
Semi-supervised Community Detection in Dynamic Graphs
Matteo Bianco, Luca Cagliero

*
and Luca Vassio

Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino TO, Italy

Abstract
Semi-supervised approaches to Community Detection (CD) in graphs aim to detect communities closely related to a few labeled ones.

State-of-the-art semi-supervised algorithms adopt a three-step process, which entails (1) Generating candidate communities based

solely on the network structure; (2) Selecting the candidates that are most similar to the labeled communities; (3) Refining the selected

communities shortlisted at Step (2). However, existing approaches are unsuited to handle the dynamics in labeled communities and their

relations with time-varying graph structures. In this work, we formulate the new task of semi-supervised CD from dynamic graphs,

which is relevant to real-world time-evolving scenarios. To avoid executing the previous pipeline independently at every time step and

potentially missing relevant temporal community-level relations, we envisage a new approach relying on time-aware strategies for both

dynamic graph embedding and community selection and refinement. We leverage a latent graph representation incorporating node-

and subgraph-level temporal relations neglected by static approaches. Then, supervised community refinements are propagated across

consecutive time steps to capture time-evolving trends. After adapting static CD models to the dynamic scenario, we conduct extensive

comparisons of the methods on datasets with varying characteristics in the novel task of dynamic semi-supervised CD. The proposed

approach shows remarkable improvements in low-modularity and low-stability dynamic graphs.

Keywords
Community Detection, Dynamic Graphs, Semi-Supervised Learning

1. Introduction
Communities in graphs are groups of nodes with distinctive

features or connections [1]. Automating the process of Com-

munity Detection (CD) from graphs is a well-established

machine learning problem. It has found application in sev-

eral fields among which social network analysis [2], scien-

tometrics [3], and healthcare [4].

To deeply explore the network graph structure, unsu-

pervised approaches to CD have attempted to use a vari-

ety of classical data mining or Deep Learning techniques

such as clustering [5], graph mining [6], and Variational

AutoEncoders [7]. However, they struggle to find communi-

ties of nodes with functional relations that are not directly

derivable from the network structure [8]. To tackle this

issue, Semi-Supervised CD (SS-CD) approaches leverage a

few examples of labeled communities, typically provided

by domain experts. To efficiently address SS-CD on large

graphs, state-of-the-art approaches (e.g., [9, 10, 11]) first

encode graph nodes or subgraphs using graph embedding

techniques. Next, they extract candidate communities based

solely on the network structure. Finally, they shortlist and

refine the extracted candidates by maximizing their similar-

ity with the labeled communities in the embedding space.

Since real-world communities are naturally time-

evolving, there is an increasing need to extend existing CD

solutions suited to static graphs towards dynamic scenarios.

Recent approaches to CD capture time-evolving trends in

dynamic graphs by learning temporal graph embeddings.

They either learn temporal relations in sequences of graph

snapshots [12, 13, 14] or rely on parametric distance dy-

namic models [15]. However, to the best of our knowledge,

all prior works on CD from dynamic graphs are unsuited

to a semi-supervised scenario where labeled communities

change over time. This calls for new approaches addressing

SS-CD from dynamic graphs, in which temporal relations

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain
*

Corresponding author.

$ matteo.bianco@studenti.polito.it (M. Bianco); luca.vassio@polito.it

(L. Cagliero); luca.vassio@polito.it (L. Vassio)

� 0000-0002-7185-5247 (L. Cagliero); 0000-0002-2920-1856 (L. Vassio)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

between graph snapshots and time-varying labeled commu-

nities are jointly analyzed.

Contribution Firstly, we formalize the Semi-Supervised

Dynamic Community Detection (SS-DCD) task (Section 2).

Unlike the unsupervised task, here the CD process is guided

by labeled communities. Secondly, we propose an approach

to tackle the newly proposed SS-DCD task (Section 3). Un-

like all existing works (e.g., [9, 10]), our approach leverages

temporal graph embeddings to incrementally update the

dynamic graph representation. Furthermore, the steps of

supervised community selection and refinement are time-

aware. The aim is to consider not only the temporal relations

between network graphs in the different snapshots but also

the evolution of the labeled communities. Lastly, we empiri-

cally compare the performance of our approach and baseline

methods under the unexplored SS-DCD setting (Section 5).

Evaluation We adapt real static graphs with ground-truth

communities and various topological characteristics to a dy-

namic scenario (Section 4). On top of dynamic graphs, we

assess both our approach and baseline methods in terms of

the established F1, Jaccard, and ONMI performance scores.

The results show that our approach performs on average

the best on the analyzed datasets in terms of F1, Jaccard, and

ONMI scores (19 wins out of 27 combinations of datasets

and metrics). The results are mainly influenced by the net-

work modularity and the level of dynamics in the sequence

of graph snapshots and corresponding labels. Specifically,

when the graph has a high modularity the communities are

relatively easy to detect from the current network topology

regardless of its past snapshots and labeled communities.

The experiments confirm that the lower the modularity

the higher the benefits of the newly proposed time-aware

semi-supervised strategy. Similarly, the temporal stability

of the network [16] is another important indicator of the

level of complexity of the SS-DCD task. Our results confirm

the better suitability of the proposed approach to dynamic

scenarios compared to state-of-the-art approaches.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:matteo.bianco@studenti.polito.it
mailto:luca.vassio@polito.it
mailto:luca.vassio@polito.it
https://orcid.org/0000-0002-7185-5247
https://orcid.org/0000-0002-2920-1856
https://creativecommons.org/licenses/by/4.0/deed.en

2. Problem statement
We first introduce the preliminary concepts and related nota-

tion and then formalize the newly proposed Semi-Supervised
Dynamic Community Detection (SS-DCD) task.

