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Abstract
This demo paper introducesMobiML, a new library that aims to help scientists and engineers with developingmobilityML solutions using
trajectory data. We also demonstrate how MobiML can speed up ML development workflows using the example of a reproduction of the
workflow for training a GeoTrackNet trajectory anomaly detection model. MobiML is available at: https://github.com/movingpandas/
mobiml.
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1. Introduction
The Mobility Data Science ecosystem is incredibly diverse
with numerous heterogeneous data sources and use cases.
Common machine learning (ML) use cases include [1]: lo-
cation classification, arrival time prediction, traffic volume
/ crowd flow prediction, trajectory prediction, (sub)trajec-
tory classification, next location / destination prediction,
anomaly detection, and synthetic data generation.

A major hurdle in Mobility Data Science “is that existing
ML and analytics tools [...] do not support location and
mobility as base data types to reason about. [...] This raises
a fundamental and big question on what are the analysis
primitives and common building blocks for applications
that could shape a framework of ML-based mobility data
analysis?” [2]

To fill this gap, we present MobiML, a framework for
learning from movement data that proposes essential build-
ing blocks to build ML solutions based on movement trajec-
tory data. The following section provides information on
related libraries. Then we present MobiML and its compo-
nents, before we present usage examples, and finally present
perspectives on future developments.

2. Related Work
To the best of our knowledge, existing ML libraries for spa-
tiotemporal data focus on remote sensing imagery and sim-
ilar gridded datasets:

GeoTorchAI [3] is a spatiotemporal deep learning frame-
work on top of PyTorch and Apache Sedona. It enables
spatiotemporal machine learning practitioners to easily and
efficiently implement deep learning models targeting the
applications of raster imagery datasets and spatiotemporal
non-imagery datasets.

TorchGeo [4] is a PyTorch library by Microsoft that is
similar to torchvision and provides datasets, samplers, trans-
forms, and pretrained models specific to geospatial data for
remote sensing imagery data.

In the development of MobiML, we have taken inspira-
tion from both GeoTorchAI and TorchGeo and adapted the
concepts to trajectory data.
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For trajectory data processing, MobiML leverages Mov-
ingPandas [5, 6] and therefore, by extension, Pandas and
GeoPandas [7], as well as PyMEOS [8] extending MEOS [9].

3. MobiML
The goal of MobiML is to enable the efficient development of
ML solutions by providing mobility-aware building blocks
for ML workflows. This means that the MobiML tools are
aware of the spatiotemporal nature of trajectory data and
automatically account for them. MobiML includes the fol-
lowing components: datasets, preprocessing tools, samplers,
transformation tools, and models, which are shown in Fig-
ure 1 and described in more detail in the following.

3.1. Datasets
This module contains classes for handling popular move-
ment datasets. These classes serve to facilitate model de-
velopment by providing straightforward access to com-
mon public datasets and also serve as templates for custom
datasets classes that developers may want to create. Dataset
classes provide a standardized interface including func-
tions to access the data in the form of Pandas DataFrames,
GeoPandas GeoDataFrames, and MovingPandas Trajecto-
ryCollections, as well as to create static and interactive plots
of the data.

Every class provides information on where to get access
to the respective dataset (where to download it). The load-
ing function then takes care of the multitude of different
input formats, including pickle, csv, feather, zipped csv files,
or geo data formats supported by GeoPandas such as Shape-
file, GeoPackage, or GeoJSON and maps the spatiotemporal
information and mover IDs to the standardized structure.

So far, we have implemented six dataset classes based on
real-world public mobility datasets from the:

• Maritime domain: AIS data from Denmark AISDK
and France BrestAIS,

• Urban domain: tracks of cyclists
CopenhagenCyclists, buses DelhiAirPollution,
and taxis PortoTaxis, and

• Ecology domain: tracks of migratory birds
MovebankGulls.

3.2. Preprocessing
This module contains tools to preprocess movement data
to generate datasets that are ready for ML development.
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Figure 1: MobiML component overview.

Preprocessing tools always return a mobiml.Dataset object.
The developed preprocessing tools include:

• TrajectoryDownsampler to reduce the number of
points in a trajectory to a certain target sampling
interval.

• TrajectoryEnricher to add features such as speed,
direction, and acceleration in a variety of supported
units.

• TrajectoryFilter to remove trajectories based on
a their number of points or their speed.

• TrajectorySplitter to split long trajectories into
shorter subtrajectories, for example, based on obser-
vation gaps

• Normalizer to min-max normalize latitude, longi-
tude, speed, and direction values in dataset.

• StationaryClientExtractor to extract subsets of
the data based on static locations (provided as Geo-
DataFrame).

• MobileClientExtractor to extract subsets of the
data based on moving locations (provided as Mo-
biML Dataset) using PyMEOS.

3.3. Samplers
This module contains tools for sampling movement data
while accounting for its spatiotemporal characteristics. The
developed sampling tools include:

• MoverSplitter to split a dataset ensuring that tra-
jectories of a given percentage of the movers are
assigned to the test set. The remaining mover tra-
jectories are assigned to the train set.

• RandomTrajSampler to randomly sample trajecto-
ries, targeting an equal spatial distribution based on
user-defined grid (i.e. equal number of trajectories
per cell, based on start points), inspired by [4].

