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Abstract
Complex Event Forecasting (CEF) is a process whereby complex events of interest are forecast over a stream of simple events. CEF
facilitates proactive measures by anticipating the occurrence of complex events. This proactive property, makes CEF a crucial task in
many domains; for instance, in maritime situational awareness, forecasting the arrival of vessels at ports allows for better resource
management, and higher operational efficiency. However, our world’s dynamic and evolving conditions necessitate the use of adaptive
methods. For example, maritime vessels adapt their routes based on weather or human-caused factors. CEF systems typically rely
on probabilistic models, trained on historical data. This renders such CEF systems inherently susceptible to data evolutions that can
invalidate their underlying models. To address this problem, we propose RTCEF, a novel framework for Run-Time Adaptation of CEF,
based on a distributed, service-oriented architecture. We evaluate RTCEF on a real-world maritime use-case and our reproducible results
show that our proposed approach has significant benefits in terms of forecasting performance without sacrificing efficiency.
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1. Introduction
Complex Event Forecasting (CEF) is akin to Complex Event
Recognition (CER) [1, 2], but with a forward-looking per-
spective. Both tasks operate on a stream of simple events,
while their output consists of Complex Events (CEs). For
example, in maritime situational awareness [3], the stream
of simple events would contain positional messages of ves-
sels, while the output stream would contain maritime CEs
such as fishing activities. The difference between CER and
CEF is that, in the former, elements of the output stream
refer to CE detections, while in CEF, elements of the output
stream refer to the probability of a CE happening in the
future. Consequently, CER enables reactive responses upon
CE detections, while CEF supports proactive measures by
anticipating future CEs. This proactive property renders
CEF systems highly desirable. CER and CEF applications
span diverse domains, such as maritime situational aware-
ness [4, 5] whereby CEs such as (illegal) fishing or vessel
rendezvous are detected or forecast over a stream of mar-
itime data; credit card fraud management [5, 6] whereby
frauds are detected or forecast over a stream of transaction
data; and so on.

CEF operates over constantly evolving conditions. More-
over, CEF systems rely on probabilistic models trained on
historical data [7, 8, 9]. This renders CEF systems inherently
susceptible to evolutions in the input that can invalidate
their underlying models. Additionally, as with the majority
of trainable models, CEF models have hyperparameters that
require fine tuning for optimal performance. Wayeb [5], a
state-of-the-art CEF engine, is no exception to the above.
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To address the above challenges we propose RTCEF an
open-source framework for Run-Time Adaptation of CEF
over constantly evolving data streams. RTCEF adopts a dis-
tributed architecture comprising targeted services to effec-
tively (a) enable run-time update of CEF models with little
to no downtime, (b) ensure that transition between models
does not cause loss of ongoing forecasts. In other words,
RTCEF supports continuous adaptation to dynamic changes
in the input stream with little to no effect on efficiency. Fur-
thermore, RTCEF provides a trend-based policy which acts
as a decision making mechanism to distinguish whether
hyperparameter optimisation or CEF model retraining with-
out changing hyperparameters is the best way to maintain
accurate forecasts. We evaluate RTCEF on maritime situa-
tional awareness using real-world maritime data, and our
results demonstrate that RTCEF has significant benefits for
CEF over constantly evolving conditions.

The remainder of this paper is organised as follows. In
Section 2 we present the necessary background. Next, in Sec-
tion 3 we introduce offCEFand RTCEF, while in Section 4
we present our experimental setting, and analyse our results.
In Section 5 we mention works related to ours. Finally, in
Section 6, we summarise and discuss future directions.

2. Background
CEF is a task that allows forecasting CEs of interest, such as
fishing activities or vessel rendezvous, over an input stream
of simple events; e.g., timestamped position messages of
maritime vessels. Forecasts involve the occurrence of a
CE in the future accompanied by a degree of certainty [5].
This behaviour is usually derived from stochastic models
that project into the future evolutions of the input that can
cause a detection of a CE. For the task of CEF, we utilise
Wayeb, a CEF engine introduced in [5], which employs
symbolic automata as its computational model. The user
submits a query/pattern to Wayeb which is then compiled
into a symbolic, streaming automaton. This automaton
may be used to perform event recognition, i.e., to detect
instances of pattern satisfaction upon a stream of input
events. Whenever the automaton reaches a final state, a
complex event is reported as having occurred. In order
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Table 1
An example stream composed of five events. Each event has a
vessel identifier, a value for that vessel’s speed and a timestamp.

vessel ID 78986 78986 78986 78986 78986 ...

speed 5 3 9 14 11 ...

timestamp 1 2 3 4 5 ...

0start 1 2

>
speed > 10 speed > 10

Figure 1: Streaming symbolic automaton created from the ex-
pression 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 10) · (𝑠𝑝𝑒𝑒𝑑 > 10).

to perform forecasting, Wayeb constructs a probabilistic
model of the compiled automaton, by using part(s) of a
stream for training. The model allows us to infer, at any
given moment, the possible paths that the automaton may
follow in the future. By searching among the possible future
paths, we can estimate when the automaton is expected
to reach a final state and thus report a CE. The output of
Wayeb thus consists of two streams: a) one reporting the
detected events, and b) one reporting the forecasts of events
expected to occur in the future.