Let G𝑡
=(𝑉 𝑡

,𝐸𝑡
) be a graph where 𝑉 𝑡

and 𝐸𝑡
are the

corresponding sets of nodes and edges, respectively. A com-

munity c𝑡 detected from G𝑡
is a subset of the nodes with

peculiar characteristics in terms of either network graph

structure or node properties. Given a graph G𝑡
, the Unsu-

pervised Community Detection (U-CD) task has the goal of

extracting the set C 𝑡
of all its communities without any

prior knowledge on the community properties, i.e., U-CD

exclusively relies on the network graph structure. When,

instead, the extraction process is guided by a given set Ĉ
𝑡

of labeled communities in G𝑡
, the task is commonly de-

noted by Supervised Community Detection (S-CD). The key

idea behind S-CD is to detect communities in graphs that

are closely related to the labeled ones by learning a model

that automatically captures similarities among subgraphs.

Importantly, S-CD is not necessarily based on the network

structure solely but might consider functional properties of

nodes or edges as well [8]. In this work, we assume that the

CD task is partially supervised, i.e., the input set of labeled

communities is incomplete. Given a graph G𝑡
and a train-

ing set Ĉ
𝑡

consisting of few labeled communities in G𝑡
, we

denote by Semi-Supervised Community Detection (SS-CD)

the task of automatically detecting all the communities in

G𝑡
.

We aim to model the temporal variations of a graph struc-

ture and its underlying communities within a reference time

period. Without loss of generality, we assume that the ref-

erence period is divided into 𝑇 discrete consecutive time

steps (i.e., 𝑡 ∈ {1, 2, . . . , 𝑇}).

Dynamic Community Detection (DCD) aims to detect

all communities from sequences of graph snapshots 𝒢 =
{G𝑡}𝑇𝑡=1. Unsupervised approaches to DCD extract commu-

nities from G𝑡
for every 𝑡 ∈ {1, 2, . . . , 𝑇} in the absence of

labeled communities. Conversely, Supervised DCD (S-DCD)

leverages the set Ĉ
𝑡

of labeled communities occurring in

each time step 𝑡. However, similar to the time-invariant

case, the set of labeled communities is likely incomplete

due to the lack of human annotations or reliable community

descriptors. To tackle the above issue, we formalize the

new task of Semi-Supervised Dynamic Community Detec-
tion (SS-DCD, in short). The twofold aims are, on the one

hand, to make SS-CD time-aware by leveraging CD semi-

supervision and, on the other hand, to enrich Unsupervised

DCD with a combined analysis of the properties of both

the network structure and the labeled communities across

different snapshots.

SS-DCD task formulation Given a sequence of graph

snapshots 𝒢 and a partial set Ĉ
𝑡

of labeled communities

occurring at every time step 𝑡 ∈ {1, 2, . . . , 𝑇}, the SS-DCD

task aims is to extract the sequence 𝒞 = {C 𝑡}𝑇𝑡=1 of com-

munity sets C 1, . . . ,C𝑇
.

3. Semi-supervised Community
Detection from Dynamic Graphs

The classical SS-CD pipeline entails the following steps:

1. Candidate community generation, aimed to extract

candidate communities based on the structure of the

network graph.

2. Supervised candidate selection, which reduces the set

of candidates generated at the previous step accord-

ing to their similarity with the labeled communities.

3. Community refinement, aimed to revise the gener-

ated communities, e.g., by dropping or adding nodes

or edges.

However, all the above-mentioned steps ignore the tem-

poral evolution of both graph structure and communities

which is peculiar to the newly proposed SS-DCD task.

Figure 1 shows how to naively use the classical SS-CD

pipeline in an SS-DCD task. For the sake of simplicity, we

exemplify the CD process across two consecutive time steps

only, namely 𝑡 − 1 and 𝑡. The temporal graph snapshots

G𝑡−1
and G𝑡

are separately embedded to generate the can-

didate communities. Next, the candidate selection and re-

finement processes are executed independently for every

time step. This existing pipeline has two main drawbacks:

• The process of generation of the candidate communi-

ties disregards the temporal relations among graph

snapshots and related communities. Consequently,

the next supervised candidate selection step could

be biased.

• The community refinement step is unaware of the

outcomes of the supervised community detection

and refinement steps. Hence, it potentially disre-

gards all past (labeled or detected) community up-

dates as well as the temporal relations with the sur-

rounding network.

Let us consider, for example, the labeled community �̂�𝑡−1

at time step 𝑡 − 1 consisting of nodes 𝑣1 and 𝑣3 (�̂�𝑡−1 =
{𝑣1, 𝑣3}). The path connecting 𝑣1 and 𝑣3 changes at time

step 𝑡 by including also node 𝑣4. Knowing both the past

community composition and the new network structure

allows the CD algorithm to learn the temporal relation with

its updated version �̂�𝑡 = {𝑣1, 𝑣3, 𝑣4}. Analogously, the

exclusion of node 𝑣2 from �̂�𝑡−1
is a valuable hint for the

definition of its updated version at time step 𝑡.
To overcome the aforesaid limitations, we propose a new

SS-DCD pipeline (see Figure 2). Compared to the standard

pipeline, we incorporate the following two additional fea-

tures making the SS-CD pipeline end-to-end time-aware.

Time-aware graph embeddings Rather than learning

independent embedding matrices for every snapshot 𝑡 in

𝒢, we compute a time-aware embedding representation

H
𝑡

of the previous graph snapshots G1
, . . ., G𝑡

capturing

time-varying properties of the network graph structure.

The embedding representation is incrementally updated

at each time step and, importantly, is directly fed to the

supervised candidate selection step to allow time-aware

semi-supervision (see the time-aware supervised candidate
selection step in Figure 2).

