agents is obtained by using the Layer-wise Relevance Propagation (LRP) method [17]. Intuitively, this
method decomposes the output decision back to the input layer, providing the contribution of every
input feature to the decision. Given a neural network function 𝑔 and an input 𝑥, LRP seeks to assign a
relevance score 𝑅𝑒𝑗 to each input feature 𝑥𝑗 such that 𝑔(𝑥) =

∑︀
𝑗 𝑅𝑒𝑗 , where 𝑅𝑒𝑗 is the relevancy of

feature 𝑥𝑗 with respect to the network output.

3.1. Proposed Algorithm

The proposed method is presented in Algorithm 1. We first initialize the network parameters 𝜃𝑖 for
each agent 𝑖, the learning rate 𝛼1, and set threshold values for fairness and explainability (line 1). We
use a softmax exploration strategy 2 to select actions as presented in Equation (2):

𝜋𝑖(𝑎𝑖|𝑠𝑖; 𝜃𝑖) =
exp(𝑄𝑖(𝑠𝑖, 𝑎𝑖; 𝜃𝑖))∑︀

𝑎′∈𝐴𝑖
exp(𝑄𝑖(𝑠𝑖, 𝑎′; 𝜃𝑖))

(2)

where 𝑄𝑖(𝑠𝑖, 𝑎𝑖; 𝜃𝑖) is the estimated reward for action 𝑎𝑖 in state 𝑠𝑖. We update the policy parameters
according to the rule given in Equation (3):

𝜃𝑖 ← 𝜃𝑖 + 𝛼(𝑡) · 𝑟𝑖 (3)

where 𝛼(𝑡) is the learning rate and 𝑟𝑖 is the immediate reward. It should be noted that calculating 𝐽𝑖(𝜋𝑖)
requires considering the entire sequence of states, actions, and rewards, which can be computationally
expensive and impractical for frequent updates. Therefore, in Algorithm 1, we use 𝑟𝑖 as the immediate
reward for each agent. To evaluate fairness, we consider Jain’s fairness metric [18] as defined in the
Equation (4):

𝐹 (𝐽1, 𝐽2, . . . , 𝐽𝑁 ) =
(
∑︀𝑁

𝑖=1 𝐽𝑖(𝜋𝑖))
2

𝑁
∑︀𝑁

𝑖=1 𝐽𝑖(𝜋𝑖)
2

(4)

A score close to 1 indicates high fairness, meaning all agents are receiving rewards that are close to
the average. In Algorithm 1 (lines 14–16), we check to make sure that the fairness is above the given
threshold. In cases where the fairness is lower than the threshold, we perform the “Adjust” mechanism
to ensure equitable reward distribution among agents. As a sample for “Adjust” mechanism, lets consider
the code that we implemented in our experiment as given in Appendix.

To evaluate the explainability, we use the layer-wise relevance propagation (LRP) scores 𝑅𝑒𝑖,𝑗 . The
relevance metric is defined in Equation (5):

𝑅𝑒𝑖,𝑗 =
|𝑄𝑖(𝑠𝑖, 𝑎𝑗 ; 𝜃𝑖)|∑︀
𝑘 |𝑄𝑖(𝑠𝑖, 𝑎𝑘; 𝜃𝑖)|

(5)

where 𝑄𝑖(𝑠𝑖, 𝑎𝑗 ; 𝜃𝑖) is the Q-value for agent 𝑖 taking action 𝑎𝑗 in its current state 𝑠𝑖, and the summation
in the denominator is over all possible actions 𝑘 for agent 𝑖 in state 𝑠𝑖. We assign relevance scores based
on the absolute of Q-values for each action. Actions with higher absolute Q-values are considered more
relevant to the agent’s decision-making process. We consider the Entropy of this relevance (Equation
(6)), where 𝐻(𝑅𝑒𝑖) is the entropy of the relevance scores for agent 𝑖. Entropy is a quantitative indicator
of relevance scores that makes comparing explainability amongst agents simple.

