
Hot Spot Analysis for Big Trajectory Data in Road Networks
Panagiota Keziou, Christos Doulkeridis

Department of Digital Systems, University of Piraeus, Greece

Abstract
Hot spot analysis is the problem of identifying statistically significant spatial clusters and is typically applied on point data. The aim
of this paper is to discover hot spots in an urban environment, namely road segments with statistically significant amount of traffic
congestion, using massive GPS data of moving objects. To this end, we adjust the Getis-Ord index for hot spot discovery to become
applicable for road networks. Then, we propose two data-parallel algorithms for hot spot discovery in road networks implemented in
Apache Spark; an exact algorithm that has scalability limitations for very large data sets, and a scalable approximate algorithm that
balances between performance and accuracy. We provide experiments over a large real-life data set that indicate the salient features of
our approach.

Keywords
Hot spot analysis, road networks, big data, urban mobility

1. Introduction
In recent years, the analysis of mobility data has drawn
the attention of both the academic society and the industry.
Tracking of moving objects on road networks is ubiquitous
in fleet management applications and can support diverse
scenarios of urban planning, more efficient transportation,
reduction of greenhouse gas emissions, and improvement
of life quality. Due to the technological evolution of GPS
sensors and their integration in mobile devices and cars, it
is possible to collect vast amounts of spatio-temporal data.
Thus, our work is motivated by the need for identifying
traffic congestion from GPS data on the road network.

In this paper, we present an approach for identifying
traffic hot spots, using big trajectory data collected by GPS
sensors. Through hot spot analysis, we aim to identify road
segments with statistically significant high levels of traffic
congestion. This means that we do not just aim to identify
road segments that have high congestion values; such road
segments may be of interest, but they are not necessarily
statistically significant. Instead, a hot spot is statistically
significant if it has high congestion value but additionally is
surrounded by other segments with high congestion values.

For this purpose, we employ the Getis-Ord Statistic index,
a popular metric for hot spot analysis, which – to the best of
our knowledge – has so far been used for spatial and spatio-
temporal data of objects with free movement. Instead, we
adapt the Getis-Ord index to become applicable for graphs
that represent the road network, such as the ones obtain-
able via OpenStreetMap. Moreover, to handle the temporal
dimension, we consider different temporal snapshots of the
road network whose duration is user-defined according to
the application requirements. Effectively, we have multiple
snapshots of the same graph, each corresponding to the
same road network but for a different time interval and thus
each road segment has different traffic congestion values.
In this way, we formulate the problem of hot spot discovery
in road networks using a model that consists of a sequence
of temporal snapshots of the same graph (road network).

Computing the hot spots using this model is a processing-
intensive operation, which relies on diffusion of information
over (parts of) the graphs. Moreover, the necessary data
to infer traffic congestion on roads may be in the order of

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain
$ keziou@hotmail.com (P. Keziou); cdoulk@unipi.gr (C. Doulkeridis)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribu-
tion 4.0 International (CC BY 4.0).

millions of GPS records per temporal interval. Therefore, we
need to design scalable algorithms for hot spot analysis by
exploiting big data technologies. To this end, we introduce
two data-parallel algorithms for hot spot discovery in road
networks, with a goal to be applicable for massive trajectory
data sets. The first algorithm returns the exact result, but
faces performance limitations for really large data sets due
to the underlying exchange of information between pairs
of edges. Then, we present an approximate algorithm with
a cut-off threshold for excluding edges that are located too
far away spatially or temporally, as their contribution to
hot spot discovery is minimal. It turns out that our approxi-
mate algorithm provides an interesting trade-off between
scalability and accuracy, returning hot spots that are very
similar to ones discovered by the exact algorithm but orders
of magnitude faster.

In summary, we make the following contributions:

• We formulate the problem of hot spot analysis in
road networks, by the means of Getis-Ord Statistic,
appropriately tailored for graphs.

• We design and implement an exact algorithm in
Apache Spark that computes hot spots in parallel.

• We present a scalable approximate algorithm that
discovers hot spots of high accuracy but significantly
faster.

• We evaluate the performance and scalability of our
algorithms for different parameters, using a real-life
data set from the Metropolitan Area of Athens.

The rest of this paper is structured as follows: Section 2
reviews related research efforts. Section 3 formulates the
problem under discussion. In Section 4, we present our
approach for hot spot analysis over road networks, while in
Section 5 we present the parallel algorithms for detecting
hot spots. Then, in Section 6 describes the results of our
evaluation, while in Section 7, we conclude the paper.

2. Related Work
Existing works in hot spot analysis over mobility data can be
broadly classified in two categories: (a) point-based hot spot
analysis, where mobility data consist of individual spatial
or spatio-temporal points, and (b) trajectory-based hot spot
analysis, where sequences of spatio-temporal points that
belong to the same user/vehicle/vessel (i.e., trajectories) are
considered. As our work belongs to the latter category, we

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:keziou@hotmail.com
mailto:cdoulk@unipi.gr
https://creativecommons.org/licenses/by/4.0

briefly review point-based approaches and put our main
focus on trajectory-based approaches.