Wayeb has clear, compositional semantics for the pat-
terns expressed in its language and can support most of the
common operators [1]. Wayeb’s patterns are expressed as
Symbolic Regular Expressions (SRE s), where terminal ex-
pressions are Boolean expressions, i.e., logical formulae that
use the standard Boolean connectives of conjunction ‘∧’,
disjunction ‘∨’ and negation ‘¬’ on predicates [5]. Wayeb
SRE s are defined using the grammar below:

𝑅 ::= 𝑅1 +𝑅2 (union) | 𝑅1 ·𝑅2 (concatenation)

| 𝑅*
1 (Kleene-star)| !𝑅1 (complement)

| 𝜓 (Boolean expression)

𝑅1, 𝑅2 are regular expressions, and 𝜓 is a Boolean expres-
sion. The semantics of the above operators are detailed
in [5]. Evaluation of SRE s on a stream of events requires
first their compilation into symbolic automata. Transitions
in symbolic automata are labeled with Boolean expressions.
For a symbolic automaton to move to another state, it first
applies the Boolean expressions of its current state’s outgo-
ing transitions to the element last read from the stream. If an
expression is satisfied, then the corresponding transition is
triggered and the automaton moves to that transition’s tar-
get state. For example, in maritime situational awareness,
a domain expert could use Wayeb’s language to specify a
pattern 𝑅 := (𝑠𝑝𝑒𝑒𝑑 > 10) · (𝑠𝑝𝑒𝑒𝑑 > 10) for identifying
speed violations in specific areas where the maximum al-
lowed speed is 10 𝑘𝑛𝑜𝑡𝑠. This pattern is satisfied when there
are two consecutive events where a vessel’s speed exceeds
the threshold. The compiled automaton corresponding to𝑅
is illustrated in Figure 1. For an input stream consisting of
the events in Table 1, the automaton would run as follows.
For the first three input events, the automaton remains in
state 0. After the fourth event, it moves to state 1 and after
the fifth event it reaches its final state, state 2, triggering
also a CE detection for 𝑅 at timestamp = 5.

To perform CEF, Wayeb needs a probabilistic description
for a symbolic automaton derived from a SRE . For this pur-
pose, Wayeb employs Prediction Suffix Trees (PSTs) [10, 11]–

a form of Variable-order Markov Models. Variable-order
Markov Models, compared to fixed-order Markov models,
capture longer-term dependencies as in practice they al-
low for higher order (𝑚) values than the latter. Each node
in a PST contains a “context” and a distribution that indi-
cates the probability of encountering a symbol, conditioned
on the context. Figure 3 (top left) shows an example of a
PST. Each “symbol” of a PST corresponds to a predicate
of the automaton for which we want to build a probabilis-
tic model. For example, the predicate (𝑠𝑝𝑒𝑒𝑑>10) may be
such a “symbol” for the pattern 𝑅. The same predicate but
negated i.e., ¬(𝑠𝑝𝑒𝑒𝑑>10) may be another such “symbol”.
Learning a PST from data is an incremental process that
adds new nodes corresponding to symbols only when nec-
essary [11, 6, 5]. The learning process involves two key
hyperparameters. First, the pMin ∈ [0, 1] hyper-parameter
which corresponds to a threshold determining which sym-
bols are deemed to be “too rare” to be taken under consider-
ation by the learning algorithm (symbols with a probability
of appearance less than pMin are discarded). Second, the 𝛾
hyperparameter is a symbol distribution smoothing param-
eter.

With the resulting PST, for every state 𝑞 of an automaton
and the last𝑚 (order of the PST) symbols of the input stream,
we can calculate the waiting-time distribution (𝑊𝑞), that
is, the probability of reaching a final state in 𝑛 transitions
from a state 𝑞. Recall that a CE is detected whenever an
automaton reaches a final state. Figure 3 (middle and bottom
left) shows an example of an automaton and the waiting-
time distributions learnt from a training dataset. Wayeb
then performs CEF as follows. Given the current state 𝑞
of an automaton, using 𝑊𝑞 , we compute the probability of
reaching a final state (𝑝𝐶𝐸 ) within the next 𝑛 transitions
(or, equivalently, input events). If 𝑝𝐶𝐸 exceeds a confidence
threshold 𝜃fc ∈ [0, 1], Wayeb emits a “positive” forecast
(denoting that the CE is expected to occur), otherwise a
“negative forecast” (no CE is expected) is emitted.

