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Abstract
Acquiring time-series data in life sciences, such as soil, hydrological, and climatic measurements, presents significant challenges because
of the susceptibility of real sensors to damage and malfunction. These issues often lead to incomplete, inconsistent, or missing data,
where traditional machine learning and deep learning models struggle to handle effectively. To address this, the paper introduces a
robust approach leveraging generative adversarial networks (GANs) to improve data reliability. GANs are used to generate synthetic
data that fill in gaps and correct inconsistencies, resulting in a more complete and accurate dataset. The method involves training the
GAN on the existing dataset to learn its fundamental patterns and subsequently producing new data that align with these patterns.
The effectiveness of the proposed pipeline is validated through extensive set of experiments across various life-science datasets. The
results demonstrate significant improvements in error metrics, including reduced mean absolute error (MAE) and root mean square
error (RMSE), alongside increased R² scores. These findings highlight the enhanced accuracy and reliability of the pipeline compared to
conventional approaches.
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1. Introduction
Scientific data is crucial in advancing our understanding of
natural phenomena and driving innovations across various
fields. It encompasses a range of data types, from categorical
data requiring straightforward statistical methods to com-
plex time-series data necessitating sophisticated analytical
approaches and advanced artificial intelligence (AI) tech-
niques. A significant subset of scientific data is life science
data, which often involves time series measurements such
as soil moisture levels and temperature fluctuations. These
measurements are highly sensitive to climatic variations and
external factors. Accurate monitoring, analysis, and pre-
diction of these parameters are essential for environmental
preservation, agricultural management, and climate change
mitigation. However, collecting and analyzing time series
data in life sciences presents challenges due to sensor issues
such as noise, errors, and sensor drift, which complicate
data collection. Enhancing data quality involves addressing
these issues to improve reliability [1]. In addition, deploying
physical sensors can be cost-prohibitive, logistically chal-
lenging, and often produce limited data volumes. Uneven
sensor distribution and environmental variability further
exacerbate these challenges, leading to incomplete datasets
that affect the performance of traditional machine learning
and deep learning models.

To overcome these data collection and analysis challenges,
advanced techniques such as Generative Adversarial Net-
works (GANs) can be utilized. GANs create synthetic data-
sets that simulate real-world conditions, reducing the need
for extensive physical data collection. Data augmentation
using GANs improves the spatial and temporal resolution of
environmental research data, providing a more comprehen-
sive view of the monitored environment and enhancing the
performance of ML models with more diverse training sam-
ples [2, 3]. Moreover, these techniques can help in anomaly
detection and enhance the robustness of predictive models
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by addressing data imbalance [4, 5].

To sum up, the followings are the main contributions of
the paper:

1. Introducing an effective pipeline for analysis and
processing sparse temporal life science data.

2. Investigating the performance of traditional ma-
chine learning and deep learning models in under-
standing climate-soil interactions, and

3. Applying GANs in life science data analysis.

2. Background
The field of soil-climate interactions and life science data
analysis encompasses many complex concepts and method-
ologies. Establishing a robust foundation for this work,
this section presents a thorough examination of the basic
principles, ideas, and approaches that are pertinent to the
argument.

2.1. Time Series
Time series analysis, as described in [6], is a statistical tech-
nique used to examine data points that are organized se-
quentially. The primary objective of time series analysis
is to understand the underlying structure and process that
produced the data. This approach is widely used for many
reasons, such as economic forecasting, stock market anal-
ysis, weather prediction, and many more[7]. The selected
dataset for our investigation comprises soil-climate data,
which exemplifies the scientific data that may greatly bene-
fit from time series analysis. Long-term collection of soil-
climate data offers essential knowledge on the relationships
between soil characteristics and climatic elements including
temperature, precipitation, and humidity.

2.2. Tradition ML & DL Methods for Time
Series

Imputation techniques are crucial for estimating and sub-
stituting missing values to facilitate comprehensive data
analysis. There are several ways to deal with missing values,

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:vijayv01@ads.uni-passau.de
mailto:alsayed.algergawy@uni-passau.de
https://creativecommons.org/licenses/by/4.0/deed.en


Akanksha Vijayvergiya et al. CEUR Workshop Proceedings 1–7

such as cubic and linear imputation, Gaussian imputation,
and K-Nearest Neighbors (KNN) imputation. Cubic and lin-
ear imputation methods introduced by [8] [9] are widely
used for their simplicity and effectiveness in time series and
continuous data. Gaussian imputation requires that the data
conforms to a Gaussian (normal) distribution, as stated by
Little in 1987 [10] [11]. K-closest Neighbors (KNN) imputa-
tion is a non-parametric technique that utilizes the 𝑘 closest
neighbors to approximate the missing values [12] [13] [14].