2.1. Point-based Hot Spot Analysis
Eftelioglu et al. [1] propose the CGC (Cubic Grid Circle) al-
gorithm for the problem of detecting geographically robust
hot spots, modeled as circles in a 2D space. The proposed
algorithm is an improvement of SaTScan algorithm, as it
detects non-contiguous or sparse center hot spots and elim-
inates very small hot spots. In their studies, [2] and [3]
expand the methodology for ring-shaped and elliptical hot
spots detection, respectively. In [4], a density-based clus-
tering algorithm (sig-DBSCAN) improves the quality of re-
sults by discarding random patterns, while the use of Dual-
Convergence algorithm significantly reduces computational
cost. For the above studies, the statistical significance of
the proposed hot spots is assessed via Monte Carlo simula-
tion. In contrast, Nikitopoulos et al. [5] propose a parallel
and scalable solution for hot spot analysis over big spatio-
temporal data. The spatio-temporal domain is divided into
3D cells and the Getis-Ord 𝐺*

𝑖 statistic is used to detect the
top-𝑘 statistically significant cells:

𝐺*
𝑖 =

∑︀𝑛
𝑗=1 𝑤𝑖,𝑗𝑥𝑗 −𝑋

∑︀𝑛
𝑗=1 𝑤𝑖,𝑗

𝑆

√︂
[𝑛

∑︀𝑛
𝑗=1 𝑤2

𝑖,𝑗−(
∑︀𝑛

𝑗=1 𝑤𝑖,𝑗)2]

𝑛−1

(1)

where 𝑥𝑗 is the attribute value for cell 𝑗, 𝑤𝑖,𝑗 is the spatial
weight between cell 𝑖 and 𝑗, 𝑛 is equal to the total number
of cells, and 𝑋 and 𝑆 represent the mean and standard
deviation respectively:

𝑋 =

∑︀𝑛
𝑗=1 𝑥𝑗

𝑛

𝑆 =

√︃∑︀𝑛
𝑗=1 𝑥

2
𝑗

𝑛
− (𝑋)2

In our work, we adapt the Getis-Ord statistic to be appli-
cable on graphs representing temporal snapshots of road
networks. The attribute 𝑥𝑗 can be any indicator of traffic
congestion, such as the average speed or the number of
vehicles per time unit.

The proposed approaches of [6] and [7] take into account
the underlying road network. Tang et al. [6] present a dy-
namic segmentation model of the road network, which al-
lows the identification of statistically significant linear hot
spots with high concentration of activities, such as pedes-
trian accidents on the road network, which otherwise would
not have been recognized. According to the proposed ap-
proach, the shortest paths between activities are identified
and a density index is calculated for each of them. The
algorithm returns all the paths that are statistically signifi-
cant (based on the Monte Carlo method) and their density
value exceeds a threshold. In [7], the Network Isodistance
Hotspot Detection (NIHD) problem is studied, which reveals
sub-graph hot spots with high concentration of activities,
diffused isotropically along the network. The deducted com-
putational cost of the algorithm is achieved through network
partitioning and upper-bound pruning.

2.2. Trajectory-based Hot Spot Analysis
In their studies, Häsner et al. [8] and Li et al. [9] take into
account the limitations of the road network. Li et al. [9]

propose the density-based algorithm FlowScan to discover
patterns in the flow of traffic, referred to as “hot routes”. By
defining the minimum common traffic that successive road
segments should share and the the number of edges that
form a neighborhood, clusters of the moving objects are
detected. The algorithm is capable of recognizing complex
spatial patterns. The OPS methodology proposed by Häsner
et al. [8] predicts near future traffic hot spots, based on
recent positions of vehicles on the road network. A heuristic
method is employed to predict the future position of the
vehicles, and a weight is assigned to the nodes of the road
network that reflects the likely traffic intensity within a
specified time window. Finally, through an outlier detection
approach, hot spots nodes are detected and the DBSCAN
algorithm derives the sub-graphs that represent traffic hot
spot regions.

Sacharidis et al. [10] propose a framework for on-line
discovery of hot motion paths, in order to detect frequently
travelled paths. Their study differentiates in the fact that
the hotness of a road segment is determined as a function
of the amount of time the moving object has spent on the
path. Similarly, the studies in [11] and [12] detect hot spots
without taking into account the road network restrictions.
In [11], the authors address the problem of hot spot analy-
sis over big trajectory data in a parallel and scalable way.
Their approach is based on spatio-temporal partitioning
of the 3D space in cells. The Getis-Ord index is employed
and appropriately tailored to reveal hot spots in terms of
spatio-temporal cells. Two algorithms are proposed: the
THS algorithm defines the z-score of the cell under study
depending to the cell values of the whole grid, which is com-
putationally expensive. The aTHS algorithm as the authors
mentions trade-off accuracy for efficiency in a controlled
manner and ignore the contribution of cells located out side
a predefined area of influence. Finally, Qiao et al. [12] in-
troduce a cloud-based analytical framework for big mobile
data from the view of user mobility in densely populated
areas, collected from 2G/3G/4G networks.

Our work differs from these approaches as we consider
road segments as candidate hot spots and adapt a well-
known hot spot index to be applicable on temporal graphs
that represent the road network for different temporal in-
tervals. In this way, we capture the effect of spatial and tem-
poral proximity of neighboring congested road segments.
This is a differentiating factor compared to related works
that operate over trajectories, as they produce hot spots at
different level of granularity (e.g., routes, paths, grid cells)
and using other metrics. To the best of our knowledge ours
is the first work that shows how to apply hot spot analysis
via Getis-Ord in road networks.

3. Problem Formulation

3.1. Preliminaries
We consider a directed graph 𝐺(𝑉,𝐸) that represents the
road network, where an edge 𝑒𝑖 ∈ 𝐸 corresponds to a road
segment and is defined by two vertices 𝑣, 𝑣′ ∈ 𝑉 , which
represent crossroads. The edge 𝑒𝑖 is directed, indicating the
flow of movement on the road network from 𝑣 to 𝑣′. We
use the terms edge and road segment interchangeably.