A forecast for a CE is characterised as a True Positive
(TP ) if a positive forecast (i.e., the CE will occur in the
future) was emitted and the CE indeed occurred or, respec-
tively, as a False Positive (FP ) if the CE did not occur. A
forecast for a CE is characterised as a True Negative (TN )
if a negative forecast is emitted (i.e., the CE will not occur
in the future) and the CE does not occur or, respectively,
as a False Negative (FN ) if the CE does occur. Note that a
forecast cannot be evaluated as TP , FP , TN or FN upon
its emission. It can be evaluated as such after the next 𝑛
input events have arrived, at which point we can know
whether the forecast event did occur or not. Since Wayeb
performs both CEF and CER, forecasts are evaluated on-the-
fly. Using these classifications of forecasts the performance
of CEF may be quantified through Matthew’s Correlation
Coefficient (MCC ), which is defined as follows:

𝑀𝐶𝐶 =
√︀

Precision× Recall× Specificity×NPV

−
√
FDR × FNR × FPR × FOMR (1)

where NPV = TN
TN+FN

, Specificity = TN
TN+FP

, FDR =
1 − Precision, FNR = 1 − Recall, FPR = 1 − Specificity
and FOMR = 1−NPV . Precision and Recall are defined as
usual. Therefore, MCC ∈ [−1, 1] estimates the agreement,
in which case MCC = 1, (or disagreement, where resp.
MCC = −1) between the emitted forecasts and observa-
tions. In contrast to F1-Score, which takes into account only
positive instances, MCC takes into account both positive
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Figure 2: Bayesian Optimisation Operation.
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Figure 3: Architecture of the offline CEF optimiser (offCEF).

and negative instances. Since Wayeb produces both positive
and negative forecasts MCC is a fitting choice.

Given the above, the hyperparameters required for train-
ing Wayeb models, i.e., PSTs, are the following. The max-
imum order 𝑚 of the PST, along with the symbol retain-
ing probability threshold pMin , the symbol distribution
smoothing parameter 𝛾 and the confidence threshold 𝜃fc .
The naive way to train a Wayeb PST is to manually fix the
values of these hyperparameters and then select a training
dataset from which a PST may be extracted. This process
can be performed offline and Wayeb may then employ the
learnt PST for online event forecasting. As we explain below,
this is not the proper way to go.

3. Run-Time CEF Adaptation
We first present offCEF, a baseline framework for hyperpa-
rameter optimisation of CEF under the stationarity assump-
tion, i.e., assuming that there are no evolutions in the input
that might invalidate the CEF model. Subsequently, we
present RTCEF, which addresses all challenges of run-time
CEF.

3.1. CEF Under the Stationarity Assumption
Under the stationarity assumption, a single PST, produced
through training on some historical, static dataset, will suf-
fice for future input. Consequently, in this setting, we may
use a framework for offline hyperparameter optimisation,
hereafter offCEF. The aim of offCEF is the identification
of an optimal configuration 𝑐𝑜𝑝𝑡 that yields the best per-
formance for Wayeb, quantified by the MCC score (see
Equation (1)). A configuration 𝑐 is defined as follows:

𝑐 = [𝑚, 𝜃fc , pMin, 𝛾]

where 𝑚, 𝜃fc , pMin and 𝛾 are Wayeb’s hyperparameters
(see Section 2) with their domain empirically set as:

𝑚 ∈ [1, 5] 𝜃fc ∈ [0.0, 1.0]

pMin ∈ [0.0001, 0.01] 𝛾 ∈ [0.0001, 0.01]

Given the infinite parameter combinations, exhaustive
search is computationally prohibitive. Furthermore, due
to Wayeb’s complexity, performance for a given parameter
set cannot be known beforehand. Consequently, to find
the optimal configuration 𝑐 we employ Bayesian optimisa-
tion (BO) [12, 13] i.e., a stochastic method for optimising
expensive-to-evaluate objective functions that are complex
or cannot be described by analytic formulae. In our work,
the objective function is defined as 𝑓(𝑐) = MCC 𝑐, where
MCC 𝑐 denotes the MCC score of Wayeb given configura-
tion 𝑐.

The goal of BO is to find the vector of Wayeb’s hyperpa-
rameters that maximises CEF performance, using a minimal
set of Wayeb training-test runs, termed ‘micro-benchmarks’,
as training samples. Unlike other optimisation methods [14]
BO does not require a high number of micro-benchmarks
or an analytical formula [12, 13, 6]. BO employs a proba-
bilistic model—called surrogate model—to approximate the
unknown objective function, in our case CEF performance
quantified by MCC , and iteratively refines this model. We
employ a Gaussian Process Regressor (GPR) as the surrogate
model. Initial beliefs about the objective function must be
formulated before observing any data. In BO, priors are
often specified for the mean and covariance functions of the
Gaussian Process model. For example, a prior belief might
suggest that the function is smooth and lies within a certain
range of values. Priors are represented as:

𝑓(𝑐) ∼ GP(𝜇0(𝑐), 𝑘0(𝑐, 𝑐
′))

where𝜇0(𝑐) and 𝑘0(𝑐, 𝑐′) are the prior mean and covariance
(kernel) functions, respectively.

