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Abstract
This paper introduces a dispatching approach to allocating computing resources for executing various activities within data science
pipelines. The allocation strategy incorporates quantitative metrics—such as workload, performance in time, and memory consump-
tion—and qualitative metrics emphasising fairness, responsibility, and sustainability. These qualitative considerations include the
geographic location of servers, their CO2 footprint, the frugality of data processing and analytics models, the conditions under which
the data are produced, and the expected collective benefit of the processing outcomes. By integrating these qualitative metrics into
resource-dispatching strategies and decision-making processes, the proposed algorithm aims to transform the execution of data science
pipelines into a more ethical and equitable practice. This approach aligns with the principles of techno- and ecofeminism, advocating
for technological solutions that prioritize collective social and environmental progress over purely capitalist gains. In this context,
techno/ecofeminism provides a critical lens, emphasizing the importance of inclusivity, sustainability, and shared benefits in developing
and deploying data-driven technologies. This work challenges extractive and inequitable models by grounding the dispatching strategy
in these principles, proposing an alternative framework that leverages technology for holistic and equitable advancement.
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1. Introduction
This paper introduces a dispatching approach to allocate
computing resources for executing various activities within
data science pipelines. The allocation strategy incorpo-
rates quantitative metrics —such as workload, performance
in time, and memory consumption— and qualitative met-
rics emphasising fairness, responsibility, and sustainabil-
ity. These qualitative considerations include the geographic
location of computing resources, their CO2 footprint, the
frugality of data processing and analytics models, the condi-
tions under which the data are produced, and the expected
collective benefit of the processing outcomes. By integrating
these qualitative metrics into resource-dispatching strate-
gies and decision-making processes, the proposed approach
aims to transform the execution of data science pipelines
into a more fair and responsible practice. This approach
aligns with the principles of techno and ecofeminism,1 ad-
vocating for technological solutions prioritising collective
social and environmental progress over purely capitalist
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1Technofeminism is a theoretical and practical framework that explores
the intersections between technology, gender, and power [1]. Ecofemi-
nism, also called ecological feminism, uses the basic feminist tenets of
gender equality, revaluing non-patriarchal or nonlinear structures and
a view of the world that respects organic processes, holistic connec-
tions, and the merits of intuition and collaboration [2].

gains. In this context, techno/ecofeminism provide a critical
lens, emphasizing the importance of inclusivity, sustain-
ability, and shared benefits in developing and deploying
data-driven technologies. This work challenges extractive
and inequitable models by grounding the dispatching strat-
egy in these principles, proposing an alternative framework
that leverages technology for holistic and equitable advance-
ment.

Accordingly, the remainder of the paper is organised as
follows. Section 2 gives a general overview of fair computing
resource dispatching strategies for executing data science
workloads. Section 3 introduces our dispatching approach.
Section 4 reports an experimental validation to test our
approach in different scenarios. Finally, Section 5 concludes
the paper and discusses future work.

2. Related work
Resource dispatching involves allocating computing re-
sources such as CPU, GPU, memory, and storage to specific
tasks in an environment, often under constraints like time,
budget, and quality of service (QoS). Traditional cluster
schedulers such as Kubernetes and Apache Mesos allocate
resources in containerized environments, emphasizing scal-
ability and fault tolerance. Public cloud platforms like AWS,
Azure, and Google Cloud offer elasticity and on-demand pro-
visioning but require algorithms to manage dynamic pricing
and preemption risks. Emerging paradigms prioritize re-
source dispatching across distributed and geographically
dispersed devices, focusing on latency and energy efficiency.

The efficient dispatching of computing resources is a crit-
ical concern in modern computing environments, particu-
larly for data science workloads characterized by diverse and
resource-intensive operations. Data science tasks compos-
ing data science pipelines, ranging from data preprocessing
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to machine learning model training, require dynamic re-
source allocation to optimize execution time, ensure cost
efficiency, and meet fairness criteria. This section explores
key strategies, algorithms, and fairness considerations in
resource dispatching for data science workloads.

2.1. Algorithms and Strategies for Resource
Dispatching

Numerous algorithms and strategies have been proposed
to optimize resource dispatching. These algorithms can
broadly be categorized into heuristic, optimization-based,
and learning-based approaches.

Heuristic-Based Algorithms provide computationally
efficient, rule-based strategies for dispatching resources.
Common heuristics include:

• First-Come-First-Served (FCFS): Tasks are executed
in the order of arrival. While simple, FCFS often
leads to resource starvation and inefficient utiliza-
tion.

• Round-Robin (RR): Resources are evenly distributed
among tasks in cyclic order, avoiding starvation but
may not optimize resource usage.

• Min-Min and Max-Min: Min-Min first selects tasks
with the lowest resource demands, while Max-Min
prioritizes those with the highest. These methods
aim to balance workloads but may overlook fairness.

