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Abstract
Underwater noise pollution by shipping activities is widely recognised as a significant threat to marine life. The noise emitted
by vessels can have various detrimental effects on fish and marine ecosystems. Therefore, accurately estimating and analysing
vessel-generated underwater noise is a critical challenge for the protection and conservation of marine environments. For this
reason, we have built a model for the spatio-temporal characterisation of underwater noise generated by vessels. This paper
builds on this model by optimising the code pipeline, implementing table partitioning and leveraging parallelisation techniques.
These enhancements allow us to explore various partitioning methods while significantly improving the computational
performance and enabling more efficient analysis of underwater noise. Our approach not only improves the computational
efficiency but also preserves the accuracy of the noise calculations, offering a more scalable solution for large datasets.
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1. Introduction
Underwater noise generated by human activities, espe-
cially from shipping, is known to produce short and long
term effects on marine animal species. This noise pollu-
tion can disrupt the natural acoustic environment, lead-
ing to several adverse consequences. Some of the nega-
tive impacts include interference with communication,
changes in behaviour, stranding, and increased mortality
rates [1, 2]. Therefore, characterising underwater noise
is crucial for monitoring the health of aquatic life, assess-
ing potential risks, and providing valuable information
to ecologists and policy makers. This enables the devel-
opment of effective strategies to maintain a productive
and healthy ecosystem. However, measuring underwater
noise is a complex and computationally demanding task.
In addition to the installation of hydrophones, which re-
quires specific resources and expertise for proper deploy-
ment and calibration, the analysis of the collected data is
equally challenging. Once the data is acquired, it must be
processed to extract meaningful insights, a process that
can require substantial computational power, especially
when monitoring large areas or extended time periods.
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Moreover, direct measurement of underwater noise is not
always feasible, particularly in remote regions or deep
waters. In these cases, acoustic models are employed to
simulate sound propagation. However, these models also
require a wide range of input data, including detailed
environmental parameters and vessel-specific character-
istics, in addition to huge computational effort to handle
the complex calculations involved. For this reason, the
development of sound propagation models that balance
accuracy with computational efficiency is essential. Such
models must be capable of providing reliable predictions
while minimising resource consumption, enabling their
application on larger scales or in data-intensive scenarios.

In this work, building upon the model developed in [3]
and refined in [4], we introduce several enhancements
aimed at improving the efficiency of its implementation.
Specifically, we optimise the computational pipeline to
handle large-scale spatio-temporal datasets more effec-
tively while preserving the results of the previous model.
The optimisations include the restructuring of the code
to cope with time consuming operations and the imple-
mentation of table partitioning using PostgreSQL [5] and
Citus [6], as well as leveraging parallelisation techniques
to improve processing speed and scalability. The frame-
work has been implemented in MobilityDB [7], an open-
source platform for managing and analysing geospatial
trajectory data. Our framework enables various analyses
to estimate the impact of fishing activities on underwater
noise pollution.

To demonstrate the potential of the developed system,
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we focus on the fishing activities in the Northern Adri-
atic Sea, one of the most heavily exploited areas of the
Mediterranean Sea, where underwater noise pollution
is a recognised consequence of intensive fishing activity.
The dataset used in this study includes AIS data from Ital-
ian and Croatian fishing vessels for June 2020. Moreover,
to determine the acoustic features of the vessel engines
and refine the propagation model, we use direct acoustic
measurements from the Interreg project SOUNDSCAPE1,
which conducted acoustic monitoring in the Northern
Adriatic Sea from March 2020 to June 2021.

The paper is organised as follows. Section 2 overviews
the sound propagation model introduced in [3] and re-
fined in [4]. Section 3 focuses on the optimisation of
the computational pipeline to enhance the model per-
formance. Section 4 discusses the implementation of
data partitioning techniques with PostgreSQL and ex-
plores the integration of the Citus extension to enable
distributed processing. Finally, Section 5 presents some
concluding remarks.

2. Underwater Noise Model
In this section, we briefly describe the model for under-
water sound propagation based on our previous work [3]
and significantly refined in [4] w.r.t. several aspects.