Every time we observe a new micro-benchmark and col-
lect CEF performance metrics by training and testing Wayeb
given a configuration 𝑐, we acquire a new training sample
(𝑐,MCC 𝑐), to fit on the GPR, thereby updating our poste-
rior belief in light of new evidence. The posterior distri-
bution represents our updated knowledge about Wayeb’s
performance and after observing 𝑛 new training samples,
denoted by Data , the posterior is given by:

𝑓(𝑐) | Data ∼ GP(𝜇𝑛(𝑐), 𝑘𝑛(𝑐, 𝑐
′))

𝜇𝑛(𝑐) and 𝑘𝑛(𝑐, 𝑐′) being the posterior mean and covari-
ance functions updated through Bayesian inference [12, 13].

For selecting training samples, we start by randomly pick-
ing points from the input parameter domain, and then exe-
cute the respective micro-benchmarks and observe Wayeb’s



MCC scores. We call this initial set of configurations
𝑐, paired with MCCc scores, 𝐷𝑖𝑛𝑖𝑡. Subsequently, using
Bayesian inference, the first posteriors are calculated and
the expected result is illustrated by comparing the prior in
Figure 2a against the posterior in Figure 2b.

After 𝐷𝑖𝑛𝑖𝑡, the next micro-benchmarks are selected us-
ing an acquisition function 𝑎(𝑐). The acquisition function
guides the selection of the next evaluation point by quan-
tifying the utility of sampling a particular point 𝑥 in the
input space i.e., the domain of Wayeb’s configurations. 𝑎(𝑐)
balances exploration and exploitation. Exploration involves
sampling 𝑐 configurations in the input space that are not
yet well-explored or that have high uncertainty associated
with them, while exploitation involves sampling 𝑐 points
that are likely to yield the best objective function values
exploiting the current knowledge. For instance, in the plot
of Figure 2c the acquisition function chooses the point in the
input domain with the highest uncertainty. Different acqui-
sition functions introduce stochasticity in the BO process
by incorporating uncertainty estimates from the probabilis-
tic model. BO concludes either when a micro-benchmark
budget is depleted or when the value of 𝑓(𝑐) converges. Fig-
ure 2d illustrates a GPR with minimal uncertainty around
its mean values, after the microbenchmark budget has been
depleted.

Figure 3 illustrates the architecture of offCEF, compris-
ing a Model Factory alongside a Controller. The Model Fac-
tory includes a Wayeb Server that utilises historical training
and validation datasets to construct and evaluate PSTs. The
Controller, includes the BO optimiser which is executed
offline on a historical dataset. The Controller initialises BO
by providing a set of configurations i.e., 𝑐 vectors to the
Model Factory, which, respectively, conducts the prescribed
micro-benchmarks, saves temporarily the candidate PSTs,
and sends reports to the Controller. The Controller will use
these reports for updating the GPR surrogate model of BO.
offCEF deploys the PST that is expected to maximise

MCC based on the hyperparameter combination value vec-
tor 𝑐𝑜𝑝𝑡 calculated by BO. On the other hand, offCEF suf-
fers from several disadvantages: (i) it drives its decisions
by attributing equal importance to cumulative performance
metric statistics, while in a streaming setup we often need
to take into consideration only a sliding window of recent
measurements and defy obsolete ones; (ii) it cannot optimise
CEF hyperparameters at run-time which is a crucial limita-
tion, since fluctuations in the input’s statistical properties
in streaming settings is the norm rather than an infrequent
situation; (iii) it cannot distinguish whether the hyperpa-
rameters for training PSTs should be adjusted through BO or
if it is only the Wayeb’s PST that should be retrained, with-
out changing hyperparameters. RTCEF, presented below,
addresses these issues.

3.2. CEF Over Evolving Data Streams
We propose RTCEF, which is built with three major goals
in mind. First, it updates at run-time PSTs according to
input data evolutions; second, it performs CEF without dis-
ruptions, i.e., PST updating does not cause delays on CEF;
and third, it does not overuse resources for producing new
PSTs. The architecture of RTCEF consists of five main ser-
vices, acting as Kafka producers and consumers, running
synergistically to ensure undisrupted CEF and dynamic PST
retraining or hyperparameter optimisation. Figure 4 illus-
trates these services and the communication links between

Collector

Datasets

Output
stream

Input
stream Wayeb

Models Reports

Model Factory

Commands Scores

Controller

Change
Detector

Instructs

Data
collection Optimisation and re-training

Complex event forecasting

Metrics
 monitoring

Figure 4: Architecture of RTCEF. Cylinders and rounded rectan-
gles denote topics and services respectively. For simplicity, we
omit synchronisation topics; instead we use gray arrows.

them. Synchronisation of the various services is denoted by
dotted arrows in Figure 4. Below we describe in detail the
services comprising our framework.
ChangeDetector. In order to determine whether theMCC
score of Wayeb has deteriorated, the quality of its forecasts
must be monitored. This task is handled by the Change
Detector service (right of Figure 4) which consumes MCC
scores from the ‘Reports’ topic and, produces ‘retrain’ or ‘op-
timise’ instructions as indicated in Algorithm 1. Essentially,
a retrain instruction requests a new PST for Wayeb with-
out changing training hyperparameters. An optimisation
instruction, requests a new PST, produced through hyper-
parameter optimisation. Note that while hyperparameter
optimisation will provide the best possible hyperparameters,
it can be a costly procedure. On the other hand, retraining
on an updated dataset is a cheaper process.