The designed SS-DCD pipeline is agnostic to the encoder

used to compute the embedding matrix. For incremental

learning of node embeddings, our current implementation

leverages the ROLAND node embeddings [13] (more details

are given in Section 5.3).

v1

v5

v4

v2 v3

v1

v5

v4

v3v2

snapshot Gt-1
c t-1

c t

snapshot Gt

Candidate
Communities

C̃t-1

Candidate
Communities

 C̃t

Supervised candidate selection

Selected
Communities

Ct-1

Supervised candidate selection

Selected
Communities

Ct

Community refinement Community refinement

Refined
Communities

Ct-1

Refined
Communities

Ct

Elapsing time

Embedding
matrix

Embedding
matrix

Figure 1: Separate application of the existing SS-CD pipeline to
two consecutive time steps.

v1

v5

v4

v2 v3

v1

v5

v4

v3v2

snapshot Gt-1
Ct-1

 Ct

snapshot Gt

Candidate
Communities

C̃

Selected
Communities

C

Community refinement

Refined
Communities

C

Elapsing time

Temporal
Embeddings

matrix

Incremental updating

Refinements
feedforward
propagation

Time-aware supervised candidate selection

Figure 2: The proposed SS-DCD pipeline applied to two consec-
utive time steps.

Feed-Forward propagation of community refinements
To tailor community refinement to a dynamic scenario (1)

We leverage time-aware embeddings to also consider the

time-variant properties of the nodes composing the selected

community to be refined; (2) We apply a feed-forward prop-

agation of the refined communities’ information learnt at

time step 𝑡 across the subsequent time steps.

Given a selected community 𝑐𝑡, we revise its node com-

position using a Reinforcement Learning (RL) approach. Let

𝑁 𝑡
𝑐 be the subset of G𝑡

nodes belonging to the neighbor-

hood of 𝑐𝑡. We define the initial state of the RL as the union

of the community with its neighborhood (𝑐𝑡 ∪ 𝑁 𝑡
𝑐). The

state representation consists of the time-aware embeddings

of the composing nodes, i.e., H𝑐𝑡∪𝑁𝑡
𝑐

Similar to CLARE [9], we define two policy networks,

consisting of separate MultiLayer Perceptrons, to decide

whether to execute any of the following refinement actions

on the community 𝑐𝑡:

• Expansion, which adds a new node to the community

taken from its neighborhood;

• Reduction, which excludes nodes that are already

part of the community,

Each action is rewarded according to the F1-Score im-

provement achieved compared to the previous iteration.

The ExpMLP network returns the probabilities of adding

to 𝑐𝑡 a new node from the community neighborhood 𝑁 𝑡
𝑐 ,

whereas ReductMLP estimates the likelihood of removing

any node from 𝑐𝑡. To make the community refinement

process time-aware, both networks are fed with the time-

aware embeddings. The action probability distributions are

defined as follows.

𝑃 (action=reduction of 𝑐𝑡) = softmax

(︁
ReductMLP(H𝑐𝑡∪𝑁𝑡

𝑐
)
)︁

𝑃 (action=expansion of 𝑐𝑡) = softmax

(︁
ExpMLP(H𝑐𝑡∪𝑁𝑡

𝑐
)
)︁

The aforesaid probabilities distributions are propagated

to the supervised community selection stage to initialize

the CD process at the next time step (see the refinements’
feedforward propagation arrow in Figure 2).

4. Dynamic graphs
In this section, we introduce the generator used to create

dynamic graphs with time-evolving labeled communities

and the datasets used in the experiments.

4.1. Synthetic Generator of Dynamic
Graphs with Labeled Communities

CD algorithms are commonly tested on both real-world

and synthetic data [1]. Real benchmarks including ground-

truth communities (e.g., [17, 18]) are mostly static. Few of

them consist of dynamic graphs with annotations (e.g., [19,

20]) but include a relatively low number of ground-truth

communities (< 10) and nodes (on average < 100) thus

hindering their use for testing Deep Learning techniques.

Synthetic generators (e.g., [21, 16]) provide ground-truth

communities generated by reference external models, thus

making the process of semi-supervision unrealistic.

To bridge the gap, we extend a synthetic generator of

dynamic graphs [21] to simulate the temporal variations

of real graphs and ground-truth communities designed for

static scenarios. The cornerstones of our synthetic graph

generator, namely DynamizeGraph, are enumerated below.

• We consider real graphs and ground-truth commu-

nities as initial snapshots (at time step 1).

• We simulate the temporal evolution of the real graph

and its ground-truth communities by hiding or show-

ing nodes, edges, or labeled communities.

Table 1
Main dataset statistics: average number of vertices and edges per snapshot, the average number of ground-truth communities
per snapshot (train + test), the average modularity per snapshot, and the dynamic graph stability computed according to [16].

Dataset #Nodes #Edges #Commun. Modularity Stability

Real initial network and communities - Dynamics injection with high stability
email-Eu-core 802 10590 40 0.31 0.97
Amazon 13465 31233 1141 0.99 0.98
Youtube 28861 124404 2373 0.22 0.97

Real initial network and communities - Dynamics injection with low stability
email-Eu-core 550.6 2726.9 38.7 0.65 0.80
Amazon 9580.0 16729.9 1051.6 0.99 0.81
Youtube 16158.5 30836.1 2107.4 0.55 0.74

Purely synthetic
Syn_Const 5279.3 18894.0 500.0 0.82 0.99
Syn_Growth 3489.6 12594.8 501.0 0.88 0.93
Syn_Shrink 4079.6 19735.0 500.5 0.84 0.98

• We apply graph transformations from one snap-

shot to another that are related to either specific

nodes/edges (micro-operations) or entire communi-

ties (macro-operations).

A Python implementation of DynamizeGraph is also avail-

able, for research purposes, in the official project repository.