The basic objective of noise modelling is to assess
how much noise a particular activity will generate in
the surrounding area. Specifically, the aim is to model
the received noise level (RL) at a given point (or points),
based on the sound source level (SL) of the noise source,
and the amount of sound energy which is lost as the
sound wave propagates from the source to the receiver
(transmission loss or propagation loss, TL). The principal
sources of underwater noise are machinery, propellers,
and cavitation. Our AIS dataset includes some data of
the fishing boats, such as the length overall (LOA) of the
boat, the horsepower of the engine and also the fishing
gear used. However, the dataset does not include direct
measurements of the sound pressure levels of the fishing
vessels. So, we infer such values considering the general
literature about underwater noise and the measurements
provided by the SOUNDSCAPE project [8], which con-
ducted acoustic monitoring in the Northern Adriatic Sea
from March 2020 to June 2021. In particular, we use the
measurements of a hydrophone located in the middle
of the Adriatic Sea, taken on March 31, 2021 between
5:40 pm and 5:55 pm. Here, there is a unique fishing
vessel crossing nearby the hydrophone and taken as the
reference boat. This allows us, by linear regression on
sound pressure level measurements, to assign a vessel
with an 835 Hp engine, when not trawling, an estimated
source level of 136 dB at 63 Hz. In order to associate

1https://www.italy-croatia.eu/web/soundscape

the source levels to all the other vessels, we need to re-
late the sound pressure level to the engine horsepower,
the latter being available in our dataset. If we assume
that a constant fraction of engine power gets converted
into acoustic power (i.e. acoustic power scales linearly
with horsepower), then 3 dB are added per doubling in
engine power. We adopt such a linear progression on
logarithmic scale of engine power and the resulting value
is denoted with 𝑆𝐿0. For example, for engines between
100 Hp and 835 Hp, considering a frequency of 63 Hz, we
obtain a range between 123 dB and 136 dB.

Differences in source level may result from variations
in speed. Specifically, as noted in [9], the intrinsic factor
of speed can influence the broadband source level of ships
according to the following relation:

𝑆𝐿 =

{︃
𝑆𝐿0 if 𝑣 ≤ 𝑣0

𝑆𝐿0 + 15.39 𝑑𝐵 × 𝑙𝑜𝑔10
𝑣
𝑣0

if 𝑣 > 𝑣0
(1)

where 𝑣0 = 3.9 kn corresponds to the speed of the ref-
erence boat and 𝑣 is the actual speed of the vessel.

Trawling vessels typically generate higher levels of ra-
diated noise compared to free-running vessels operating
under the same machinery settings. While published data
on the radiated noise from operating trawling vessels are
limited, some studies have reported increases in radiated
noise ranging from 5 dB to 15 dB during trawling activ-
ities. Specifically, it is noted that the effect of trawling
is minimal below 100 Hz and increases with frequency.
Accordingly, we assign an increase of 5 dB at 63 Hz when
the vessel is trawling.

To account for transmission loss, we adopt a combi-
nation of spherical propagation and mode stripping [10].
The resulting formula is:

𝑇𝐿 =

{︃
20 𝑙𝑜𝑔10(𝑟) if 𝑟 ≤ 𝑟trans

15 𝑙𝑜𝑔10(𝑟) + 5 𝑙𝑜𝑔10(𝑟trans) if 𝑟 > 𝑟trans
(2)

The 15 𝑙𝑜𝑔10(𝑟) dependence on range is known as mode
stripping because it results from the gradual erosion of
steep ray paths (high-order modes) after multiple bottom
reflections. To determine 𝑟trans , we refer to the reference
boat. At 63 Hz the transition is expected to occur at
around 400 m, approximately 10 times the water depth.

Environmental absorption features may affect the
transmission loss, especially for large distances and high
frequencies. To take into account all the environmental
aspects that influence the sound propagation underwa-
ter, we add a term proportional to distance from the
source [11]:

𝑇𝐿𝑡𝑜𝑡 = 𝑇𝐿+ 𝛼× 𝑟 (3)

At frequency 63 Hz, 𝛼 is on the order of 10−6 dB/m.
The classic sonar equation [12] provides an estimation

of the received noise level (𝑅𝐿) by subtracting the trans-



mission loss (𝑇𝐿) from the sound source level (𝑆𝐿). How-
ever, it does not consider the ambient (or background)
noise, which is present in the marine environment. The
𝑅𝐿 exceeding the ambient noise is the following:

𝑅𝐿 = 𝑆𝐿− 𝑇𝐿𝑡𝑜𝑡 −𝐴𝑁 (4)

The SOUNDSCAPE measurements [13, 8] are also used
to estimate the ambient noise. In particular, we employed
the exceedance level 𝐿90, which indicates the sound level
that is exceeded 90% of the time. As mentioned in [13],
𝐿90 can be referred to as common natural acoustic con-
ditions. To account for spatial and temporal variability,
we partitioned the Northern Adriatic Sea into a 1 km ×
1 km grid and assigned noise values based on 𝐿90 mea-
surements at hydrophone stations. These values were
interpolated using the Inverse Distance Weighting (IDW)
in QGIS2, producing maps that capture the heterogeneous
underwater acoustic environment.