Machine learning utilizes a range of models to examine
data and make predictions about future events. This section
presents two often used models: Linear Regression and Ran-
dom Forest [15]. Both models were selected based on their
efficacy in managing time-varying data, which is essential
for precise forecasting and analysis in dynamic settings.

Deep Neural Network (DNN) [16] is an extension of a sim-
ple neural network with multiple hidden layers between the
input and output layers. The addition of these hidden layers
allows the network to model more complex relationships
in the data. The working of each layer in a DNN follows
the same principles as in a simple neural network, but with
repeated layers, the depth of the network increases.

Generative Adversarial Networks GAN are a class of
machine learning frameworks invented by Ian Goodfellow
and his colleagues in 2014 [17]. GANs consist of two compet-
ing neural networks, the Generator (G) and the Discrimina-
tor (D), which are trained simultaneously through a process
known as adversarial training. GAN is designed to gener-
ate synthetic data that resembles real data. It achieves this
through the interaction of two neural networks: Gener-
ator (G): Generates new data samples by taking an Input
Noise Vector and producing Generated Data, and Discrimi-
nator (D): Evaluates whether the data samples are real or
generated.

The training of GANs involves a minimax game between
the generator and the discriminator:

1. Discriminator Training: The discriminator is up-
dated to maximize the probability of correctly clas-
sifying real and fake data. The loss function for the
discriminator is given by:

𝐿𝐷 = −
(︁
E𝑥∼𝑝data(𝑥)[log𝐷(𝑥)]

+ E𝑧∼𝑝𝑧(𝑧)[log(1−𝐷(𝐺(𝑧)))]
)︁
[17]

2. Generator Training: The generator is updated to
minimize the probability that the discriminator cor-
rectly classifies the generated data as fake. The loss
function for the generator is given by:

𝐿𝐺 = −E𝑧∼𝑝𝑧(𝑧)[log𝐷(𝐺(𝑧))] [17]

The overall objective function of the GAN is:

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) = E𝑥∼𝑝data(𝑥)[log𝐷(𝑥)]

+ E𝑧∼𝑝𝑧(𝑧)[log(1−𝐷(𝐺(𝑧)))] [17]

3. Related Work
Key advancements include the optimization of deep learning
models using GANs and the Sailfish Optimization Algorithm
(SOA) for soil moisture prediction [18, 19]. This method en-
hances the quality of synthetic data generation, addressing

Figure 1: Flowchart of the Methodology

the challenge of incomplete and inconsistent soil moisture
readings. Machine learning models such as Random Forest
(RF) and Support Vector Machines (SVM) have been utilized
for soil moisture and temperature prediction, demonstrating
robustness and improved generalization capabilities. How-
ever, these models also faced limitations in handling missing
data and variability in data quality [20]. Recent studies have
leveraged GANs for data augmentation, which significantly
enhances classifier performance by increasing the volume
and diversity of the training data [21]. Additionally, the in-
tegration of GANs with Long Short-Term Memory (LSTM)
networks (GAN-LSTM) has been explored to improve the
accuracy of soil moisture predictions by generating high-
quality synthetic time series data [22]. Moreover, GANs
have been applied to refine seasonal weather predictions,
demonstrating significant potential for high-resolution fore-
casting and capturing intricate spatial patterns among cli-
mate variables [23].

This paper builds on these advancements by incorporat-
ing advanced imputation techniques to preprocess datasets
before applying GANs, ensuring the generation of high-
quality synthetic data. By integrating various deep learn-
ing and machine learning models, including GANs, DNNs,
SNNs, and CNNs. This work further aims to develop highly
accurate and reliable prediction models for soil moisture
and temperature. This comprehensive strategy results in
enhanced prediction models that exhibit high levels of ac-
curacy and reliability.