To model the effect of time on traffic congestion, we
consider a sequence 𝐺𝑇 = {𝐺1, 𝐺2, . . . , 𝐺𝑚} of tempo-
ral snapshots of the graph 𝐺, where each snapshot corre-

Figure 1: Left: Example of an edge 𝑒3𝑝 of temporal snapshot 𝐺𝑝, which is affected only by subsequent edges 𝑒4𝑝, 𝑒5𝑝 and 𝑒6𝑝
(in blue). Right: Two temporal snapshots of 𝐺𝑝 and 𝐺𝑞 (𝑞 = 𝑝+1), where 𝑒3𝑝 in 𝐺𝑝 is affected also by the edges 𝑒3𝑞 , . . . , 𝑒6𝑞
of the next snapshot 𝐺𝑞 .

sponds to a pre-defined temporal duration 𝑇 . A snapshot
𝐺𝑝 corresponds to an interval [𝑡𝑝, 𝑡𝑝+1) of duration 𝑇 , i.e.,
𝑡𝑝+1 − 𝑡𝑝 = 𝑇 . For example, if 𝑇 is set to 5 minutes, one
such interval could be 9:00 am – 9:05 am. A temporal snap-
shot 𝐺𝑝 of the graph 𝐺 is used to represent the traffic for
the specific time interval [𝑡𝑝, 𝑡𝑝+1). Fig. 1 illustrates the
concept of temporal snapshots of a graph that represents
the road network.

3.2. Problem Formulation
The problem of hot spot analysis addressed in this work is to
identify statistically significant road segments that indicate
hot spots, due to traffic congestion. An edge 𝑒𝑖 at snapshot
𝐺𝑝, denoted 𝑒𝑖𝑝 ∈ 𝐸(𝐺𝑝), where 𝐸(𝐺𝑝) represents the
edges of the snapshot 𝐺𝑝, is associated with an attribute
value 𝑥𝑖𝑝 that indicates traffic congestion on 𝑒𝑖 during the
temporal interval of 𝐺𝑝. As such, whether an edge 𝑒𝑖𝑝 is
considered hot spot is a function of the edge’s attribute value
𝑥𝑖𝑝, but also of other neighboring edges’ attribute values. By
neighboring edges, we mean both spatially (nearby edges
on the graph 𝐺) and temporally (edges at previous/next
temporal snapshots).

To express this dependence on neighboring edges, we
adjust a commonly used function, namely the Getis-Ord
statistic [13]. To the best of our knowledge, Getis-Ord has
been used so far to discover hot spots in cell-based parti-
tions for spatial (2D) and spatio-temporal (3D) domain, for
point [14, 5] and trajectory data [11]. Our work extends the
applicability of Getis-Ord for hot spot discovery in graphs
representing the road network. Thus, for any edge 𝑒𝑖𝑝 of a
snapshot 𝐺𝑝 of 𝐺 we adapt Eq. 1 and define the Getis-Ord
value of the 𝑖-th edge of the 𝑝-th temporal snapshot:

𝐺*
𝑖𝑝 =

∑︀|𝐸|
𝑗=1

∑︀𝑚
𝑞=1 𝑤(𝑖𝑝),(𝑗𝑞)𝑥𝑗𝑞 −𝑋

∑︀|𝐸|
𝑗=1

∑︀𝑚
𝑞=1 𝑤(𝑖𝑝),(𝑗𝑞)

𝑆

√︂
[𝑛

∑︀|𝐸|
𝑗=1

∑︀𝑚
𝑞=1 𝑤2

(𝑖𝑝),(𝑗𝑞)
−
∑︀|𝐸|

𝑗=1

∑︀𝑚
𝑞=1 𝑤2

(𝑖𝑝),(𝑗𝑞)
]

𝑛−1

(2)
where 𝑛 = |𝐸| · 𝑚 is equal to the total number of edges,
𝑥𝑗𝑞 is the attribute value for edge 𝑒𝑗 at temporal snapshot
𝐺𝑞 , 𝑤(𝑖𝑝),(𝑗𝑞) is the weight imposed by edge 𝑒𝑗𝑞 to edge
𝑒𝑖𝑝, and:

𝑋 =

∑︀|𝐸|
𝑗=1

∑︀𝑚
𝑞=1 𝑥𝑗𝑞

𝑛
(3)

𝑆 =

√︃∑︀|𝐸|
𝑗=1

∑︀𝑚
𝑞=1 𝑥

2
𝑗𝑞

𝑛
− (𝑋)2 (4)

The weight 𝑤(𝑖𝑝),(𝑗𝑞) between two edges 𝑒𝑖𝑝 (edge 𝑒𝑖 at
snapshot 𝐺𝑝) and 𝑒𝑗𝑞 (edge 𝑒𝑗 at snapshot 𝐺𝑞) indicates
the influence of edge 𝑒𝑗𝑞 to edge 𝑒𝑖𝑝. Intuitively, if a road
segment is congested, this also affects other road segments
in its vicinity. More precisely, in this paper, we assume that
if a road segment 𝑒 is congested, this affects (or will affect
in the near future) the previous road segments, i.e., those
leading to 𝑒. For example, in Fig. 1 (left), the edge 𝑒3𝑝 (in
red color) is affected by the weights of edges 𝑒4𝑝, 𝑒5𝑝 and
𝑒6𝑝 (in blue color), whereas all other weights are considered
equal to zero 𝑤(3𝑝)(1𝑝) = 𝑤(3𝑝)(2𝑝) = 0 .

Moreover, when considering different temporal snap-
shots of the graph 𝐺, the congestion of edges in snapshot
𝐺𝑖+1 affect edges of previous and next temporal snapshots
{. . . , 𝐺𝑖+2, 𝐺𝑖, 𝐺𝑖−1, . . . }. In Fig. 1 (right), edge 𝑒3𝑝 at
snapshot 𝐺𝑝 is affected by edges 𝑒3𝑞, . . . , 𝑒6𝑞 at 𝐺𝑞 .

According to the above, the problem of hot spot analysis
in road networks is to identify the 𝑘 most statistically sig-
nificant road segments (edges) according to the Getis-Ord
statistic and can be formally stated as follows.