The implementation of the model to calculate the un-
derwater noise generated by vessels is succinctly de-
scribed below (for more details, see [4]). First, the North-
ern Adriatic Sea is partitioned into a regular grid com-
posed of square spatial cells (1km×1km). This grid, con-
sisting of 43, 508 cells, is enriched with the ambient noise
and some environmental features (such as the sea surface
temperature or the salinity) which are essential for noise
calculation. Then, starting from AIS data, we reconstruct
the vessels trajectories and we deploy them in a spatio-
temporal database [14]. These trajectories are equipped
with semantic information, such as the acoustic charac-
teristics of the vessel engines and the activities conducted
along their paths, which are used to infer how the noise
spreads in the area of interest. The entire trajectories
reconstruction and their semantic enrichment leverage
the temporal and spatio-temporal types of MobilityDB,
as well as the functions provided by this spatio-temporal
database. Subsequently, using the spatio-temporal func-
tions of MobilityDB, we apply a sampling process on the
vessel’s trajectory at one-minute intervals to determine
the boat’s positions at specific temporal instants. For
each position 𝑝, we estimate the decibels produced by
the vessel, based on its activity and speed. Next, we cal-
culate the propagation radius 𝑟, i.e. the distance at which
the noise generated by the fishing vessel gets drowned
into ambient noise, and we construct a buffer 𝑏 with ra-
dius 𝑟 around 𝑝. Then, we select all the grid cells whose
centroids fall within 𝑏 and compute the distance between
the sampled point 𝑝 and these centroids. This distance is
used to determine the received noise in the selected cells.
Finally, by grouping by cell id and time, we combine all
the received sound levels to obtain the total noise level
to be associated with the cell.

2https://qgis.org/en/site/

3. Noise Modelling Optimisation
In this section, we first describe the setting of our experi-
ment concerning the implementation of the underwater
noise model presented in [4]. Then, we propose some
optimisations of the process, and discuss the benefits
obtained in terms of time efficiency.

For our experiment we focus on June 2020, one of the
months with the highest fishing activity in 2020. Dur-
ing this period, there are 642 fishing vessels, generating
9, 841, 079 AIS data points and completing 7, 462 trips.
Since the AIS data are limited to the Northern Adriatic
Sea, we consider the projected coordinate system for
Italy, specifically the spatial reference identifier (SRID)
6876. To process this data and build our model, we used
a machine that features 32 Intel(R) Xeon(R) CPU E5-4610
v2 processors running at 2.30 GHz, offering multithread
performance. It is equipped with 256 GB of DDR4 ECC
RAM and it utilises a 500 GB RAID 5 storage configu-
ration. On this machine we deployed PostgreSQL 16.6,
PostGIS 3.5, and MobilityDB 1.3.

By using the approach from [4] recalled above, the
reconstruction of the fishing vessels trajectories takes
46 minutes, while the pipeline to calculate the underwa-
ter noise propagation requires approximately 44 hours.
The latter running time, referred as Original Pipeline in
Figure 3, is the target of our optimisations.

We now outline the improvements to such a pipeline
to enhance efficiency, support scalability, and reduce
computational overhead. One of the most costly oper-
ations is the selection of the cells affected by the noise
propagation. In fact, every 60 seconds we get all the
fishing vessel positions, compute the noise generated by
the vessels (SL) and then propagate it. To accomplish
this task for each point we build a buffer using the prop-
agation radius 𝑟. Then, we perform a JOIN operation
with the table Grid storing the grid cells, followed by
an ST_Intersects operation to determine the cells af-
fected by the noise, i.e., those inside the buffer. Since the
ST_Intersects operation involves the geometry type,
it inherently requires computationally expensive spatial
operations, which can significantly impact the model
performance. To avoid this computational overhead, we
make two significant changes: (i) restructure the table
Grid and (ii) use a bounding box instead of a buffer in
noise propagation. The aim is to find the cells involved
in the noise propagation without using the expensive
operation ST_Intersects.