4. Methodology
In this section, we outline the proposed approach, which
consists of the following main tasks, as shown in Figure 1:
Exploratory Data Analysis (EDA), imputing missing data,
training models on the completed datasets, generating syn-
thetic data using GANs, and evaluating the effectiveness of
these models.

In the following we are going to provide more details for
each task.

4.1. Performing Exploratory Data Analysis
(EDA)

EDA is an essential process for understanding the organiza-
tion, integrity, and attributes of the information. The first
step involves identifying any missing values present in the
dataset. This stage is crucial as it establishes the magnitude
of the missing data and guides the approach for addressing
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it. The number of missing values in each row and column
is computed to assess the degree of data incompleteness.
Hence, comprehending the dispersion and quantity of miss-
ing data aids in determining the appropriate imputation
methods to guarantee the integrity and use of the dataset.

4.2. Imputing Missing Data
After identifying missing data, the subsequent action is
to impute these absent values. Three different algorithms:
KNN, Cubic and Gaussian which are explained in section
(2.2) are employed and later compared to pick the best
method for further model training.

A statistical study is conducted to evaluate the efficacy
of each imputation strategy following the imputing of miss-
ing data. By comparing the imputed data with the origi-
nal data, the Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) offer insights on both the imputed
values precision and fluctuation. Whereas RMSE is suscep-
tible to outliers and assigns greater weight to higher errors,
MAE calculates the average size of prediction errors. These
measures aid in assessing how effectively the imputation
techniques maintain the distribution and structure of the
underlying data [14] [24]. This comparison facilitates the
assessment of the efficacy of each imputation technique as
indicated by the results in section (5.3).

4.3. Model Selection
When analyzing the relationship between soil and the envi-
ronment over time, it is essential to choose suitable models
that can accurately represent the intricate dynamics and
inter-dependencies included in the data. The model selec-
tion procedure was guided by the need to achieve a balance
between predicted accuracy, interpretability, and the capa-
bility to handle many types of data patterns. The following
models—Random Forest, Linear Regression, Simple Neural
Network, Deep Neural Network, and Convolutional Net-
work—were chosen because of their suitability for training
time-series data and are described in section (2.2).

The pre-processed data obtained through imputation in
subsection (4.2) and EDA in subsection (4.1) is used as train-
ing and validation dataset for further training Models.

4.4. Machine And Deep Learning Model
Evaluation on Real Data

The outcomes shown in subsections (5.4) analyze the efficacy
of ML and DL models when utilized with real-world datasets.
The findings suggest that both ML and DL models have
subpar performance.

The inadequate performance highlights the need for other
methods to improve the accuracy and resilience of the model.
An encouraging strategy is the use of Generative Adversarial
Networks as explained in subsection (2.2).

4.5. GAN Model Implementation and
Generating Synthetic Data

The procedures for data processing, GAN model training,
and assessment are outlined in subsection (2.2). The primary
objective is to produce artificial data samples using GANs,
using diverse input characteristics obtained from several
sources as training data.

4.6. Evaluating ML and DL Models on
Synthetic Data

After generating the synthetic data, ML and deep learning
DL models are trained and assessed using this data to verify
its fidelity to the original dataset and results are described
in section (5.6). The technique entails a meticulous selection
of synthetic data, guided by statistical measurements, to
guarantee its resemblance to the original data.

5. Results
This section summarizes the results obtained from the anal-
ysis and modeling conducted in this research. The sections
are arranged in a systematic manner to comprehensively
address the following topics: exploration of the dataset,
comparison of imputation methods, application and eval-
uation of machine learning and deep learning models on
real data, generation and assessment of synthetic data using
GANs, and comparative analysis of model performance on
real versus synthetic data.

5.1. Dataset Description
To validate the performance of the proposed approach,
we use three different datasets from the open data pro-
vided by biodiversity exploratory information system
(BExIS)1) [25] [26], which serves as the data portal for biodi-
versity datasets collected within the framework of the Biodi-
versity Exploratories project2. The collection includes a vari-
ety of climate and soil factors that are consistently recorded
and classified.The characteristics of selected datasets are
illustrated in Table 1. As shown in the table, we selected
datasets that represent two different domains, soil and cli-
matic.