𝐻(𝑅𝑒𝑖) = −
∑︁
𝑗

𝑅𝑒𝑖,𝑗 log2(𝑅𝑒𝑖,𝑗) (6)

1In our experiment, we use a constant value for the learning rate.
2We use a softmax strategy, however other strategies such as 𝜖-greedy could also be considered.



The explainablity metric 𝐸(𝜋𝑖) is defined in Equation (7), where 𝑑 is the number of features or inputs
considered by the model. A higher value (close to 1) indicates that behaviors are more explainable.

𝐸(𝜋𝑖) = 1− 𝐻(𝑅𝑒𝑖)

log2(𝑑)
(7)

In Algorithm 1, we compare the explainablity with the predefined threshold (lines 19-21). In case that
the 𝐸(𝜋𝑖) is less than the given threshold, we perform “Explainability boost”, and prioritize the activities
of the most relevant agents. A simple code for this part as implemented in our experiment is given in
the appendix.

Algorithm 1 Proposed Algorithm for Multi-Agent Systems

1: Initialize: 𝜃𝑖, 𝛼, 𝜖, 𝛿
2: while not converged do
3: for each agent 𝑖 = 1 to 𝑁 do
4: for each task 𝑗 = 1 to 𝑀 do
5: Calculate 𝑄𝑖(𝑠𝑗 , 𝑎; 𝜃𝑖) for all 𝑎 ∈ 𝐴𝑖

6: Calculate 𝜋𝑖(𝑎|𝑠𝑗 ; 𝜃𝑖) using Equation (2)
7: Choose action 𝑎𝑖𝑗 ∼ 𝜋𝑖(𝑎|𝑠𝑗 ; 𝜃𝑖)
8: Execute 𝑎𝑖𝑗 , observe reward 𝑟𝑖𝑗
9: end for

10: Update 𝜃𝑖 using Equation (3)
11: end for
12: Compute 𝐽𝑖(𝜋𝑖) for each agent
13: Compute fairness 𝐹 (𝐽1, 𝐽2, . . . , 𝐽𝑁 ) using Equation (4)
14: if 𝐹 (𝐽1, 𝐽2, . . . , 𝐽𝑁 ) < 𝛿 then
15: Adjust 𝜃𝑖 for best and worst-performing agents
16: end if
17: Compute relevance scores 𝑅𝑒𝑖 using Equation (5)
18: Compute explainability 𝐸(𝜋𝑖) using Equation (7)
19: if 𝐸(𝜋𝑖) < 𝜖 for any 𝑖 then
20: Perform Explainability Boost 𝜃𝑖 for relevant actions
21: end if
22: if periodic reset condition met then
23: Partially reset 𝜃𝑖 to encourage exploration
24: end if
25: if pruning condition met then
26: Prune less relevant connections in 𝜃𝑖
27: end if
28: end while
29: return 𝜃1, 𝜃2, . . . , 𝜃𝑁

In lines 22-24 of Algorithm 1, we perform “partially reset”. We perform this operation in a defined
number of iterations to prevents the agents from converging to suboptimal policies by encouraging
them to explore a wider range of actions. A code is given in the appendix. We also perform “pruning”
(lines 25-27 of Algorithm 1) as a mechanism to enhance the efficiency of the learning process. By
utilizing this mechanism, we remove the less relevant connections in the policy parameters 𝜃𝑖. A sample
code performed in our experiment is given in the appendix.

4. Experiment Results

We evaluate the performance of the proposed algorithm and compare it with a typical RL approach
for our presented Example 1. We consider 𝑁 = 10 agents and 100 tasks, assuming each task has a



difficulty level (we randomly assign a value in the range [1− 10]), and each agent has a capability level
(we assign randomly to each agent a value in the range [1− 5]). This example is a simplified resource
allocation in MARL. In the proposed method, we perform fairness and explainability adjustments, while
the base method algorithm follows a standard reinforcement learning approach without the given
explainablity and fairness constraints. The experiment software is available 3. The parameters used in
this experiment are summarized in Table 1. The results are illustrated in Figure 1 and Table 2.