Grid table restructuring. We add two new attributes
to the cell of the grid: grid_r and grid_c, which indi-
cate the row and column numbers within the grid. Hence,
starting from the lower-left corner, the grid cells are num-
bered sequentially, so they are identified as (1, 1), (1, 2)
and so on. This grid-based system allows for an efficient



identification of the cells within a bounding box, without
the need for costly spatial operations. The table Grid
includes also the 𝑥 and 𝑦 coordinates of the cell centroid,
which will be used for calculating sound propagation.
The structure of the table Grid is as follows.

CREATE TABLE Grid (
grid_id integer PRIMARY KEY,
grid_r integer NOT NULL,
grid_c integer NOT NULL,
centroid_x double precision,
centroid_y double precision,
elevation real,
ambient_noise real,
alpha tfloat );

CREATE INDEX idx_grid_r ON Grid (grid_r);
CREATE INDEX idx_grid_c ON Grid (grid_c);

Note that we also add two indexes to the table Grid
on the columns grid_r and grid_c, to improve the
efficiency of spatial query operations.

Bounding box for Noise Propagation. To compute
the total received noise level for each cell of our grid, we
proceed as illustrated in Figure 1. After reconstructing
the vessel trajectories from the AIS data, we get the posi-
tions of all the fishing vessels at the same time instants,
i.e., every 60 seconds (Step 1 in Figure 1). For each point
𝑝, we determine the cell 𝑐 it belongs to, by comparing the
coordinates of 𝑝 with the grid cell boundaries which are
computed by adding or subtracting 500 meters from the
coordinates of the cell centroid. We calculate the noise
generated by the fishing vessel obtained by adding to the
sound level associated with the horsepower of the boat, a
contribution related to the actual speed of the vessel in 𝑝
(see Equation (1)), and the noise due to the fishing activ-
ity, if it occurs in 𝑝. Then, we compute the propagation
radius 𝑟 (expressed in meters) and we build the sound
propagation bounding box (Step 2 in Figure 1), defined by
the minimum and maximum row and column identifiers
that enclose all the cells affected by the noise generated
by the vessel at 𝑝. These boundaries are obtained simply
by adding or subtracting 𝑟 from the row and columns
identifiers of the cell 𝑐, grid_r and grid_c. Thanks to
the row and column identifiers of the grid cell we avoid
the use of the ST_Intersects operation, which is very
time consuming. This approach allows retrieving the
cells involved in the noise calculation in just 10 seconds
for the entire dataset of June 2020. Next, we select all
cells inside the bounding box and compute the distance
between 𝑝 and the cell centroids (Step 3 in Figure 1). We
use this distance to estimate the transmission loss, which
allows us to determine the received noise level in the
selected cells. By grouping by cell id and time, we com-
bine all the contributions of the points of the different
trajectories (Step 4 in Figure 1), thus obtaining for each
cell the received noise level (RL). These optimisations led
to a more time-efficient pipeline that produces the same

results as the implementation described in Section 2. In
fact, the new execution time for June 2020 is reduced to
7 hours, making the code over six time faster than the
original version, saving 37 hours of execution time (see
Figure 3, where this is called Optimised Pipeline).

4. Partitioning and Parallelisation
To further optimise the performance of the pipeline we
present an analysis of various partitioning and paral-
lelisation techniques. In particular, selecting the cells
affected by noise propagation for each point 𝑝 (Step 3
in Figure 1) remains a computationally expensive opera-
tion. This complexity arises from the need to perform a
JOIN operation between the table PointBoundingBox,
which contains each vessel position along with its sound
propagation bounding box, encompassing over 4 million
points, and the table Grid, which consists of 43,508 cells.
Consequently, the JOIN involves a computational effort
equivalent to approximately 4 million × 43 thousand
operations, making it inherently costly.

In Section 4.1, we examine table partitioning tech-
niques in PostgreSQL, applying both range and hash
partitioning strategies. In Section 4.2, we extend this ap-
proach by combining PostgreSQL partitioning with mul-
tidimensional tiling, focusing on the spatial dimension.
Finally, in Section 4.3, we leverage the Citus extension of
PostgreSQL to apply sharding and take advantage of its
parallel query execution capabilities.