Problem 1. (Hot spot analysis in road networks) Given a se-
quence 𝐺𝑇 of temporal snapshots of a directed graph 𝐺(𝑉,𝐸)
representing the road network, find the top-𝑘 edges 𝐸𝑘 of 𝐺𝑇

based on the Getis-Ord statistic 𝐺*
𝑖𝑝, such that: 𝐺*

𝑖𝑝 ≥ 𝐺*
𝑗𝑞 ,

∀𝑒𝑖𝑝 ∈ 𝐸𝑘 , 𝑒𝑗𝑞 ∈ (
⋃︀𝑚

𝑟=1 𝐸(𝐺𝑟))− 𝐸𝑘 .

Intuitively, for each road segment we compute a value
that indicates if it is a hot spot. This value depends on
the traffic congestion of the road segment itself, but also
on the traffic congestion of subsequent road segments (as
congestion is propagated backwards). Moreover, it depends
on the traffic congestion of these road segments in the next
temporal snapshots of the network, as illustrated in Fig. 1.

The novelty of our work lies in the identification of hot
spots in road networks using a statistically significant met-
ric. In contrast, existing works (Section 2) either use ad-hoc
ways to compute hot spots or compute statistically signifi-
cant hot spots as 2D/3D cells of predefined size. Adapting
the Getis-Ord statistic to become applicable for graphs is
the main technical contribution of our work. The challenge
relates to the definition of neighboring edges over multiple
temporal snapshots of the same graph.

4. Hot Spot Analysis
This section presents our approach for hot spot analysis
in road networks. The input is a data set of GPS records,

each corresponding to a specific vehicle (based on identifier
vehID), a timestamp 𝑡, as well as the longitude 𝑥 and latitude
𝑦 values. Also, a graph 𝐺(𝑉,𝐸) is available that represents
the road network, which consists of road segments, their
geometry, as well as additional information, such as direc-
tion, speed limit, etc. Such a graph can be typically obtained
from external sources, such as OpenStreetMap.

4.1. Map-matching
Data collected from GPS sensors typically contain small
errors, thereby making the mapping of GPS coordinates to
the underlying road network hard. This problem is typically
solved by applying a map-matching algorithm, which is re-
sponsible for mapping each pair of GPS coordinates (longi-
tude, latitude) to another point located on the road network.
Several sophisticated algorithms for map-matching have
been developed, such as [15, 16].

As the problem of map-matching is orthogonal to the one
we are trying to solve, we adopt a simplistic approach where
each pair of GPS coordinates is assigned to the nearest edge.
In this way, each GPS record is enriched with an edge (road
segment) of the graph, the coordinates of the two points that
define the road segment, its length, as well as with other
available information such as the speed limit.

4.2. Estimating an Edge’s Traffic Congestion
In order to compute the Getis-Ord value of an edge 𝑒𝑖𝑝, the
first step is to compute the edge’s attribute value 𝑥𝑖𝑝, an
indicator of traffic congestion. This is computed as the aver-
age value of contributions from each vehicle that reported
its position on 𝑒𝑖𝑝 during the timespan of 𝐺𝑝. In the same
spirit as in [17], we define this contribution as:

1− 𝑣𝑜𝑏𝑠
𝑣𝑓𝑓𝑠

where 𝑣𝑜𝑏𝑠 is the observed speed of a vehicle on edge 𝑒𝑖𝑝,
whereas 𝑣𝑓𝑓𝑠 is the free flow speed for edge 𝑒𝑖. One way
to compute 𝑣𝑜𝑏𝑠 is to exploit the enter (𝑡𝑖𝑛) and exit (𝑡𝑜𝑢𝑡)
time of the vehicle on edge 𝑒𝑖𝑝. Thus, we have:

𝑣𝑜𝑏𝑠 =
𝑙

𝑡𝑜𝑢𝑡 − 𝑡𝑖𝑛

where 𝑙 is the length of the edge, and 𝑡𝑖𝑛 (𝑡𝑜𝑢𝑡) is the en-
try (exit) time. Unfortunately, for a vehicle that provides
its position on edge 𝑒𝑖𝑝 (after map-matching), we do not
know the exact entry and exit time. Therefore, we estimate
these values, in particular given two successive positions
we compute the entry time 𝑡 as follows:

𝑡 = 𝑡1 + 𝑑1 ·
𝑡2 − 𝑡1
𝑑1 + 𝑑2

where 𝑡1 and 𝑡2 correspond to the two timestamps, while
𝑑1 and 𝑑2 are the distances of the two points from the entry
node, as shown in Fig. 2. In this way, we can estimate the
entry/exit times for each edge.

4.3. Defining the Weights
Given two edges 𝑒𝑖𝑝 and 𝑒𝑗𝑞 , where 𝑒𝑖 precedes 𝑒𝑗 on graph
𝐺, the weight 𝑤(𝑖𝑝),(𝑗𝑞) indicates the influence of traffic
congestion of edge 𝑒𝑗𝑞 to edge 𝑒𝑖𝑝. The weight is a function
of the distance between the edges, as an edge 𝑒𝑗𝑞 that is
in close proximity with 𝑒𝑖𝑝, has a stronger effect on 𝑒𝑖𝑝’s

Figure 2: Example showing how to compute the entry time for
an edge given two positions on successive edges.

congestion in comparison with another edge 𝑒′𝑗𝑞 that is
further away. As in [18], we use a Gaussian kernel as weight
function, defined as follows:

𝑤(𝑖𝑝),(𝑗𝑞) = 𝑒𝑥𝑝(−
𝑑2(𝑖𝑝),(𝑗𝑞)

ℎ2
)

where ℎ is the kernel’s bandwidth and 𝑑(𝑖𝑝),(𝑗𝑞) denotes the
distance between edges 𝑒𝑖𝑝 and 𝑒𝑗𝑞 . The distance function
takes into account both spatial as well as temporal proximity.
As such, we define the distance as a linear combination of
spatial and temporal distance:

𝑑2(𝑖𝑝),(𝑗𝑞) = 𝜇𝑆(𝑑𝑆(𝑖𝑝),(𝑗𝑞))
2 + 𝜇𝑇 (𝑑𝑇(𝑖𝑝),(𝑗𝑞))

2

where 𝜇𝑆 , 𝜇𝑇 are scale factors for spatial and temporal dis-
tance respectively, whereas 𝑑𝑆(𝑖𝑝),(𝑗𝑞) is the spatial distance
and 𝑑𝑇(𝑖𝑝),(𝑗𝑞) the temporal distance. The spatial distance
𝑑𝑆(𝑖𝑝),(𝑗𝑞) is measured as the number of edges between 𝑒𝑖
and 𝑒𝑗 on graph 𝐺. The temporal distance is the difference
between temporal snapshots, e.g., edges at snapshots 𝐺𝑝

and 𝐺𝑝+1 have temporal distance equal to 1.

5. Parallel Algorithms
In this section, we present two data-parallel algorithms
designed and implemented in Apache Spark that compute
hot spots over very-large collections of GPS records in a
scalable way. The first algorithm is an exact algorithm,
whereas the second computes approximate results but with
high accuracy and much faster.

In Apache Spark, the main data structure is the
DataFrame, and its predecessor the RDD (Resilient Dis-
tributed Dataset) [19]. RDDs are immutable, distributed
collections of records, which support transformations and
actions. Transformations produce new RDDs from a given
RDD, with notable examples: map, flatMap, mapValues, fil-
ter, etc. Actions perform some computation on an RDD
and produce a new result (e.g., count). Our algorithms are
implemented in Spark to support parallel processing.

5.1. Pre-processing
In the pre-processing phase, we perform map-matching (see
Section 4.1) and we split the data of each vehicle in a set of
trajectories. For each vehicle, we create a new trajectory
when we observe a temporal gap of 𝛿𝑡 in the timestamps
of reported positions. The value of 𝛿𝑡 is a parameter that
depends on the sampling rate of the data set at hand.

As a result, the output of the pre-processing phase is a
set of records in the following format: (vehID, trajID, 𝑥, 𝑦,
𝑡, 𝑒𝑖, length, speed, 𝑣, 𝑣′), where each GPS record (vehID,
𝑥, 𝑦, 𝑡) of the original data set is enriched with information

Algorithm 1 Computation of traffic congestion on edges
1: Input: The result of pre-processing: inputfile, num-

ber of Apache Spark partitions 𝑃 , temporal parameters:
𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, 𝑇 , 𝑚

2: Output: RDD[(𝑒𝑖,𝑡𝑝),𝑥𝑖𝑝]
3: function
4: dataRDD = sc.load(inputfile)
5: attrRDD = dataRDD.groupByKey().
6: mapValues(sort_grouped_values).
7: flatMap(lambda group: calc_attribute_value(group,

𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, 𝑇 , 𝑚)).
8: partitionBy(𝑃 , lambda k: hash_partitioner).
9: mapValues(lambda x: (x,1)).

10: reduceByKey(lambda x, y: (x[0] + y[0], x[1] +
y[1])).

11: mapValues(lambda x: x[0] / x[1])
12: end function

about the road segment (𝑒𝑖, length, speed, 𝑣, 𝑣′) and each
record is assigned with a trajectory identifier (trajID). The
values 𝑣 and 𝑣′ correspond to the start and end vertices of
edge 𝑒𝑖, while speed is the speed limit which is typically
provided in the road network data set and we use it as free
flow speed 𝑣𝑓𝑓𝑠.

5.2. The Exact Algorithm
The main stages of our algorithm are summarized below:

• Stage 1: A set of transformations and aggregations
is applied to the input data set to assign a traffic
congestion value 𝑥𝑖𝑝 to each edge 𝑒𝑖𝑝.

• Stage 2: The road network is represented in the
form of a graph and the mean value (𝑋) and stan-
dard deviation (𝑆) of the traffic congestion variable
are computed. This data is assigned to a broadcast
variable in order to become available to all the nodes
of the cluster.

• Stage 3: The 𝐺*
𝑖𝑝 z-score for each edge 𝑒𝑖𝑝 is com-

puted.
• Stage 4: The results of the previous step are filtered

for a level of confidence and the top-𝑘 edges with
the highest 𝐺*

𝑖𝑝 z-score are selected.

It should be noted that stages 1 and 3 are the time-consuming
steps, therefore we delve into their details next. Stage 3 is
the dominant cost, while stage 1 practically involves reading
data from disk, but it is still much lower than the cost of
stage 3.

Algorithm 1 describes how the traffic congestion values
are computed (i.e., stage 1). First, we create an RDD of key-
value pairs (known as PairRDD) with trajID as key (group-
ByKey, line 5) and value the records that correspond to
this trajectory in sorted temporal order (mapValues, line 5).
Then, for subsequent edges of each trajectory we compute
the congestion value per vehicle per edge (using function
calc_attribute_value()) and we create a new PairRDD with
a composite key that consists of the edge and the temporal
snapshot, while the value is the congestion value (flatMap,
line 7). Subsequently, we partition the records based on edge
using hash partitioning (line 8). In other words, all records
that have been mapped to the 𝑖-th edge 𝑒𝑖𝑝 at snapshot 𝐺𝑝

are assigned to the same partition. This allows the compu-
tation of the average congestion value 𝑥𝑖𝑝 per edge based

Algorithm 2 Computation of Getis-Ord index
1: Input: The attrRDD: RDD[(𝑒𝑖,𝑡𝑝),𝑥𝑖𝑝], number of

Apache Spark partitions 𝑃 , temporal parameters: 𝑡𝑚𝑖𝑛,
𝑡𝑚𝑎𝑥, 𝑇 , 𝑚, bandwidth ℎ, output of stage 2: 𝑋 , 𝑆, 𝐺

2: Output: RDD[(𝑒𝑖,𝑡𝑝),𝐺*
𝑖𝑝]

3: function
4: GetisOrdRDD = attrRDD.flatMap(lambda x : GetisOrd-

Calculations(x, 𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥, 𝑇 , 𝑚, ℎ, 𝑋 , 𝑆, 𝐺))).
5: partitionBy(𝑃 , lambda k: hash_partitioner).
6: reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1],

x[2] + y[2])).
7: mapValues(lambda x: Gi_formula(x, 𝑋 , 𝑆))
8: end function

on the contributions of all vehicles (lines 9–11). It should
be noted that the function calc_attribute_value() performs
the computation of 𝑥𝑖𝑝, as described in Section 4.2.