4.2. Datasets
We run our experiments on nine different datasets, six of

them are generated by DynamizeGraph starting from real

graphs and labeled communities whereas the remaining

ones are purely synthetic and generated by DANCer [21].

Table 1 summarizes the main dataset statistics. Given the

ground truth communities, we consider 50% of them as

training labeled communities and the remainder 50% of

them as test labeled communities (see Section 5.1).

Real graphs and communities We rely on three real

networks with ground-truth communities retrieved from

SNAP [17], i.e., email-Eu-core, com-Amazon, and com-
Youtube. The real networks are all static but show rather dif-

ferent characteristics. Specifically, email-Eu-core is a denser

yet smaller network including roughly 20 nodes per ground-

truth community whereas com-Amazon and com-Youtube

are sparser yet much larger datasets where communities

consist of approximately 10 nodes each. In terms of network

modularity, real graphs also significantly differ from each

other: com-Amazon has a very high modularity whereas

email-Eu-core and com-Youtube show fairly low modularity

values. As discussed later on, the lower the modularity the

more complex the CD task in the absence of appropriate

supervision.

Injection of network dynamics We extend the real

static graphs and ground-truth communities under two dif-

ferent dynamic settings, i.e., low or high stability. In com-

pliance with [16], we define the stability as the average

difference in Adjusted Mutual Information of the communi-

ties [22] between two consecutive time steps. The higher

the stability the lower the strength of the dynamics in the

network communities across consecutive graph snapshots.

We expect to achieve higher benefits from our time-aware

approach on dynamic graphs with relatively (but not exces-

sively) low stability. As discussed in Section 5, the results

meet the expectation.

Purely synthetic dynamic graphs We generate three

dynamic graphs whose snapshots have different sizes, i.e.,

Syn_Const shows a roughly constant number of nodes per

snapshot, in Syn_Growth the number of nodes per snap-

shot increases over time, whereas in Syn_Shrink shows an

opposite trend.

5. Experimental results
All the experiments were conducted on a single NVIDIA

Tesla V100 SXM2 GPU with 32 GB memory.

5.1. Performance metrics
We evaluate SS-CD performance using the following three

established metrics: F1 score, Jaccard score, and Overlapping
Normalized Mutual Information (ONMI, in short). In all cases,

we use a set of labelled test communities �̂�𝑡𝑒𝑠𝑡, with no

intersection with the training ones �̂�. To cope with dynamic

scenarios all the scores are averaged over all snapshots.

The F1 and Jaccard scores are metrics for comparing test

ground-truth and predicted communities in SS-CD [23, 24,

25, 9]. The higher the scores the more accurate the com-

munity matching (in whatever direction). To more deeply

analyze the impact of graph modularity on CD performance,

we also use alternative weighted versions of the F1 and Jac-
card scores. Since we are particularly interested in exploring

the capabilities of CD methods to leverage the informa-

tion extracted from labeled communities, we weight the

modularity m(�̂�𝑡) of each test community �̂�𝑡 inversely pro-

portional to their modularity, the lower the modularity of a

test community, the lower its predictability in the absence

of supervised knowledge, the higher its matching contribu-

tion to the overall score. Finally, we use the Overlapping
Normalized Mutual Information (OMNI) [26]. It is a rescaled

version of the Mutual Information between the predicted

and test sets of communities at time step 𝑡.

5.2. Baselines
As baseline methods, we consider the following four state-of-

the-art DCD approaches extended to successfully cope with

dynamic graphs: DynGEM [12], CTGCN-S [27], CTGCN-

C [27], and ROLAND [13]. Specifically, we modify the

respective architectures integrating an additional cross-

entropy loss term for supervision driven by the labeled

communities. Furthermore, we also consider CLARE [9],

which is the latest and best-performing SS-CD approach
1

.

The key differences between the extended DCD versions

and the SS-CD baseline are that (1) CLARE relies on static

order embeddings, and (2) SS-CD also performs community

refinement on top of the supervised candidate selection.

5.3. Experimental settings
We test our approach by varying (1) The node embed-

ding strategy (we test Node2Vec [28], ROLAND [13], Dyn-

GEM [12], CTGCN-S and CTGCN-C [27]) (2) The policy

network architecture in type (we test MLP, GRU, and mov-

ing average) and complexity (i.e., we vary the number of

attention heads), (3) the dropout rate (between zero and

one), and (4) The number of training epochs (up to 2000).

Based on a grid search, ROLAND [13] turns out to be the

best-performing dynamic graph encoder while a single-head

GRU the best policy network. We set the dropout rate to

zero, as its impact is negligible, and the number of training

epochs to 2000.

For the baseline methods, we adapt the source code re-

leased by the papers’ authors. All the DCD baselines are

trained for 50 epochs, whereas we train CLARE for 30 epochs

to perform candidate generation and for 1000 epochs to per-

form community rewriting. We always use 16-dimension

embeddings for DCD models and 64-dimension order em-

beddings for CLARE.

For all methods, we set the number of expected communi-

ties, whenever requested as input parameter, to the number

of labeled communities in the training data.

To compute the statistics on the network graphs we use

the NetworkX library [29].

5.4. Performance results
Table 2 reports the F1, Jaccard, ONMI Scores achieved by our

approach and the baseline methods on the test communities.