4.1. PostgreSQL Partitioning
The first technique we explore to enhance the execu-
tion of our code is Table Partitioning in PostgreSQL. This
method consists in dividing a logically large table into
smaller physical segments, with each partition being an
independent table that stores a specific subset of the orig-
inal data. PostgreSQL natively supports three forms of
partitioning [5]: (i) Range partitioning, where the table
is divided into ranges based on a key column or set of
columns, with each partition containing non-overlapping
ranges of values; (ii) List partitioning, which explicitly
assigns specific key value(s) to each partition, allowing
precise control over data distribution; and (iii) Hash par-
titioning, where the table is divided by applying a hash
function to the partition key.

Table partitioning offers several advantages that signif-
icantly improve both performance and data management.
It enhances query execution by allowing the database
management system to filter out irrelevant partitions,
thus speeding up query processing, especially for large
datasets. Additionally, partitioning simplifies data man-
agement tasks such as archiving, purging, backup and
restore operations. Furthermore, data loading is also



Figure 1: Main steps in the calculation of the noise maps.

more efficient since it can be parallelised, and indexing
becomes faster as partitions reduce the scope of the data
being indexed [15].

Range Partitioning on Time. To enhance the per-
formance of our pipeline, as we have already remarked,
we can improve the time execution of the JOIN oper-
ation between the table PointBoundingBox and the
table Grid. To accomplish this task we partition the
table PointBoundingBox, which is defined as follows:

CREATE TABLE PointBoundingBox AS (
SELECT point_id,trip_id,mmsi,x,y,time,db_boat,

grid_r-radius AS r_min,
grid_r+radius AS r_max,
grid_c-radius AS c_min,
grid_c+radius AS c_max

FROM UnnestTripWithCell );

where the point_id identifies the spatio-temporal point,
trip_id is the identifier of the trip to which the point
belongs, mmsi refers to the vessel performing the trip,
x and y are the coordinates of the point, time specifies
the date and hour of the point, and db_boat denotes
the decibel level generated by the vessel at that point,
based on its speed and activity. The remaining attributes
represent the row and column identifiers used to con-
struct the sound propagation bounding box including all
the cells affected by the noise generated by the vessel at
point_id.

We partition the table PointBoundingBox into four
partitions based on time ranges to reflect the recurring
weekly pattern: fishing activity is intense from Monday
to Thursday, while significantly lower from Friday to Sun-
day. Additionally, this partitioning ensures a balanced
disk usage across the partitions (see Table 1). We can
create the partitioned table as follows.

CREATE TABLE PointBb_RangePart(LIKE PointBoundingBox)
PARTITION BY RANGE(time);

Next, we create four time-based partitions corresponding
to the four weeks of June 2020. After inserting the data
into the partitioned table, the entries are automatically
routed to the appropriate partition. Some statistics re-
garding the number of rows in each partition, along with
their disk usage, are presented in Table 1 (left).

The query we want to optimise, which involves the
partitioned table PointBb_RangePart, is the following.

SELECT eg.grid_r,eg.grid_c,pbb.trip_id,pbb.time,
pbb.db_boat, SQRT(POWER(pbb.x-eg.centroid_x,2) +
POWER(pbb.y-eg.centroid_y,2)) AS dist,

eg.elevation,eg.ambient_noise,
valueAtTimestamp(eg.alpha,time::DATE) AS alpha

FROM PointBb_RangePart pbb, Grid eg
WHERE eg.grid_r>=r_min AND eg.grid_c>=c_min AND

eg.grid_r<=r_max AND eg.grid_c<=c_max;

This query returns, for each spatio-temporal point
(pbb.x, pbb.y, pbb.time), the cells that are affected
by the noise generated at that point by the fishing vessel,
and computes the distance between the point and the
centroids of these cells (Step 3 in Figure 1).

The query plan involves a combination of paral-
lel and sequential scans to optimise the data retrieval
process. The first step is a parallel append opera-
tion, which processes multiple partitions of the table
PointBb_RangePart in parallel. Each partition (corre-
sponding to a different time range) is accessed through
a parallel sequential scan. The second part of the plan
involves a bitmap heap scan on the table Grid, where
rows are selected based on conditions that compare the
grid’s row and column identifiers with the corresponding
bounding box identifiers from the partitions. Specifically,
the query checks that the cells, identified by row grid_r
and column grid_c, lie within the minimum and maxi-
mum row and column values of the bounding box. This
comparison is optimised through bitmap index scans on
idx_grid_r and idx_grid_c, each filtering the data
based on the row and column values. In essence, the
query plan performs a parallel scan of partitioned data,



Table 1
Statistics for the partitions by range on the time column (left)
and by hash on the mmsi column (right).