Dataset Start Date End Date No. Features No. tuples

ds_set1.csv 05-01-2008 06-09-2010 26 801
ds_set2.csv 03-01-2009 04-09-2011 26 801
ds_set3.csv 09-02-2020 04-09-2024 26 801

Table 1
Dataset Description

Climate parameter Description
Ta_10 Air temperature in 10 cm
Ta_200 Air temperature in 2 m
Ta_200_min Minimum temperature
Ta_200_max Maximum temperature
Ta_200_ice_days Eistage
Ta_200_cool_days cold days
Ta_200_cold_days Frost days
Ta_200_warm_days warm days
Ta_200_summer_days Summer days
Ta_200_tropical_days talk
Ta_200_tropical_nights Tropical nights
Ta_200_growing_degree_days_10 Growing degree days
precipitation_radolan Precipitation
precipitation_radolan_rain_days Rain days
WD Wind direction
WV Wind speed
WV_gust Peak gusts
SD_Olivieri Sunshine duration

Table 2
Climate Features

1https://www.bexis.uni-jena.de/
2https://www.biodiversity-exploratories.de/en/
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The climatic features specified in Table (2) serve as in-
put variables for machine learning (ML) and deep learning
(DL) models. These features encompass a range of meteo-
rological parameters, including temperature, precipitation,
wind attributes, and duration of sunshine. They offer a thor-
ough comprehension of the climate dynamics across various
altitudes and temporal dimensions.

Soil parameter Description
Ts_05 Soil temperature in 5 cm
Ts_10 Soil temperature in 10 cm
Ts_20 Soil temperature in 20 cm
Ts_50 Soil temperature in 50 cm
SM_10 Soil moisture in 10 cm
SM_20 Soil moisture in 20 cm

Table 3
Soil Features

The soil features listed in Table (3) are used as output
features for the ML and DL models. These features include
soil temperature and soil moisture at various depths. By
understanding the relationship between climate inputs and
soil outputs, the models can predict soil conditions based
on climatic variations, which is essential for applications in
agriculture, environmental monitoring, and land manage-
ment.

5.2. Analysis Using Exploratory Data
Analysis

In the domain of actual data, sparsity is a prevalent problem,
as shown by the abundance of NaN (Not a Number) values.
The presence of these gaps in the data may often be ascribed
to sensor malfunctions or other difficulties related to data
collecting. The analysis, shown in Figure 2, indicates that
the columns SD Olivier, WD, WV, and WV gust do not have
data and should be excluded. Figure 3 demonstrates that
a considerable proportion of rows have over 50% missing
data.

Figure 2: NaN Count Per Column for Datasets

5.3. Analysis of Different Imputation
Methods

Various imputation approaches may be used to address miss-
ing data. To assess the efficacy of these techniques, we may
compare the mean absolute error (MAE) and the root mean
square error (RMSE) values obtained from the original and
imputed datasets. The performance of three imputation ap-
proaches, namely Cubic, K-nearest neighbors (KNN), and
Gaussian, was evaluated in three datasets (set1, set2, set3),
as shown in Figure 4.

Figure 3: Number of Rows with More Than 50% NaN Values

Figure 4: MAE and RMSE Errors for Different Imputation Meth-
ods

5.4. Analysis of Machine Learning and Deep
Learning Models on Real Data

The examination of various machine learning models on
the dataset Figure 5 uncovers a consistent trend where the
output feature SM_10 displays significantly higher MSE and
MAE, as well as notably lower 𝑅2 scores in comparison to
other target variables (Ts_05, Ts_10, Ts_20, Ts_50). This
suggests that the SM_10 input feature has the most impact,
leading to poor prediction performance and poor model
fit. On the other hand, alternative target variables exhibit
reduced error rates and increased 𝑅2 scores, indicating su-
perior model performance and predictive accuracy. Despite
experimenting with several hyperparameters in the Ran-
dom Forest model, no substantial improvements were seen.
Similar trends were observed in all three datasets. Similar
results were also visible with the deep learning models on
all three datasets as described by Figure 6.