Among the tested baselines, CLARE performs averagely best

on the analyzed datasets and settings confirming the bene-

fits of adopting the complete SS-CD pipeline. Our approach

outperforms all the tested baselines, including CLARE, on

the YouTube and the synthetic dynamic graphs, it performs

best on email-Eu-core in four out of six dataset-metric com-

binations, whereas ranked second behind CLARE on the

Amazon dataset. On average, it shows superior performance

on graphs with low modularity (e.g., YouTube) and better

suitability for fairly low-stability settings. The reason is

that the time-aware approach provides clear benefits when

graph snapshots and labeled communities are dynamic (i.e.,

low stability values) as long as the strength of the dynamics

does not invalidate the relevance of the temporal graph rela-

tions. For instance, on the same dataset (email-Eu-core) the

average F1 Score of our approach soars from 0.1931 to 0.3213

moving from a high-stability setting to a low-stability one.

Conversely, on datasets like Amazon where the modularity

is high, CD based on the analysis of the network structure

is already quite effective. Therefore, the benefits achieved

by semi-supervision turn out to be limited.

Figure 3 graphically shows the correlation between av-

erage graph modularity and per-dataset F1-score gaps be-

tween our approach and CLARE. The result confirms the

1
We omit the comparisons with MARS [10] because, to the best of our

knowledge, the paper is currently under review and the source code is

not available yet.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Modularity

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Av
g

F1
 sc

or
e

ga
p

be
tw

ee
n

ou
r a

pp
ro

ac
h

an
d

CL
AR

E

email_1

Amazon_1

Youtube_1
email_3

Amazon_3

Youtube_3

Syn_Const

Syn_Growth

Syn_Shrink

Figure 3: Correlation between average graph modularity and
performance gaps between our approach and the SS-CD state-
of-the-art model [9]. The higher the modularity the lower the
benefits of the time-aware approach.

negative correlation between modularity and usefulness of

the time-aware community refinement step. A quantitative

comparison in terms of Weighted F1- and Jaccard scores

on low-modularity datasets confirms our previous findings

(e.g., on YouTube our average Weighted F1-Score is 1.89

vs. 0.9 of CLARE). The achieved results indicate that the

time-aware approach turns out to be particularly helpful

when the community-level information conveyed by the

network graph solely is not enough.

5.5. Ablation study
We carry out an ablation study to quantify the effect of the

choice of the node embedding strategy on dynamic graphs

characterized by variable modularity and stability levels. To

this end, we compare two alternative state-of-the-art strate-

gies for temporal graph embeddings, i.e., ROLAND [13] and

CTGCN [27].

The plots in Figure 4 show the F1-score gaps observed

in our approach between the variants with ROLAND and

CTGCN graph embeddings. They respectively show the

separate influence of graph modularity (plot on the left) and

stability (right) on the results of the ablation study. Thanks

to the use of hierarchical node states, ROLAND embeddings

turn out to be more effective than CTGCN in capturing dy-

namic graph and community relations. It has shown to be

averagely more robust to graphs with low/medium modular-

ity. On datasets with extremely high values of modularity

or stability, CTGCN outperforms ROLAND. However, as

discussed in Section 5.4, in those extreme cases adopting

time-aware approaches to tackle the SS-DCD task is less

appealing.

6. Conclusions and Future Work
In this paper, we formulated a new Community Detection

task combining Semi-Supervision and dynamic graphs. We

extend the existing pipeline for SS-CD by leveraging tem-

poral graph embeddings to capture temporal dynamics in

the candidate community generation, selection, and refine-

ment stages. We also propagate the outcomes of two policy

networks used in the refinement stage across the subse-

quent time steps, thus making the supervision aware of the

Table 2
Performance comparison between baselines and our methods on dynamic graphs with different characteristics. For each
combination of method, dataset, and performance metric we report the average score over multiple runs and the standard
deviations. The best average performance per dataset and score is highlighted in boldface.

Dataset DynGEM [12] CTGCN-C [27] CTGCN-S [27] ROLAND [13] CLARE [9] Ours

Real initial network and communities - Dynamics injection with high stability

F1 Score
email-Eu-core 0.3450 ± 0.0821 0.3815 ± 0.0210 0.1706 ± 0.0167 0.1699 ± 0.0105 0.1591 ± 0.0301 0.1931 ± 0.0263
Amazon 0.3282 ± 0.0245 0.5488 ± 0.0539 0.1607 ± 0.0183 0.1229 ± 0.0074 0.6757 ± 0.0131 0.6207 ± 0.0304
YouTube 0.2134 ± 0.0162 0.1975 ± 0.0217 0.2486 ± 0.0289 0.0867 ± 0.0084 0.4596 ± 0.0122 0.4665 ± 0.0229

Jaccard
Score

email-Eu-core 0.2309 ± 0.0676 0.2547 ± 0.0204 0.0951 ± 0.0106 0.0944 ± 0.0063 0.0936 ± 0.0199 0.1169 ± 0.0218
Amazon 0.2209 ± 0.0217 0.4390 ± 0.0566 0.0928 ± 0.0118 0.0667 ± 0.0042 0.6325 ± 0.0127 0.5699 ± 0.0325
YouTube 0.1349 ± 0.0125 0.1192 ± 0.0157 0.1612 ± 0.0217 0.0473 ± 0.0050 0.3980 ± 0.0113 0.4042 ± 0.0216

ONMI
email-Eu-core 0.1173 ± 0.0580 0.0956 ± 0.0285 0.0042 ± 0.0055 0.0000 ± 0.0000 0.0102 ± 0.0165 0.0254 ± 0.0297
Amazon 0.0833 ± 0.0258 0.3440 ± 0.0730 0.0084 ± 0.0033 0.0002 ± 0.0004 0.6164 ± 0.0114 0.5487 ± 0.0352
YouTube 0.0330 ± 0.0093 0.0177 ± 0.0081 0.0547 ± 0.0159 0.0009 ± 0.0010 0.3596 ± 0.0104 0.3678 ± 0.0222