Range Partitioning Hash Partitioning

N. partition Disk Usage Rows Disk Usage Rows

1 81 MB 888,849 97 MB 1,090,196
2 115 MB 1,269,182 87 MB 977,776
3 90 MB 990,148 94 MB 1,059,732
4 93 MB 1,019,383 92 MB 1,039,858

followed by an efficient indexed search of the grid, en-
suring faster query execution by narrowing down the
relevant data points through partitioning and indexing.

By partitioning the table PointBb_RangePart while
leaving the rest of the code unchanged, the entire pipeline
now completes in just 2 hours and 25 minutes. The com-
putation of sound propagation is 18.2 times faster than
the first implementation (which took 44 hours) and 2.9
times faster than the optimised version without partition-
ing (which took 7 hours).

Hash Partitioning on MMSI. As a second partition-
ing experiment, we use the hash partitioning on the mmsi
column of the table PointBoundingBox. We aim to di-
vide the table PointBoundingBox into four partitions
based on a hash function. The partitioned table can be
created as follows.

CREATE TABLE PointBoundingBox_HashPart (LIKE
PointBoundingBox) PARTITION BY HASH(mmsi);

CREATE TABLE PointBb_HashPart_1 PARTITION OF
PointBoundingBox_HashPart FOR VALUES WITH (
MODULUS 4, REMAINDER 0);

We have only reported the creation of the first hash
partition. Next, we insert the values into the table
PointBoundingBox_HashPart, which are automati-
cally distributed across the partitions. Table 1 (right)
presents some statistics on the number of rows and the
disk usage of each partition. In this case, we can ob-
serve that the data distribution across the four partitions
is more balanced compared to the partitions obtained
through time-based range partitioning.

Now we use table PointBoundingBox_HashPart,
instead of table PointBb_RangePart, in the query we
want to optimize, presented in the previous subsection.
The query plan is the same as that described for range
partitioning and consists of a Parallel Seq Scan across
the four partitions of the hash-partitioned table and a
Bitmap Heap Scan on the table Grid. The execution time
for June 2020 is 2 hours and 20 minutes, which is slightly
faster than the range partitioning approach.

4.2. Space Tiling and Partitioning
Multidimensional tiling is a technique that partitions an
𝑛-dimensional domain into tiles of varying dimensions.
This approach has several applications. For instance, mul-
tidimensional tiling can be applied to partition and/or
distribute datasets across a cluster of servers. One key
advantage of this partitioning mechanism is that it pre-
serves spatial and temporal proximity, unlike traditional
hash-based partitioning methods. This distribution re-
duces the amount of data that needs to be exchanged
between nodes during query processing, a process com-
monly known as reshuffling [15].

In our work, we focus on tiling with respect to the
spatial dimension. Specifically, we partition the positions
of vessels based on their spatial locations. The tiling can
be either regular, where all tiles are of equal size in each
dimension, or adaptive, where the size of the cells may
vary across dimensions. In the first case, we employ a
regular tiling, constructing a uniform grid consisting of
4× 3 cells, as shown in Figure 2a. To generate this grid,
we used the MobilityDB function spaceTiles. The grid
size was manually tuned to balance the trade-off between
the number of partitions and the data distribution within
each partition. Then we create the partitioned table along
with the corresponding tables for the space tiles, by using
the List partitioning technique.

CREATE TABLE PointBoundingBox_RegGrid(LIKE
PointBoundingBox) PARTITION BY LIST(TileId);

CREATE TABLE PointBb_RegGrid_1 PARTITION OF
PointBoundingBox_RegGrid FOR VALUES IN (1);

Only the creation of the first tile is specified. Once the
data is inserted into the partitioned table, the entries are
automatically directed to their corresponding partitions.
The limitation of this type of tiling is that it does not
ensure balanced workload distribution across the tiles.

A possible solution to this issue is to use an adap-
tive grid, as illustrated in Figure 2b. In this case, we
create a grid that divides the region based on the distri-
bution of vessel points in the Northern Adriatic Sea. It is
worth noting that some cells are smaller, as they contain
a higher density of data points. Then, we partition the ta-
ble PointBoundingBox according to the adaptive grid
structure. The process of creating the partitioned table,
along with the corresponding tables for the spatial tiles,
follows the same steps as for the regular grid.