The decision process of Algorithm 1 is summarised in
Figure 5, while an illustrative execution of Algorithm 1 for
maritime situational awareness is presented in Figure 6.
We describe Algorithm 1 following the example execution
of Figure 6. The Change Detector continuously consumes
MCC scores from Wayeb and retains the 𝑘 most recent
MCC scores to evaluate the performance trend. In the
example of Figure 6, Wayeb begins with a PST, referred
to as PST𝑤0 , created using configuration 𝑐𝑤0 . The Change
Detector records the MCC Score at𝑤0, however at this point
no decision is made since fewer than 𝑘 = 3 scores have been
collected. Once the Change Detector has at least 𝑘 scores, it
computes the first degree polynomial 𝑧𝑖(𝑥) = 𝑎𝑖𝑥+ 𝑏𝑖 (a
trend line) so that 𝑎𝑖 and 𝑏𝑖 minimise the following squared
error:

𝐸 =

𝑗=𝑘∑︁
𝑗=0

[︀
𝑧𝑖(𝑥𝑗)− 𝑦𝑗

]︀2
for 𝑥𝑗 = 𝑗 and 𝑦𝑗 = score𝑖−𝑘+𝑗 , where 𝑖 is an increasing
integer denoting the ID of the current score (lines 9, 10). If
the slope (𝑎𝑖) of 𝑧𝑖(𝑥) is negative, indicating decrease in
performance, and less than a max_slope ∈ R− parameter
(line 11) then a ‘retrain’ instruction is produced (lines 15-
17). In the example, by week 𝑤2, the Change Detector has
MCC scores for 𝑤0, 𝑤1, 𝑤2. Using these points, the Change
Detector computes the trend line 𝑧𝑤2 with a slope 𝛼𝑤2 =
−0.04 which is steeper than max_slope = −0.02. To
remedy this behaviour, the Change Detector issues a retrain
instruction. As a result, a new PST, referred to as PST𝑤2 ,
is created using the same configuration as PST𝑤0 , i.e., 𝑐𝑤0 .
This occurs because retraining updates the PST without
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Figure 5: Decision process of the Change Detector. Pink and
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respectively, rhombi correspond to conditionals, and rectangles
correspond to function calls.

modifying Wayeb’s hyperparameters.
Intuitively, forecasting performance deterioration i.e.,

𝑎𝑖 < max_slope , shortly after a new PST deployment,
indicates that the new PST failed and hyperparameter opti-
misation should thus be performed. We place each newly
deployed PST in a grace period (lines 14,17). A grace pe-
riod starts after a PST is deployed, and ends after grace_n
performance reports. If the performance of a PST under
a grace period deteriorates (𝑎𝑖 < max_slope) then a hy-
perparameter optimisation instruction is produced (lines
12,13). If on the other hand, 𝑎𝑖 < max_slope is satisfied af-
ter grace_n reports, then a ‘retrain’ instruction is produced
for which a new “grace” period begins. In the example of

Algorithm 1 Change Detector service

Require: 𝑘, grace_n,𝑚𝑎𝑥_𝑠𝑙𝑜𝑝𝑒,min_score
1: scores ← []
2: grace ← −1
3: while True do
4: score𝑖 ← consume(Reports)
5: scores .update(score𝑖, k)
6: pit_cond ← score𝑖 < min_score
7: slope_cond ← False
8: if grace ≥ 0 then grace ← grace − 1

9: if len(|𝑠𝑐𝑜𝑟𝑒𝑠|)> 2 then
10: (𝑎𝑖, 𝑏𝑖)← fit_trend(scores)
11: slope_cond ← 𝑎𝑖 < max_slope
12: if (slope_cond and grace ≥ 0) or pit_cond then
13: send(“instructions”, “optimise”)
14: grace ← grace_n ◁ New grace period
15: else if slope_cond then
16: send(“instructions”, “retrain”)
17: grace ← grace_n ◁ New grace period

Figure 5 a grace period begins at week 𝑤2 and will last for
grace_n = 4 reports, i.e., until 𝑤5. While PST𝑤2 shows
improvement at 𝑤3, at 𝑤4 performance drops again. The
performance drop is also confirmed by the slope of -0.05 com-
puted by the Change Detector using the MCC scores from
𝑤2 to 𝑤4. Since the slope 𝛼𝑤4 is again below max_slope ,
but this time a grace period is active, the Change Detector
issues a hyperparameter optimisation instruction instead of
retraining. Consequently, a new PST𝑤4 is produced through
hyperparameter optimisation, resulting in an updated con-
figuration 𝑐𝑤4 , and a new grace period starting at 𝑤4. Fi-
nally, to avoid pitfalls whereby the score drops suddenly
very low, we employ an additional condition: if the score of