Figure 5: ML Performance Metrics for ds_set1.csv
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Figure 6: Deep Learning Performance Metrics for ds_set1.csv

5.5. Analysis of Real vs GAN Synthetic Data
The figures provided provide a comparison examination
of performance metrics between the original data and the
data produced by a GAN for three datasets (ds_set1, ds_set2,
ds_set3). Each image consists of two subplots: one display-
ing the mean values and the other representing the standard
deviations. When examining the subplots that compare the
average values, it becomes evident that the produced data
closely resembles the original data in virtually all aspects.
This suggests that the GAN successfully captures the fun-
damental distribution of the original dataset. The strong
agreement seen across several hyperparameter configura-
tions, as shown in Figures 7, 8, and 9, highlights the GAN
model’s ability to faithfully reproduce the average values
of the original dataset. Similarly, the analysis of the sub-
plots comparing the standard deviations shows that the
generated data closely resemble the variability of the orig-
inal data. However, there are some deviations in certain
features, indicating that while the GAN performs well over-
all, reproducing specific features accurately may be more
challenging.

The evaluation also considers the effects of several hyper-
parameters, which are represented by various markers and
colors. These combinations consist of learning rates (0.0002,
0.003, 0.001) and loss functions (mean squared error, binary
cross-entropy).

Figure 7: Mean and SD Performance Metrics for ds_set1.csv

Figure 8: Mean and SD Performance Metrics for ds_set2.csv

Figure 9: Mean and SD Performance Metrics for ds_set3.csv

5.6. Analysis of DL and DL Models on Real
vs Synthetic Data

The assessment of deep learning models on three datasets
(Figures 10, 11, and 12) reveals significant improvements
when using GAN-generated synthetic data in comparison
to the original data. Notable observations consist of:

• Mean Squared Error: Models trained on synthetic
data consistently provide decreased MSE values for
all target variables, with significant enhancements
seen for SM_10.

• Mean Absolute Error: The use of GAN-generated
data leads to a notable decrease in MAE, especially
for the SM_10 target variable.

• 𝑅2: Higher𝑅2 scores show more explanatory power
for models trained on synthetic data, particularly
improving the prediction performance for SM_10.

The results emphasize the effectiveness of using synthetic
data produced by GANs to improve the accuracy and relia-
bility of models, especially in predicting the SM_10 variable.

Similar observations were observed using ML models
trained on the synthetic data. The assessment of machine
learning models in three datasets (Figures 13, 14, and 15)
reveals substantial improvements when using synthetic data
generated by GAN compared to the original data. Notable
observations consist of:

• Mean Squared Error: Models trained on synthetic
data consistently exhibit decreased MSE values for
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Figure 10: DL Metrics for ds_set1.csv: GAN Data vs. Original
Data

Figure 11: DL Metrics for ds_set2.csv: GAN Data vs. Original
Data

Figure 12: DL Metrics for ds_set3.csv: GAN Data vs. Original
Data

all target variables, with particularly noticeable en-
hancements for SM_10.

• Mean Absolute Error: The use of GAN-generated
data significantly decreases the MAE, especially for
the SM_10 target variable.

• 𝑅2: Higher 𝑅2 scores suggest better explanatory
power for models trained on synthetic data, particu-
larly improving predictive performance for SM_10.

The results demonstrate the efficacy of using synthetic
data generated by GAN to improve the accuracy and re-
silience of the model, particularly for the SM_10 target vari-
able.

6. Conclusion
In this paper we investigated the analysis of time series
datasets collected with the life science domain. We demon-
strate the effect of KNN-based imputation techniques and
show how KNN imputation consistently outperforms other
methods, making it the optimal choice for addressing miss-
ing data in this scenario. The data generated by GANs
exhibits a high degree of similarity to the original data,

Figure 13: GAN Data vs. Original Data: ds_set1.csv

Figure 14: GAN Data vs. Original Data: ds_set2.csv

Figure 15: GAN Data vs. Original Data: ds_set3.csv

demonstrating GANs’ ability to accurately replicate the un-
derlying distribution of the actual dataset (5.5). Models
trained on GAN-generated data show superior performance
compared to those trained on real data, as evidenced by sig-
nificantly improved evaluation metrics, such as lower MSE
and higher R2 scores. These improvements are observed
in both machine learning and deep learning models across
various datasets described in section (5.6). The findings of
this paper have broad applicability in biological sciences
and environmental research. This study enhances the re-
silience and precision of models predicting soil properties
under different climatic conditions, facilitating more reliable
agricultural planning and environmental monitoring.
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