Table 2 presents statistics on the number of rows in
each tile, as well as their respective disk usage, for both
the regular and adaptive grids. The table clearly shows
that the data partitioned according to the adaptive grid
exhibits a more balanced distribution across the tiles
compared to the regular tiling. However, certain tiles
(specifically, tiles 1, 2, and 12) contain noticeably fewer
data points, because they mostly cover the mainland.

The query we aim to optimise is the one presented



(a) Regular grid. (b) Adaptive grid.

Figure 2: Partitioning of vessel trip data with a regular grid and an adaptive grid.

Table 2
Statistics for the partitions by list on the tileId column.

Regular Grid Adaptive Grid

Tile Disk Usage Rows Disk Usage Rows

1 18 MB 168,403 32 kB 0
2 95 MB 882,540 4000 kB 35,144
3 61 MB 571,392 53 MB 494,276
4 34 MB 314,051 92 MB 859,769
5 77 MB 715,011 48 MB 445,491
6 23 MB 212,307 40 MB 373,537
7 6176 kB 54,928 44 MB 404,563
8 32 kB 0 18 MB 165,596
9 117 MB 1,090,983 64 MB 596,401
10 17 MB 152,747 68 MB 633,210
11 688 kB 5,200 15 MB 143,051
12 32 kB 0 1944 kB 16,524

in Section 4.1. The query plan, like the previous ones,
combines parallel and sequential scans to optimise data
retrieval. The first step is a parallel append opera-
tion, which processes multiple partitions of the table
PointBoundingBox_RegGrid concurrently. This is
followed by a bitmap heap scan on the table Grid, where
rows are selected based on conditions that compare the
grid’s row and column identifiers with the corresponding
bounding box identifiers from the partitions. By tiling the
space with the regular grid, the full pipeline is executed
in 2 hours 46 minutes, while using the adaptive grid it
completes in just 2 hours and 16 minutes, which slightly
improves the techniques in Section 4.1.

4.3. Using Citus for parallelisation
Citus3 is an extension of PostgreSQL designed to ease
horizontal scaling, making it suitable for handling large
datasets across multiple machines. It distributes both
data and queries across a cluster, allowing users to lever-

3https://www.citusdata.com/

age the power of a distributed system while maintaining
compatibility with existing PostgreSQL tools. By using
sharding and replication Citus scales PostgreSQL across
several servers. Sharding is a method employed in dis-
tributed systems to divide data horizontally across multi-
ple servers or nodes. It involves splitting a large dataset
into smaller, more manageable pieces known as shards.
Each shard holds a portion of the data, and collectively,
they represent the entire dataset. Citus enables timeseries
data to be scaled by combining PostgreSQL single-node
declarative table partitioning with its distributed shard-
ing capabilities, creating a scalable time-series database.

To optimise our pipeline, we first apply PostgreSQL
range partitioning based on time, followed by distributing
the partitions using Citus sharding mechanism. Here, we
utilise Citus in a single-node cluster configuration,where
a single PostgreSQL server employs Citus to locally shard
the data (with the coordinator also acting as a worker).
This configuration has been implemented on the machine
described in Section 3 running Citus 12.1.6. As outlined in
Section 4.1 we want to partition the PointBoundingBox
table based on time ranges. The partitions can be defined
using the following Citus function.

SELECT create_time_partitions (
table_name := ‘PointBoundingBox_RangePart’,
partition_interval := ‘1 week’,
start_from := ‘2020-06-01 00:00:00’,
end_at := ‘2020-06-30 23:59:59’ );

The function above creates weekly partitions start-
ing from the dates specified. Furthermore, the tables
PointBoundingBox and Grid are distributed using Ci-
tus functions as follows.

SELECT create_distributed_table(
‘PointBoundingBox_RangePart’, ‘point_id’);

SELECT create_reference_table(‘Grid’);

The first function distributes the table
PointBoundingBox into multiple horizontal shards on
the point_id column. The second function distributes



Table 3
Statistics for the partitions by range on column time with
Citus.