Then, in stage 2, we compute the aggregate values neces-
sary for the computation of Getid-Ord. These include the
mean 𝑋 , the standard deviation 𝑆, and the total number
of edges 𝑛 for all temporal snapshots of the graph 𝐺. This
information together with the graph 𝐺 is broadcast to all
worker nodes in the cluster, so as to be available during the
computation of Getis-Ord.

In stage 3, we compute the Getis-Ord index 𝐺*
𝑖𝑝 per edge

𝑒𝑖𝑝 and temporal snapshot 𝐺𝑝. Algorithm 2 provides the
pseudocode for the computation of Getis-Ord values. First,
using flatMap (line 4), we transform attrRDD into a new
RDD with key the edge 𝑒𝑖𝑝 and value a triple:

𝑤(𝑖𝑝),(𝑗𝑞), 𝑤
2
(𝑖𝑝),(𝑗𝑞), 𝑤(𝑖𝑝),(𝑗𝑞)𝑥𝑗𝑞

that corresponds to another edge 𝑒𝑗𝑞 . This computation is
performed by function GetisOrdCalculations(), which takes
into account neighboring edges 𝑒𝑗𝑞 to the current edge 𝑒𝑖𝑝
and computes their contribution to 𝑒𝑖𝑝 in terms of weight,
squared weight and weight times attribute value, which are
the basic constituent parts for computing Getis-Ord. Notice
that this function takes as parameters the information about
temporal snapshots, the kernel’s bandwidth ℎ, as well the
broadcast data. Then, we perform hash partitioning based
on edge in order to accumulate all records that correspond
the same edge for the same timestamp (line 5), in order to
compute the aggregate values (line 6):

|𝐸|∑︁
𝑗=1

𝑚∑︁
𝑞=1

𝑤(𝑖𝑝),(𝑗𝑞)

|𝐸|∑︁
𝑗=1

𝑚∑︁
𝑞=1

𝑤2
(𝑖𝑝),(𝑗𝑞)

|𝐸|∑︁
𝑗=1

𝑚∑︁
𝑞=1

𝑤(𝑖𝑝),(𝑗𝑞)𝑥𝑗𝑞

Thereafter, we compute the Getis-Ord value 𝐺*
𝑖𝑝 per edge 𝑒𝑖

and per temporal snapshot 𝐺𝑝 using function Gi_formula()
(line 7).

Finally, in stage 4, the edges are ordered based on the
computed Getis-Ord value and only the top-𝑘 edges are
returned. Obviously, 𝑘 is a parameter that is set according
to the application requirements.

Figure 3: The data set used in the experimental study.

5.3. Discussion
From the analysis of the exact algorithm we can derive
useful information about its complexity with respect to the
input parameters. We focus on the number of records that
need to be processed, as they influence the processing cost.

In Algorithm 1, the size of dataRDD is 𝑂(𝑁), where 𝑁
denotes the number of GPS records. Then, the algorithm
builds the attrRDD which contains one record per edge per
temporal snapshot. If |𝐸| is used to denote the number of
edges of graph 𝐺 (the road network) and 𝑚 denotes the
number of temporal snapshots of 𝐺, then attrRDD contains
𝑂(|𝐸| ·𝑚) records. As such, its size is linearly dependent
on the size of the road network (in edges) and the number
of temporal snapshots.

In Algorithm 2, the attrRDD is given as input and an-
other RDD called GetisOrdRDD is built. For a given tem-
poral snapshot, this contains 𝑂(|𝐸|2) records because it
combines each edge with its neighboring edges with non-
zero congestion value (in worst case with all edges). When
other temporal snapshots are considered too, the number of
records increases exponentially. Distributing these records
and aggregating per edge is the main factor that affects the
processing cost of the exact algorithm.

5.4. The Approximate Algorithm
The previous algorithm computes the exact Getis-Ord z-
scores, but it is computationally expensive because every
edge 𝑒𝑗𝑞 with non-zero congestion value (𝑥𝑗𝑞) has an influ-
ence on the z-score of all other edges. However, edges at
high distance (in spatial or temporal terms) are expected to
have extremely small impact on the computed z-score.

Motivated by this observation, we propose the use of an
approximate algorithm that takes as input a cut-off threshold
𝑐, which determines the subset of neighboring edges that
will be considered when computing the Getis-Ord values of
a given edge. In spatial terms, 𝑐 corresponds to number of
hops between two edges. In temporal terms, 𝑐 corresponds
to the number of (previous/next) temporal snapshots that
should be considered. In this way, we limit the number
of records that need to be processed and do not allow this
number to increase exponentially. In turn, this drastically
reduced number of records that need to be processed makes
the algorithm work much faster, at the expense of slightly
inaccurate results.

As shown in our experimental study, the approximate al-
gorithm offers an interesting trade-off between performance
and accuracy. Thus, we can compute hot spots with high
accuracy but in a much shorter execution time.