Real initial network and communities - Dynamics injection with low stability

F1 Score
email-Eu-core 0.3032 ± 0.0555 0.4637 ± 0.0791 0.1979 ± 0.0242 0.2042 ± 0.0137 0.3117 ± 0.0520 0.3213 ± 0.0504
Amazon 0.4765 ± 0.0333 0.4657 ± 0.0325 0.1873 ± 0.0320 0.1138 ± 0.0075 0.6414 ± 0.0127 0.6120 ± 0.0266
YouTube 0.1426 ± 0.0125 0.2532 ± 0.0409 0.2352 ± 0.0497 0.1041 ± 0.0203 0.4867 ± 0.0244 0.4912 ± 0.0307

Jaccard
Score

email-Eu-core 0.1919 ± 0.0447 0.3432 ± 0.0802 0.1124 ± 0.0166 0.1176 ± 0.0098 0.2183 ± 0.0495 0.2206 ± 0.0509
Amazon 0.3799 ± 0.0399 0.3580 ± 0.0316 0.1100 ± 0.0205 0.0617 ± 0.0042 0.5935 ± 0.0147 0.5560 ± 0.0324
YouTube 0.0864 ± 0.0093 0.1596 ± 0.0310 0.1514 ± 0.0349 0.0583 ± 0.0118 0.4252 ± 0.0245 0.4308 ± 0.0301

ONMI
email-Eu-core 0.0821 ± 0.0593 0.2188 ± 0.1012 0.0036 ± 0.0075 0.0065 ± 0.0103 0.1447 ± 0.0728 0.1200 ± 0.0792
Amazon 0.3082 ± 0.0592 0.2640 ± 0.0386 0.0088 ± 0.0045 0.0008 ± 0.0010 0.5862 ± 0.0169 0.5495 ± 0.0307
YouTube 0.0147 ± 0.0066 0.0382 ± 0.0198 0.0478 ± 0.0199 0.0022 ± 0.0013 0.3944 ± 0.0312 0.4013 ± 0.0367

Purely synthetic

F1 Score
Syn_Const 0.3056 ± 0.0132 0.4778 ± 0.0699 0.1682 ± 0.0084 0.1360 ± 0.0030 0.5947 ± 0.0295 0.6071 ± 0.0228
Syn_Growth 0.4074 ± 0.0308 0.5908 ± 0.0869 0.2518 ± 0.0182 0.1856 ± 0.0126 0.7048 ± 0.0227 0.7134 ± 0.0183
Syn_Shrink 0.4199 ± 0.0498 0.6443 ± 0.0989 0.2227 ± 0.0245 0.1730 ± 0.0144 0.6860 ± 0.0443 0.6886 ± 0.0355

Jaccard
Score

Syn_Const 0.1899 ± 0.0104 0.3480 ± 0.0641 0.0936 ± 0.0053 0.0735 ± 0.0018 0.4886 ± 0.0314 0.5064 ± 0.0271
Syn_Growth 0.2768 ± 0.0294 0.4699 ± 0.0920 0.1489 ± 0.0130 0.1037 ± 0.0078 0.6264 ± 0.0279 0.6420 ± 0.0228
Syn_Shrink 0.2905 ± 0.0471 0.5382 ± 0.1138 0.1306 ± 0.0166 0.0963 ± 0, 0090 0.5973 ± 0.0547 0.6032 ± 0.0425

ONMI
Syn_Const 0.0258 ± 0.0094 0.2114 ± 0.0740 0.0008 ± 0.0013 0.0000 ± 0.0000 0.4708 ± 0.0437 0.4944 ± 0.0362
Syn_Growth 0.1150 ± 0.0402 0.3763 ± 0.1277 0.0100 ± 0.0048 0.0000 ± 0.0000 0.6337 ± 0.0336 0.6493 ± 0.0247
Syn_Shrink 0.1368 ± 0.0615 0.4555 ± 0.1473 0.0090 ± 0.0053 0.0007 ± 0.0011 0.5965 ± 0.0614 0.6040 ± 0.0453

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Average Modularity

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

F1
 sc

or
e

ga
p

email_1
Amazon_1

Youtube_1
email_3

Amazon_3

Youtube_3

Syn_Const

Syn_Growth
Syn_Shrink

0.88 0.90 0.92 0.94 0.96 0.98
Average Stability

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Av
er

ag
e

F1
 sc

or
e

ga
p

email_1
Amazon_1

Youtube_1
email_3

Amazon_3

Youtube_3

Syn_Const

Syn_Growth
Syn_Shrink

Figure 4: Gap between the F1-Scores of our approach using ROLAND and CTGCN embeddings. Effects of average graph
modularity (left hand-side) and average graph stability (right).

temporal relations of communities with the past, partially

labeled, graph snapshots. The main takeaways from the

empirical analysis are: (i) the effectiveness of the proposed

pipeline on low-modularity graphs and low-stability graphs,

(ii) the importance of the community refinement stage as

in the classical SS-CD task, and (iii) the little influence of

the number of nodes on computational time of the commu-

nity refinement stage, suggesting to optimize the cost of

graph embedding to efficiently adopt time-aware strategies

in large networks.

Our future research agenda will encompass: (i) the exten-

sion to network graphs with node attributes, which might

also change over time, (ii) the study of scalable approaches to

SS-DCD in the steps of graph embedding, candidate commu-

nity generation, but also the community refinement stage,

and (iii), and the adoption of Contrastive Learning architec-

tures to generate input embeddings (replacing Graph Neural

Networks), thus limiting the complexity and need for large

sets of annotations.

Acknowledgments
This work has been partially supported by the Spoke 1 "Fu-

tureHPC & BigData" of ICSC - Centro Nazionale di Ricerca

in High-Performance-Computing, Big Data and Quantum

Computing, funded by European Union - NextGenera-

tionEU.