Partition Table Disk Usage Rows

PointBoundingBox_RangePart_p2020w23 104 MB 704,384
PointBoundingBox_RangePart_p2020w24 137 MB 948,703
PointBoundingBox_RangePart_p2020w25 148 MB 1,033,152
PointBoundingBox_RangePart_p2020w26 145 MB 1,002,853
PointBoundingBox_RangePart_p2020w27 73 MB 478,470

the table Grid into a single shard and replicates the
shard to every worker node. Tables distributed in the
second way are called reference tables and are employed
to store data that requires frequent access by multiple
nodes within a cluster. Table 3 presents statistics on
the number of rows in each partition, along with their
respective disk usage.

The objective, as in the previous cases, is to optimise
the query described in Section 4.1. When executed us-
ing Citus, the query plan reveals that the workload is
distributed across multiple tasks, with a total of 32 tasks
created. Each task is assigned to a specific execution
node, ensuring efficient parallel processing. Within each
task, a gathering operation takes place, using multiple
worker threads to further parallelise the workload. The
query plan performs two main operations: the Parallel
Append retrieves data from multiple partitioned tables,
and the Bitmap heap scan identifies the relevant grid cells
by verifying that their positions fall within the bounding
box. This step is optimised by index-based filtering on
the row and column attributes, further enhancing the per-
formance. Using Citus the entire pipeline is executed in
4 hours. The computation of sound propagation is 1.75
times faster than the optimised pipeline without parti-
tioning in Section 3) but it takes about 1.65 times longer
than the partitioned PostgreSQL version (presented in
Section 4.1).

We also utilise Citus for the space tiling pre-
sented in Section 4.2. Specifically, we partition the
PointBoundingBox table according to the adaptive grid
structure and distribute it using the Citus function pre-
viously discussed. The query plan is clearly similar to
the case described above, with the workload distributed
across multiple tasks. The main difference lies in the pres-
ence of 12 partitioned tables. The execution time for the
entire pipeline, using Citus and distributing the points
according to the adaptive grid, is 3 hours and 30 minutes,
which is slightly faster than the partitioning by the time
column. However, the pipeline incorporating Citus did
not yield better performance compared to partitioning
alone. As detailed in Cubukcu et al. [6], a single-node
Citus configuration does not provide immediate perfor-
mance benefits. Thus, single-node Citus is slightly slower
than single server PostgreSQL due to distributed query
planning overhead.

0 10 20 30 40
Execution Time (hours)

Original Pipeline
Optimised Pipeline

Range Partitioning on Time
Hash Partitioning on MMSI

Regular Grid
Adaptive Grid

Citus Range Partitioning on Time
Citus Adaptive Grid

44 h
7 h

2 h 25 min
2 h 20 min
2 h 46 min

2 h 16 min
4 h

3 h 30 min

Figure 3: Execution times (in hours) of the implementations.

5. Concluding Remarks
Monitoring underwater noise pollution caused by hu-
man activities is crucial for preserving a healthy marine
ecosystem. In this paper, we presented several optimi-
sations to the underwater noise propagation pipeline
presented in [3, 4]. The goal was to enhance efficiency,
support scalability and reduce computational overhead.

Figure 3 collects the results of our experiments on
June 2020 described in the previous sections. A clear
improvement is observed between the original pipeline
implementation presented in [3, 4] and the optimisations
proposed in this work. In particular, the space tiling tech-
nique based on an adaptive grid provided the best result,
which is over 19 times faster than the original running
time. The pipeline incorporating Citus (single-node) did
not yield better performance compared to partitioning
alone, mainly due to distribution planning overhead.

As future work, we would like to investigate the Ci-
tus deployment in a multi-node cluster, to fully lever-
age its distributed processing capabilities. Additionally,
we aim to conduct experiments with different partition
numbers (e.g., 2, 4, 8, 16) to determine whether perfor-
mance improves as the number of partitions increases,
or if overhead dominates at some point. Moreover, in
addition to space tiling with both regular and adaptive
grids, quadtree-based spatial partitioning could be ex-
plored. Finally, we plan to analyse the entire year of 2020
to gain deeper insights into how partitioning and paral-
lelisation perform with a larger volume of data, where
their advantages are likely to become more pronounced.

This work enhances our original underwater sound
propagation model with greater computational efficiency,
offering a scalable solution for modelling underwater
noise. By balancing estimation accuracy with computa-
tional effort, it can provide a convenient alternative to
existing approaches, which often rely on hydrophone
measurements or acoustic simulations and require ex-
tensive input data along with significant computational
resources to manage complex calculations.
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