𝑤0 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

0.4

0.6

0.8

𝛼𝑤2 ≃ −0.04
𝛼𝑤4 ≃ −0.05

grace
grace

Weeks

M
C
C

Wayeb
rt opt

trend trend

Figure 6: Execution sample of the Change Detector for mar-
itime situational awareness. ‘opt’ and ‘rt’ stand for ‘optimisation’
and ‘retraining’ respectively. Dashed dotted, and dashed lines
correspond to the trend lines associated with the retrain and op-
timisation instructions at 𝑡2 and 𝑡4 respectively, while black lines
correspond to grace periods initiated at the issuance of retrain or
optimisation instructions.

a report is lower than a threshold min_score (line 6) then
the Change Detector asks directly for ‘optimisation’ and
omits a ‘retrain’ instruction.
Wayeb. The CEF part of RTCEF (top of Figure 4) contains
Wayeb. In addition to reading timestamped simple events
from the input stream and producing an output stream of
CE forecasts, Wayeb produces a stream of CEF forecasting
performance reports and continuously monitors the ‘Mod-
els’ topic, which contains updated PSTs. When a new PST is
made available in the Models topic, Wayeb replaces its PST
with the latest available version. Recall that, to produce a
CE forecast, Wayeb will utilise both the automaton corre-
sponding to the symbolic regular expression defining a CE
and the PST. The automaton retains information about the
current state (𝑞) as well as the next states that can lead to an
accepting run, while the PST is used for producing the next
symbol probabilities and therefore the waiting-time distri-
bution for state 𝑞 (𝑊𝑞). Notably, the process of replacing
the PST with a new version can be executed in linear time
with respect to the number of runs and in practice happens
in negligible time.
Collector. Training datasets evolve over time. Therefore,
the data collection part of RTCEF (left of Figure 4) includes
the Collector service, a data processing module organising
and storing subsets of the input stream that may be used
for retraining or hyperparameter optimisation. Therefore,
the Collector service consumes the input stream (see ‘Data
collection’ in Figure 4), in parallel to Wayeb, and stores
subsets of it in time buckets. The Collector gathers data in
a sliding window manner, emitting a new dataset version to
the ‘Datasets’ topic as soon as the last bucket in the range is
full. Old buckets that no longer serve a purpose for training,
are deleted for space economy.
Controller. The Controller service, based on the instruc-
tions of the Change Detector, initialises hyperparameter
optimisation procedures, during which it also serves as the
Bayesian optimiser, or retraining procedures, where it sup-
plies Wayeb configurations. When optimisation is required,
the Controller initiates the following three phases.

Initialisation phase: The Controller sets up the Bayesian
optimiser. Similar to [15], we leverage micro-benchmarks
from previous runs. Using the retain_percentage ∈
[0, 1] parameter, we uniformly keep ⌊retain_percentage *
all_samples⌋ observations from the last executed BO
run, where all_samples is the total number of micro-
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Figure 7: Experimental results for datasets MD0/2/3/5 with 𝑅port . ‘rt’ and ‘opt’ stand for ‘retrain’ and ‘optimisation’
respectively. The plots show MCC (upper part) and MCC improvement (lower part) of ‘RTCEF’ relative to ‘offCEF’ over
time.

benchmarks. This allows us to accelerate optimisation, and
retain useful information from previous runs.

Step phase: The Controller issues ‘train & test’ commands
along with the hyperparameters suggested by the acqui-
sition function—in our case the acquisition function is a
combination of lower confidence bound, expected improve-
ment, and probability of improvement. After each ‘train
& test’ command the Controller awaits the corresponding
performance report i.e., the value of the f (c) objective func-
tion. Upon receiving the performance report, the optimiser
is updated with the new sample and the hyperparameters
for the next step are suggested. The step phase ends when
all micro-benchmarks are completed or if convergence is
achieved.

Finalisation phase: Once optimisation concludes and the
best hyperparameters are acquired, the Controller sends
a finalisation message containing the ID of the best PST.
Additionally, the Controller updates the previously best
hyperparameters with the newly acquired ones, ensuring
availability of the latter for subsequent ‘retrain’ instructions.
Model Factory. Similar to offCEF the primary function
of the Model Factory service is to train, test and send up-
to-date PST to Wayeb. To do this, it will assemble and use
the latest dataset version produced by the Collector. Upon
receiving a ‘train’ command, the Model Factory trains a PST
on the latest dataset and shares this new PST version with
Wayeb.