Parameters Values
Size of the data set (x106 GPS records) 2.5, 5, 7.4
Duration (𝑇) of temporal snapshots (in hrs) 24, 48, 168
Number of partitions (𝑃) 6, 8, 18, 60, 120
Cut-off threshold (𝑐) in hops 6, 12, 25, ∞

Table 1
Experimental parameters and values (default values in bold).

6. Experimental Evaluation
We evaluate the performance of our approach for urban hot
spot analysis. We implemented both algorithms in PySpark,
using Apache Spark 3.1.1 Core API.

6.1. Experimental Setup
Platform. We deployed our code in Google Cloud Platform
(GCP). The platform supports the process of big data in
Apache Spark. The initiated cluster runs on Debian 10,
while we used the version Spark 3.1.1 in Hadoop 3.2.2. The
cluster consisted of 4 nodes in total, 1 Master and 3 Workers.
Each node has 2vCPU 13GB RAM, 500GB hard drive and
375GB SSD.

Data Set. We employed a real data set of anonymized
GPS records collected by a fleet management provider. The
data was collected over a a period of five months from July
to November 2018, consisting of 368,977 individual vehicle
trajectories moving at the Metropolitan Area of Athens
in Greece (Fig. 3). This data set is 1.1GB in total size and
contains approximately 7.4M (million) GPS records. We
also create two subsets of size 5M and 2.5M records. After
pre-processing (Section 5.1), each record consists of the
fields: (vehID, trajID, 𝑥, 𝑦, 𝑡, 𝑒𝑖, length, speed, 𝑣, 𝑣′). Even
though the specific data set is sparse and medium-sized, it
is still a real-world data set that allows the evaluation of our
approach.

Metrics. Our main evaluation metric was the execution
time needed for each individual stage of the algorithm to be
completed. The execution time is measured in seconds.

Evaluation Methodology. The efficiency of our algo-
rithm was assessed based on four parameters: (a) the size
of the data set, (b) the temporal window 𝑇 , which deter-
mines the number of temporal snapshots, (c) the number
of Apache Spark partitions 𝑃 , and (d) the cut-off threshold
𝑐, used only by the approximate algorithm (for the exact
𝑐 = ∞), that defines the neighboring edges in the axes of
time and space that contribute in Getis-Ord z-score, mea-
sured in hops. After different tests, we also set the kernel’s
bandwidth ℎ = 8 for the exact algorithm, while ℎ = 2

3
· 𝑐

for the approximate algorithm. Our experimental setup is
summarized in Table 1.

6.2. Results for the Exact Algorithm
Varying the size of the data set. In Fig. 4 (left), we demon-
strate the performance of the exact algorithm when increas-
ing the data set size. We measure the time of stage 3, which
is the most time-consuming part of the algorithm. As the
number of observations to be processed increases from 2.5M
to 7.4M, so does the total execution time of the algorithm
but not linearly. This is due to the fact that the larger data
set implies more temporal snapshots, hence more edges in

Figure 4: Left: execution time of stage 3 of the exact algorithm when increasing the data set size and varying the temporal
duration 𝑇 of snapshots. Right: total execution time for the data set of 7.4M records for different number of partitions 𝑃 .

total, which all need to be processed for the computation of
the Getis-Ord value of an edge.

Varying the duration 𝑇 of temporal snapshots. The
temporal duration 𝑇 of 24, 48 and 168 hours for a period
of five months leads to the generation of 153, 27 and 22
non-empty temporal snapshots respectively. Therefore, the
fewer the temporal partitions, the smaller the overall exe-
cution time. In Fig. 4 (left) the temporal partitioning that
comes from 𝑇 = 48 hrs time window is twice as efficient
in terms of execution time as the 𝑇 = 24 hrs time window.
The 𝑇 = 168 hrs time window is about seven times more
efficient than 𝑇 = 24 hrs, indicating a linear relationship
between execution time and temporal duration 𝑇 for the
data set of 2.5M and 5M records.

Varying the number 𝑃 of Spark partitions. Fig. 4
(right) shows the total execution time of the exact algorithm
and the time of stage 3 for different numbers of Spark par-
titions. The first observation is that the execution time of
stage 3 practically determines the overall execution time.
Regarding the effect of using a higher number of parti-
tions, this seems to reduce execution time. Using more
partitions results in smaller subsets of data to be processed,
which require less processing time. However, the reduction
is not that big (about 15% when using 120 partitions for
𝑇 = 24hrs).

Figure 5: Execution time of the approximate algorithm for dif-
ferent cut-off values 𝑐 and temporal duration 𝑇 .

6.3. Results for the Approximate Algorithm
Fig. 5 demonstrates that the overall execution time is sig-
nificantly reduced for smaller values of 𝑐, since the weight
function is calculated only for the edges of the graph that
are 𝑐 hops away from an edge both spatially and temporally.
Compared to the exact algorithm, the gain in execution time
can be of orders of magnitude. For example, for 𝑇 = 24
hrs, the exact algorithm needs 27, 799 sec, whereas the ap-
proximate algorithm with 𝑐 = 6 takes only 659 sec. This

shows that our approximate algorithm that uses the cut-off
threshold can make the discovery of hot spots practically
applicable for extremely large data sets.

However, the remaining question is how accurate are
the results of the approximate algorithm? Fig. 6 shows
the hot spots discovered by the approximate and the exact
algorithm. This demonstrates visually that the results of the
experiment for 𝑐 = 12 are similar to those obtained when
applying the exact algorithm.