Figure 1: Comparison of the proposed and base method in terms of fairness, explainability and average reward.

Table 1
Parameters used in the performed experiment

Parameter Value Description
Number of Agents 10 Number of Agents
Number of Tasks 100 Number of Tasks
Task Difficulty Range 1 - 10 Assigned Randomly
Agent Capability Range 1 - 5 Assigned Randomly
Iterations 1000 Number of Iterations
Learning Rate 0.1 (𝛼) (fixed learning rate)
Discount Factor 0.9 (𝛾) (reward calculation)
Fairness Threshold 0.8 The threshold for fairness
Explainability Threshold 0.6 The threshold for explainability

Table 2
Comparison of proposed and base method in terms of average system fairness, explainability and reward.

Metric Proposed Method Base Method
Average System Fairness 0.921 0.206
Average System Explainability 0.931 0.219
Average System Reward 7.726 8.913
Agent 1 Average Reward 6.342 3.346
Agent 2 Average Reward 5.464 2.720
Agent 3 Average Reward 9.193 2.444
Agent 4 Average Reward 8.407 5.792
Agent 5 Average Reward 9.230 64.673
Agent 6 Average Reward 5.256 1.748
Agent 7 Average Reward 7.936 2.487
Agent 8 Average Reward 9.924 2.357
Agent 9 Average Reward 7.778 1.790
Agent 10 Average Reward 7.728 1.777

3https://github.com/ShahbazianR/Fair-XAI-MARL.git



As can be seen in Table 2, the proposed method achieves significantly higher fairness compared to the
base method. This means that the rewards are distributed more equitably among agents. The proposed
method also excels in explainability. This suggests that the decisions made by agents in the proposed
method are more transparent compared to those in typical reinforcement learning. These achievements
comes with a price and the total average reward of the base method is higher. However, this slightly
decrees in the total reward, enables the system to satisfy fairness, and provides better explainablity.

5. Conclusion

This study proposed a new approach for integrating fairness and explainability in multi-agent rein-
forcement learning systems. Our approach increased agent transparency by using LRP and systematic
fairness requirements. The experimental results showed that, while keeping a competitive average
system reward, our proposed method greatly increases both explainability and system fairness, with
average scores of 0.921 and 0.931, respectively. The proposed method is a straightforward illustration of
how explainability and fairness might be combined in multi-agent systems. However, the proposed
algorithm needs to be improved with more dynamic tasks. The efficacy and scalability of proposed
method needs to be verified by experimenting on large and varied datasets. A thorough investigation is
also needed to evaluate the effects of hyperparameters on the algorithm’s performance. As the future
work, we expect that adding more dynamic and complex metrics for fairness and explainability could
improve the system’s equity and transparency. We would investigate the proposed concept in the
practical fields, including healthcare, banking, and self-governing systems.
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Appendix

# Adjust fairness
if fairness_score < fairness_threshold:

max_agent = np.argmax(agent_rewards)
min_agent = np.argmin(agent_rewards)
adjustment = (agent_rewards[max_agent] - agent_rewards[min_agent]) * alpha
policy_params[:, max_agent] -= adjustment
policy_params[:, min_agent] += adjustment

# Explainability boost
for task_id in range(num_tasks):

top_agent = np.argmax(relevance_scores[task_id])
policy_params[task_id] *= 0.5
policy_params[task_id][top_agent] += 0.5

# Periodic Reset
if iteration % 100 == 0:

policy_params = 0.7 * policy_params + 0.3 * np.random.rand(num_tasks, num_agents)



# pruning
if iteration % 50 == 0:

threshold = np.percentile(policy_params, 50)
policy_params[policy_params < threshold] = 0
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