For PST production through hyperparameter optimisa-
tion, upon receiving an ‘initialisation’ message, the Model
Factory ‘locks’ the most recent assembled dataset so that
the same dataset is used throughout the optimisation pro-
cedure. Next, during the ‘step’ phase, the Model Factory
trains, saves and tests candidate PSTs on the locked dataset
and reports MCC scores to the Controller. Finally, when
the BO ‘finalisation’ message, including the ID of the best
performing PST, is received, the Model Factory sends the
best PST to Wayeb. It is only at this point, that Wayeb will
stop momentarily for PST replacement.

4. Experimental Evaluation
We evaluate our framework on maritime situational aware-
ness, where maritime CEs of interest are forecast over real
vessel position streams.

4.1. Experimental Setup
We use a real-world, publicly available, maritime dataset
containing 18M spatio-temporal positional AIS (Automatic
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Figure 8: Avg MCC (top) per MD𝑖 for Rport and Rfish . Dataset
and CER characteristics (bottom left). ‘v’, ‘vw/m’ and ‘m’ stand
for ‘vessels’, ‘vessels with matches’ and ‘matches’ respectively.
MPPT i.e., mean percentage of time spent every four weeks for
production of models per MD𝑖 for 𝑅port (bottom right).

Identification System) messages transmitted between Oc-
tober 1st 2016 and 31st March 2016 (6 months), from 5K
vessels sailing in the Atlantic Ocean around the port of
Brest, France [16]. AIS allows the transmission of infor-
mation such as the current speed, heading and coordinates
of vessels, as well as, ancillary static information such as
destination and ship type. We evaluate RTCEF on a mar-
itime pattern, which expresses the arrival of a vessel at the
main port of Brest [6]. This pattern is derived after discus-
sions with domain experts from a large, European maritime
service provider [4, 17]:

𝑅port := (¬InPort(Brest))* · (¬InPort(Brest)) ·
(¬InPort(Brest)) · (InPort(Brest))

(2)

InPort(Brest) is true when a vessel is within 5 km from
the port of Brest. Recall that ‘¬’, ‘*’ and ‘·’ correspond to
negation, iteration (Kleene star) and sequence respectively
(see Section 2). Consequently,𝑅port is satisfied if a sequence
of at least three events occur. At least two require the vessel
to be away from the port—thus limiting false positives from
noisy entrances—, while the last denotes that the vessel has
entered the port. This CE is important for port management
and logistics reasons. We also perform experiments for a



CE named 𝑅fish defined as follows:

𝑅fish := (¬InArea(Fishing))* · (¬InArea(Fishing)) ·
(¬InArea(Fishing)) ·
(InArea(Fishing) ∧ ¬SpeedRange(Fishing))* ·
(InArea(Fishing) ∧ SpeedRange(Fishing))

(3)

InArea(Fishing) is true when a vessel is within a fishing
area, while speedRange is a predicate satisfied when the ves-
sel has fishing speed [4]. Therefore, 𝑅fish is satisfied when
initially a vessel is outside a fishing area, then the vessel
enters the fishing area and; at some point while it is within
the fishing area, it has fishing speed. Monitoring (illegal)
fishing is important for environmental and sustainability
reasons.

To cross validate our approach, we create 6 datasets
MD 𝑖, 𝑖 ∈ [0, 5] by shifting the starting month in a cyclic
manner:

MD 𝑖 =
⃦⃦𝑗=5

𝑗=0
month(𝑗+𝑖) mod 6

where ‖ denotes the operation of concatenating two datasets,
and monthk corresponds to month 𝑘 of the original dataset.

We perform offline hyperparameter optimisation with
offCEF on the first four weeks of each dataset MD 𝑖 and use
the resulting model, hyperparameters and micro-benchmark
samples for initialisation. To showcase, the benefit of RTCEF,
we additionally perform CEF with static models yielded by
offCEF (see Section 3.1): i.e., for each MD 𝑖 we adopt the
stationarity assumption and perform CEF using the corre-
sponding initial model of each dataset. In what follows, the
experiments that utilise the run-time optimisation frame-
work are labelled with ‘RTCEF’ while experiments that are
performed only with offline optimised static models are
labelled with ‘offCEF’.
offCEF and RTCEF are implemented in Python 3.9.18,

while the Kafka version was 3.5.2. Messages are formatted
in JSON, and serialised/deserialised using Apache AVRO
format. For BO, we use the scikit-optimize library 0.9.0.
The experiments are conducted on a server running Debian
12 with an AMD EPYC 7543 32-Core Processor and 400G
of RAM. Each service of RTCEF runs on its own dedicated
core. Our framework is open-source and our experiments
are reproducible1.