To complement the visual evaluation, we also performed
a quantitative study. We obtained a ranked list of the top-
100 edges in terms of traffic congestion for 𝑐 = 12 and for
the exact algorithm. Then, we computed the Spearman’s
rank correlation for these two lists, in order to assess if the
same ordering is observed (i.e., if the ranking for 𝑐 = 12
resembles the ranking obtained by the exact algorithm). If
the two rankings were identical, we would obtain a value of
1. In our case, we obtained a value of 0.82 for the Spearman’s
rank correlation. This indicates that the two lists are highly
correlated, or (put differently) that the hot spots discovered
for 𝑐 = 12 are very similar to the ones of discovered by
the exact algorithm. In the case of the results using 𝑐 =
6, there is less sensitivity in the recognition of extreme
values, while in the case of 𝑐 = 24 there is hypersensitivity
resulting in more edges being recognized as hot spots. Our
experiments indicate that using a cut-off threshold around
𝑐 = 12 provides a nice trade-off between performance and
accuracy.

7. Conclusions
In this paper, we formulate the problem of hot-spot dis-
covery in road networks. We proposed an exact and an
approximate algorithm for hot spot discovery, which are
implemented as data-parallel algorithms on top of Apache
Spark. Our experiments using a real-life data set indicate
that the approximate algorithm provides a viable solution
that trades performance for accuracy. In the future, we will
apply our algorithms to other real-life data sets of larger
scale.

Acknowledgements
This research has received funding from the European
Union’s funded Project EMERALDS under grant agreement
no 101093051.

Figure 6: Hot spots discovered by the approximate algorithm for 𝑐 = 12 (left), and for the exact algorithm, i.e., 𝑐 = ∞ (right).

References
[1] E. Eftelioglu, X. Tang, S. Shekhar, Geographically

robust hotspot detection: A summary of results, in:
Proc. of ICDMW’15, 2015, pp. 1447–1456.

[2] E. Eftelioglu, S. Shekhar, D. Oliver, X. Zhou, M. R.
Evans, Y. Xie, J. M. Kang, R. Laubscher, C. Farah, Ring-
shaped hotspot detection: A summary of results, in:
Proc. of ICDM’14, 2014, pp. 815–820.

[3] X. Tang, E. Eftelioglu, S. Shekhar, Elliptical hotspot
detection: A summary of results, in: Proc. of BigSpa-
tial’15, 2015, p. 15–24.

[4] Y. Xie, S. Shekhar, Significant DBSCAN towards sta-
tistically robust clustering, in: Proc. of SSTD’19, 2019,
p. 31–40.

[5] P. Nikitopoulos, A.-I. Paraskevopoulos, C. Doulkeridis,
N. Pelekis, Y. Theodoridis, BigCAB: Distributed hot
spot analysis over big spatio-temporal data using
Apache Spark, in: Proc. of SIGSPATIAL’16, 2016.

[6] X. Tang, E. Eftelioglu, D. Oliver, S. Shekhar, Significant
linear hotspot discovery, IEEE Trans. Big Data 3 (2017)
140–153.

[7] X. Tang, E. Eftelioglu, S. Shekhar, Detecting isodis-
tance hotspots on spatial networks: A summary of
results, in: Proc. of SSTD’17, 2017, pp. 281–299.

[8] M. Häsner, C. Junghans, C. Sengstock, M. Gertz, On-
line hot spot prediction in road networks, in: Proc. of
BTW’11, 2011, pp. 187–206.

[9] X. Li, J. Han, J. Lee, H. Gonzalez, Traffic density-based
discovery of hot routes in road networks, in: Proc. of
SSTD’07, 2007, pp. 441–459.

[10] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere,
M. Potamias, K. Mouratidis, T. Sellis, On-line discovery
of hot motion paths, in: Proc. of EDBT’08, 2008.

[11] P. Nikitopoulos, A.-I. Paraskevopoulos, C. Doulkeridis,

N. Pelekis, Y. Theodoridis, Hot spot analysis over big
trajectory data, in: Proc. of Big Data’18, 2018, pp.
761–770.

[12] Y. Qiao, Y. Cheng, J. Yang, J. Liu, N. Kato, A mobility
analytical framework for big mobile data in densely
populated area, IEEE Trans. on Veh. Techn. 66 (2017)
1443–1455.

[13] J. K. Ord, A. Getis, Local spatial autocorrelation statis-
tics: Distributional issues and an application, Geo-
graphical Analysis 27 (1995) 286–306.

[14] G. Makrai, Efficient method for large-scale spatio-
temporal hotspot analysis, in: Proc. of SIGSPATIAL’16,
2016.

[15] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran,
P. Jaillet, Online map-matching based on hidden
markov model for real-time traffic sensing applica-
tions, in: Proc. of ITSC’12, 2012, pp. 776–781.

[16] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, Y. Huang,
Map-matching for low-sampling-rate GPS trajectories,
in: Proc. of SIGSPATIAL’09, 2009, pp. 352–361.

[17] H. Xiong, A. Vahedian, X. Zhou, Y. Li, J. Luo, Predicting
traffic congestion propagation patterns: A propagation
graph approach, in: Proc. of IWCTS@SIGSPATIAL’18,
2018, pp. 60–69.

[18] B. Wu, R. Li, B. Huang, A geographically and tempo-
rally weighted autoregressive model with application
to housing prices, Int. J. Geogr. Inf. Sci. 28 (2014) 1186–
1204.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, I. Stoica, Re-
silient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing, in: Proc. of
NSDI, USENIX Association, 2012, pp. 15–28.

	1 Introduction
	2 Related Work
	2.1 Point-based Hot Spot Analysis
	2.2 Trajectory-based Hot Spot Analysis

	3 Problem Formulation
	3.1 Preliminaries
	3.2 Problem Formulation

	4 Hot Spot Analysis
	4.1 Map-matching
	4.2 Estimating an Edge's Traffic Congestion
	4.3 Defining the Weights

	5 Parallel Algorithms
	5.1 Pre-processing
	5.2 The Exact Algorithm
	5.3 Discussion
	5.4 The Approximate Algorithm

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Results for the Exact Algorithm
	6.3 Results for the Approximate Algorithm

	7 Conclusions