• TemporalSplitter to split dataset temporally into
training, development, and test sets, ensuring that a
given percentage of the time is assigned to each set.

3.4. Transforms
This module contains various transformation operations
that can be applied to datasets. Transforms convert a mo-
biml.Dataset into a different data structure that conforms to
model-specific requirements. The developed transformation
tools include:

• DeltaDatasetCreator to convert absolute loca-
tions and timestamps into relative changes, based
on [10].

• ODAggregator to extract start and end points (OD)
for trajectories from a Dataset and aggregate them
in a hexagonal (H3) grid.

• TrajectoryAggregator to create summary fea-
tures describing trajectories.

3.5. Models
This module contains example models used to demonstrate
mobility ML workflows. Included are:

• GeoTrackNet: Anomaly detection in maritime traffic
patterns, as presented in [11].

• Nautilus: Vessel Route Forecasting (VRF), as pre-
sented in [10].

• SummarizedAISTrajectoryClassifier: an example
model for trajectory classification in a federated
learning setting.

The use of these components is documented through a
series of example notebooks that demonstrate individual
components as well as ML workflows from data preprocess-
ing to model training and inferencing.

4. Demo
In this section, we present howMobiML can be used to train
GeoTrackNet using Danish AIS data1. The original Geo-
TrackNet paper [11] uses AIS data from a different source.
Our example demonstrates how to use GeoTrackNet with
Danish AIS data. This example workflow makes use of mul-
tiple MobiML components from datasets to preprocessing,
samplers, and of course the model itself.

4.1. Step 1: Data Loading
Using MobiML’s AISDK dataset class, we can easily load one
of the CSV files provided by the Danish Maritime Authority,
as shown in Figure 2.

4.2. Step 2: Preprocessing
To preprocess the data, we leverage classic Pandas
DataFrame operations and MobiML tools as follows:

1. Filter the dataset to our desired vessel types by di-
rectly working with the AISDK object’s DataFrame
(Figure 3),

2. Split trajectories at observation gaps using
TrajectorySplitter (Figure 4) since these gaps
would mess up what the model learns,

1for the full notebook see https://github.com/movingpandas/mobiml/
blob/main/examples/mobiml-geotracknet.ipynb
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Figure 2: Loading AIS data using MobiML’s AISDK dataset class.

3. Drop trajectories that have too few points using
TrajectoryFilter (Figure 5), and finally

4. Reduce the dataset size using
TrajectoryDownsampler (Figure 6).

Since every preprocessing tool takes a Dataset as input
and produces a Dataset as output, they can be chained in a
modular way to support different needs and workflows.

Figure 3: Pandas DataFrame operations on the MobiML dataset
object to keep only cargo, tanker, and passenger vessel types.

Figure 4: Split trajectories with observation gaps over two hours.

Figure 5: Drop trajectories with fewer than 20 points.

Figure 6: Subsample AIS tracks to reduce the reporting interval
between messages to 60 seconds.

4.3. Step 3: Training
To prepare the training stage, we split the dataset using
the TemporalSplitter (Figure 7). In this example, we use

the default: 70/20/10 split. The split subsets are then trans-
formed into a format suitable for training the model. This
training itself is controlled by a dedicated configuration, as
shown in Figure 8.

Figure 7: Temporal train/valid/test split.

Once the model is trained, the training result can be visu-
alized on a map, as shown in Figure 9.

Figure 8: Training the GeoTrackNet embedding layer.

Figure 9: Trained GeoTrackNet logprob map.

4.4. Step 4: Inference
Finally, using the trained model, we can perform the in-
ference by running the GeoTrackNet contrario detection
step which flags anomalous trajectories such as the example
shown in red in Figure 10.

Figure 10: Anomalous track (red) as identified by the GeoTrack-
Net contrario detection step.



5. Conclusions & Outlook
In this paper, we introducedMobiML, a new library designed
to facilitate the development of machine learning (ML) solu-
tions in the Mobility Data Science domain. Our demonstra-
tion of the GeoTrackNet anomaly detectionmodel highlights
MobiML’s ability to support reproducibility and efficiency in
mobility-focused ML research. By providing modular com-
ponents for preprocessing, transformation, sampling, and
modeling, MobiML simplifies the development of ML work-
flows, reducing the effort required to implement key steps.
This should also help improve the reliability of research
code, since we have ensured that MobiML is covered by
unit tests, reinforcing its usability for the broader research
community.

Moving forward, future developments should focus on
expanding functionality and improving interoperability. En-
hancements may include new dataset types, such as flow-
based mobility data, as well as improvements in tool har-
monization and packaging via PyPI and Conda-Forge. Ad-
ditionally, we invite ML developers in the Mobility Data
Science community to engage with us, contribute to Mo-
biML, and provide feedback to refine its architecture. One
of the major challenges in developing MobiML has been
managing incompatible Python environments, given the
specific requirements of various ML models and libraries.
This issue, which affects reproducibility across the ML field,
calls for collaborative efforts to find sustainable solutions.
Addressing this challenge will be essential to ensuring scala-
bility and long-term usability of MobiML in diverse research
and application settings.
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