References
[1] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu,

C. Paris, S. Nepal, D. Jin, Q. Z. Sheng, P. S. Yu, A

comprehensive survey on community detection with

deep learning, IEEE Transactions on Neural Net-

works and Learning Systems 35 (2024) 4682–4702.

URL: http://dx.doi.org/10.1109/TNNLS.2021.3137396.

doi:10.1109/tnnls.2021.3137396.

[2] P. Chunaev, Community detection in node-attributed

social networks: a survey, Computer Science Review

37 (2020) 100286. URL: https://www.sciencedirect.com/

science/article/pii/S1574013720303865. doi:https://
doi.org/10.1016/j.cosrev.2020.100286.

[3] X. Huang, D. Chen, T. Ren, D. Wang, A survey of

community detection methods in multilayer networks,

Data Min. Knowl. Discov. 35 (2021) 1–45. URL: https:

//doi.org/10.1007/s10618-020-00716-6. doi:10.1007/
s10618-020-00716-6.

[4] M. Rostami, M. Oussalah, K. Berahmand, V. Far-

rahi, Community detection algorithms in health-

care applications: A systematic review, IEEE Access

11 (2023) 30247–30272. doi:10.1109/ACCESS.2023.
3260652.

[5] M. Girvan, M. E. J. Newman, Community structure

in social and biological networks, Proceedings of the

National Academy of Sciences 99 (2002) 7821–7826.

doi:10.1073/pnas.122653799.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefeb-

vre, Fast unfolding of communities in large net-

works, Journal of Statistical Mechanics: Theory and

Experiment 2008 (2008) P10008. URL: http://dx.doi.

org/10.1088/1742-5468/2008/10/P10008. doi:10.1088/
1742-5468/2008/10/p10008.

[7] N. Mehta, L. Carin, P. Rai, Stochastic blockmodels meet

graph neural networks, in: K. Chaudhuri, R. Salakhut-

dinov (Eds.), Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, 9-15

June 2019, Long Beach, California, USA, PMLR, 2019,

pp. 4466–4474.

[8] J. Yang, J. Leskovec, Overlapping communities explain

core–periphery organization of networks, Proceed-

ings of the IEEE 102 (2014) 1892–1902. doi:10.1109/
JPROC.2014.2364018.

[9] X. Wu, Y. Xiong, Y. Zhang, Y. Jiao, C. Shan, Y. Sun,

Y. Zhu, P. S. Yu, Clare: A semi-supervised community

detection algorithm, in: Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and

Data Mining, KDD ’22, Association for Computing

Machinery, New York, NY, USA, 2022, p. 2059–2069.

URL: https://doi.org/10.1145/3534678.3539370. doi:10.
1145/3534678.3539370.

[10] L. Haonan, L. Xiaoyu, H. Linmei, J. Li, S. Xian, Z. Lin-

hao, W. Kaiwen, W. Hongqi, Mars: An iterative match-

ing and rewriting model for semi-supervised commu-

nity detection, Available at SSRN 4757429 (2024).

[11] K. Berahmand, Y. Li, Y. Xu, A deep semi-supervised

community detection based on point-wise mutual in-

formation, IEEE Transactions on Computational So-

cial Systems 11 (2024) 3444–3456. doi:10.1109/TCSS.
2023.3327810.

[12] P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: Deep

embedding method for dynamic graphs, CoRR

abs/1805.11273 (2018). URL: http://arxiv.org/abs/1805.

11273. arXiv:1805.11273.

[13] J. You, T. Du, J. Leskovec, Roland: Graph

learning framework for dynamic graphs, 2022.

arXiv:2208.07239.

[14] Z. Wang, C. Wang, C. Gao, X. Li, X. Li, An evolution-

ary autoencoder for dynamic community detection,

Science China Information Sciences 63 (2020) 212205.

URL: https://doi.org/10.1007/s11432-020-2827-9.

doi:10.1007/s11432-020-2827-9.

[15] L. Fan, S. Xu, D. Liu, Y. Ru, Semi-supervised com-

munity detection based on distance dynamics, IEEE

Access 6 (2018) 37261–37271. doi:10.1109/ACCESS.
2018.2838568.

[16] G. Paoletti, L. Gioacchini, M. Mellia, L. Vassio, J. M.

Almeida, Benchmarking evolutionary community

detection algorithms in dynamic networks, in: 4th

Workshop on Graphs and more Complex structures

for Learning and Reasoning (GCLR) at AAAI 2024,

Cornell Tech, 2024, p. 1–8. URL: https://arxiv.org/abs/

2312.13784.

[17] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large

network dataset collection, http://snap.stanford.edu/

data, 2014.

[18] A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark

graphs for testing community detection algorithms,

Physical Review E 78 (2008). URL: http://dx.doi.org/10.

1103/PhysRevE.78.046110. doi:10.1103/physreve.
78.046110.

[19] P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton,

N. Khanafer, C. Régis, B.-a. Kim, B. Comte, N. Voirin,

Estimating potential infection transmission routes

in hospital wards using wearable proximity sensors,

PLOS ONE 8 (2013) 1–9. URL: https://doi.org/10.1371/

journal.pone.0073970. doi:10.1371/journal.pone.
0073970.

[20] R. Mastrandrea, J. Fournet, A. Barrat, Contact pat-

terns in a high school: A comparison between data

collected using wearable sensors, contact diaries and

friendship surveys, PLOS ONE 10 (2015) 1–26. URL:

https://doi.org/10.1371/journal.pone.0136497. doi:10.
1371/journal.pone.0136497.

[21] C. Largeron, P.-N. Mougel, O. Benyahia, O. R. Zaïane,

Dancer: dynamic attributed networks with community

structure generation, Knowledge and Information

Systems 53 (2017) 109–151.