4.2. Experimental Results
Figure 7 shows the evolution of MCC over time for
𝑅port (see Definition (2)), along with the score improve-
ments when using RTCEF as opposed to offCEF for the
MD0/2/3/5 datasets respectively. For MD0—the dataset in
its original order—RTCEF drammatically improves MCC
up to ∼ 300% following retraining and hyperparameter
optimisation procedures in weeks 5 and 6, respectively. A
similar pattern is observed on the MD5 dataset. On dataset
MD2, although improvement is not as prominent as with
MD0/3/5, on average RTCEF improves MCC (see Figure 8
top-left). On the MD3 case, results show that the initial
PST, generated by offCEF underperforms on weeks 16 to
19. However, this behaviour is immediately cured when
the Change Detector requests hyperparameter optimisation
in the first running week (see orange dot on week 16 of
Figure 7 - MD3)—this is due to the score being less than
min_score (see Algorithm 1). We attribute the low scores

1Execution scripts in https://github.com/manospits/rtcef/tree/main/
scripts

of the initial model of the MD3 dataset on the lack of ves-
sels passing through the monitoring area on that period
(see Figure 8 bottom-left). Figure 8 top-left, shows that the
average MCC for each dataset MD 𝑖 (𝑖 ∈ [0, 5]) when us-
ing RTCEF is consistently higher than that achieved via a
single model trained only on the first four weeks of each
dataset (offCEF). In Figure 8 (top-right) we report results
concerning the 𝑅fish CE. For the 𝑅fish pattern (see Defini-
tion (3)) there are no data evolutions in the input that affect
CEF performance, therefore in this case, the results show
that when data evolutions that affect model performance at
run-time are not present, the use of RTCEF does not affect
forecasting performance.

Concerning processing efficiency, interruptions in CEF
are minimal as retraining or optimisation procedures take
place in parallel to CEF, thus efficiency and throughput of
CEF remain unaffected. However, when a new PST request
arises, new PST versions arrive with some delay. Recall,
that until a new PST is available, Wayeb consumes the input
stream, in parallel to the PST update procedures, with the
already deployed PST. Figure 8 (bottom-right) shows the
mean percentage of time spent every four weeks for pro-
duction of PSTs (we denote this value as MPPT) involving
the 𝑅port pattern. The results show that every four weeks,
on average less than 0.2 % of time is spent for PST produc-
tion (roughly 80 minutes in a period of four weeks) for all
datasets MD 𝑖. Consequently, RTCEF spends minimal time
every four weeks for PST production, thus ensuring minimal
delays and a resource-friendly behaviour as optimisation or
retraining procedures are not overperformed.

5. Related Work
The problem addressed in this paper pertains to concept
drift, i.e., evolutions in the data that invalidate the deployed
model [18]. Our work is the first that tackles this problem
specifically for CEF. For example, the work of Stavropoulos
et al. [6] allows for offline CEF optimisation but does not
allow run-time adaptation on dynamically evolving data
streams, while concerning CEF optimisation itself, com-
pared to our framework, it offers only a very restricted
set of functionalities. EasyFlinkCEP [19], similar to RTCEF,
uses BO to optimise the parallelism of FlinkCEP programs
but lacks support for forecasting, focusing only on system-
oriented metrics (e.g., throughput). Herodotou et al. [20]
offer a comprehensive survey of machine learning-based
techniques, including BO, for tuning the performance of
Big Data management systems. Existing CER optimisation
techniques focus on enhancing throughput i.e., the number
of tuples processed per unit of time [21] while others focus
on reducing processing latency and efficiently managing
memory utilisation [21]. These approaches typically adapt
traditional query optimisation techniques such as early pred-
icate evaluation and query rewriting to suit the context of
CER. Giatrakos et al. [1] discuss techniques for executing
parallel CER efficiently in geo-distributed settings. Notably,
none of the above address run-time CEF adaptation.

Forecasting covers several areas such as time-series fore-
casting [22], general sequence prediction [23, 10], event
sequence prediction and point-of-interest recommenda-
tions [24, 25]. However, such methods primarily focus on
input event forecasting rather than CEF. Process mining,
closely related to CEF [26], involves learning processes from
activity logs and predicting process completions [27, 28].

https://github.com/manospits/rtcef/tree/main/scripts
https://github.com/manospits/rtcef/tree/main/scripts


However, process mining often overlooks CE patterns. CEF
aims to address such challenges, as outlined in various con-
ceptual frameworks [29, 30, 31]. In our work specifically, we
address these challenges by utilising Wayeb, a CEF engine
that employs high-order Markov models [5, 9]. Further-
more, none of existing proposals (e.g., [7, 8, 32]) automate
run-time adaptation in resource-friendly way.

6. Summary and Further Work
We presented, RTCEF, a novel framework for run-time opti-
misation of CEF. RTCEF involves several services running
synergistically for undisrupted run-time CEF and improved
performance via lossless dynamic model updating. We eval-
uated our approach on maritime situational awareness use-
case involving real-world data and our experimental results
show that there is a clear benefit using our framework as
opposed to performing CEF with a single model in ‘offline’
fashion. We release publicly our framework in an open-
source fashion.

For future work, we plan to investigate additional data
collection, and retrain vs optimisation policies. Furthermore,
we aim to integrate parallel BO. Finally, we want to evaluate
our framework on additional problems such as run-time
CER query optimisation.
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