[22] X. V. Nguyen, J. Epps, J. Bailey, Information theo-

retic measures for clusterings comparison: is a cor-

rection for chance necessary?, in: Proceedings of the

26th Annual International Conference on Machine

Learning, ICML 2009, Montreal, Quebec, Canada, June

14-18, 2009, volume 382, ACM, 2009, pp. 1073–1080.

doi:10.1145/1553374.1553511.

[23] J. Yang, J. J. McAuley, J. Leskovec, Community detec-

tion in networks with node attributes, in: H. Xiong,

G. Karypis, B. Thuraisingham, D. J. Cook, X. Wu

(Eds.), 2013 IEEE 13th International Conference on

Data Mining, Dallas, TX, USA, December 7-10, 2013,

IEEE Computer Society, 2013, pp. 1151–1156. URL:

https://doi.org/10.1109/ICDM.2013.167. doi:10.1109/
ICDM.2013.167.

[24] T. Chakraborty, A. Dalmia, A. Mukherjee, N. Gan-

guly, Metrics for community analysis: A survey, 2016.

arXiv:1604.03512.

[25] Y. Jia, Q. Zhang, W. Zhang, X. Wang, Communitygan:

Community detection with generative adversarial nets,

2019. arXiv:1901.06631.

http://dx.doi.org/10.1109/TNNLS.2021.3137396
http://dx.doi.org/10.1109/tnnls.2021.3137396
https://www.sciencedirect.com/science/article/pii/S1574013720303865
https://www.sciencedirect.com/science/article/pii/S1574013720303865
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2020.100286
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2020.100286
https://doi.org/10.1007/s10618-020-00716-6
https://doi.org/10.1007/s10618-020-00716-6
http://dx.doi.org/10.1007/s10618-020-00716-6
http://dx.doi.org/10.1007/s10618-020-00716-6
http://dx.doi.org/10.1109/ACCESS.2023.3260652
http://dx.doi.org/10.1109/ACCESS.2023.3260652
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1109/JPROC.2014.2364018
http://dx.doi.org/10.1109/JPROC.2014.2364018
https://doi.org/10.1145/3534678.3539370
http://dx.doi.org/10.1145/3534678.3539370
http://dx.doi.org/10.1145/3534678.3539370
http://dx.doi.org/10.1109/TCSS.2023.3327810
http://dx.doi.org/10.1109/TCSS.2023.3327810
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/1805.11273
http://arxiv.org/abs/2208.07239
https://doi.org/10.1007/s11432-020-2827-9
http://dx.doi.org/10.1007/s11432-020-2827-9
http://dx.doi.org/10.1109/ACCESS.2018.2838568
http://dx.doi.org/10.1109/ACCESS.2018.2838568
https://arxiv.org/abs/2312.13784
https://arxiv.org/abs/2312.13784
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1103/physreve.78.046110
http://dx.doi.org/10.1103/physreve.78.046110
https://doi.org/10.1371/journal.pone.0073970
https://doi.org/10.1371/journal.pone.0073970
http://dx.doi.org/10.1371/journal.pone.0073970
http://dx.doi.org/10.1371/journal.pone.0073970
https://doi.org/10.1371/journal.pone.0136497
http://dx.doi.org/10.1371/journal.pone.0136497
http://dx.doi.org/10.1371/journal.pone.0136497
http://dx.doi.org/10.1145/1553374.1553511
https://doi.org/10.1109/ICDM.2013.167
http://dx.doi.org/10.1109/ICDM.2013.167
http://dx.doi.org/10.1109/ICDM.2013.167
http://arxiv.org/abs/1604.03512
http://arxiv.org/abs/1901.06631

[26] A. F. McDaid, D. Greene, N. Hurley, Normalized mu-

tual information to evaluate overlapping community

finding algorithms, 2013. arXiv:1110.2515.

[27] J. Liu, C. Xu, C. Yin, W. Wu, Y. Song, K-core based

temporal graph convolutional network for dynamic

graphs, CoRR abs/2003.09902 (2020). URL: https://

arxiv.org/abs/2003.09902. arXiv:2003.09902.

[28] J. Leskovec, L. Backstrom, R. Kumar, A. Tomkins, Mi-

croscopic evolution of social networks, in: KDD

’08: Proceeding of the 14th ACM SIGKDD interna-

tional conference on Knowledge discovery and data

mining, ACM, New York, NY, USA, 2008, pp. 462–

470. URL: http://dx.doi.org/10.1145/1401890.1401948.

doi:10.1145/1401890.1401948.

[29] A. A. Hagberg, D. A. Schult, P. J. Swart, Explor-

ing network structure, dynamics, and function us-

ing networkx, in: G. Varoquaux, T. Vaught, J. Mill-

man (Eds.), Proceedings of the 7th Python in Sci-

ence Conference, Pasadena, CA USA, 2008, pp. 11

– 15. URL: http://conference.scipy.org/proceedings/

SciPy2008/paper_2/.

http://arxiv.org/abs/1110.2515
https://arxiv.org/abs/2003.09902
https://arxiv.org/abs/2003.09902
http://arxiv.org/abs/2003.09902
http://dx.doi.org/10.1145/1401890.1401948
http://dx.doi.org/10.1145/1401890.1401948
http://conference.scipy.org/proceedings/SciPy2008/paper_2/
http://conference.scipy.org/proceedings/SciPy2008/paper_2/

	1 Introduction
	2 Problem statement
	3 Semi-supervised Community Detection from Dynamic Graphs
	4 Dynamic graphs
	4.1 Synthetic Generator of Dynamic Graphs with Labeled Communities
	4.2 Datasets

	5 Experimental results
	5.1 Performance metrics
	5.2 Baselines
	5.3 Experimental settings
	5.4 Performance results
	5.5 Ablation study

	6 Conclusions and Future Work