Optimization-Based Algorithms model resource dis-
patching as mathematical problems seeking to minimize or
maximize an objective function. Examples include:

• Linear Programming (LP): LP has been applied to
model resource allocation problems in environments
like high-performance computing clusters [3].

• Integer Programming (IP): Tasks with discrete re-
source requirements can be addressed using IP,
which is computationally intensive but offers preci-
sion [4].

• Game Theory: Models like Nash Equilibrium provide
frameworks for multi-agent systems where tasks
compete for shared resources [5].

Learning-Based Algorithms. The rise of machine learn-
ing (ML) and deep reinforcement learning (DRL) has enabled
adaptive and predictive resource dispatching:

• Reinforcement Learning (RL): RL models learn op-
timal policies by interacting with the environment.
Algorithms like Q-Learning and Proximal Policy Op-
timization (PPO) have allocated resources in cloud
computing scenarios [6].

• Neural Networks: Deep learning models predict re-
source demands based on historical workload pat-
terns, improving dispatching decisions over time
[7].

• Federated Learning (FL): FL trains models across
decentralized devices while addressing privacy con-
cerns, requiring careful resource dispatching to bal-
ance computation and communication costs [8].

2.2. Resource Dispatching for Data Science
Workloads

Data science workloads are uniquely challenging due to
their heterogeneity, high computational demands, and often
unpredictable resource needs. Resource dispatching in this
context has focused on:

• Workflow-Aware Scheduling: Platforms like Apache
Airflow and DAG-based systems optimize resource
allocation for multi-stage workflows.

• GPU Optimization: GPU-based workloads like deep
learning training require specialized schedulers to
minimize idle time and maximize utilization [9].

• Cost Efficiency: Cloud platforms use spot pricing
and preemptible instances to reduce costs. Strategies
must account for potential disruptions and ensure
workload continuity [10].

• Energy Efficiency: Techniques like Dynamic Volt-
age and Frequency Scaling (DVFS) minimize energy
consumption in large-scale data centres [11].

2.3. Fairness in Resource Dispatching
Fairness is an increasingly critical consideration in resource
dispatching, particularly for data science workloads where
multiple users and tasks compete for limited resources. Key
approaches to achieving fairness include:

• Weighted Fair Queuing (WFQ): Assigns weights to
tasks based on priority levels, ensuring proportional
resource allocation [12].

• Dominant Resource Fairness (DRF): Proposed by
Ghodsi et al. [13], DRF extends traditional fairness
models to multi-resource environments, ensuring
that no single resource type becomes a bottleneck.

• Max-Min Fairness: Ensures that the minimum allo-
cation among tasks is maximized, balancing fairness
with efficiency [14].

• Incentive Mechanisms: Game-theoretic approaches
incentivize users to truthfully report resource de-
mands, minimizing strategic manipulation [15].

2.4. Discussion
While significant progress has been made in resource dis-
patching, several critical challenges remain. Scalability is
a primary concern, as algorithms must handle increasing
workloads and heterogeneous environments without intro-
ducing significant overhead. Real-time adaptation poses
another challenge, requiring dispatching decisions to dy-
namically adjust to changes in workloads, resource avail-
ability, and user demands. Ethical considerations further
complicate resource dispatching, as ensuring fairness in
multi-tenant systems while balancing efficiency and cost
remains a complex issue. Lastly, sustainability has emerged
as a pressing priority, with data centres consuming increas-
ing energy, necessitating resource dispatching strategies
prioritising green computing initiatives to reduce environ-
mental impact. Addressing these challenges is essential
to advancing the field and ensuring the effectiveness of
resource-dispatching systems in diverse computing envi-
ronments.



3. Fair Dispatching with Qualitative
Metrics

Our dispatching algorithm is built on three key hypotheses.

• Hypothesis-1: The first hypothesis assumes that a
data science pipeline to be executed includes fairness
requirements for each task explicitly specified by
humans (e.g., data scientists, domain experts, data
owners, or communities potentially impacted by the
analysis). Each task within the pipeline requires
multiple resources to execute successfully, and these
fairness requirements guide the resource allocation
process.
A data science pipeline is then guided by a global
fairness objective and an approximation threshold,
which defines the extent to which local and global
fairness requirements can be met. The global fair-
ness objective is an overarching guideline for en-
suring ethical and equitable outcomes across the
pipeline. At the same time, the approximation
threshold specifies the allowable deviation or trade-
offs in achieving fairness at both local (task-specific)
and global (pipeline-wide) levels. This balance en-
sures that fairness is systematically incorporated
while accounting for practical constraints.

• Hypothesis-2: The second hypothesis posits that data
science tasks are executed using a pool of available
resources, each characterized by distinct quantita-
tive and qualitative properties. These properties can
be validated and certified through a pre-established
certification process, ensuring that the resources
meet the necessary standards for the tasks they sup-
port [16, 17].

• Hypothesis-3: The third hypothesis assumes that the
provision of computing resources follows just-in-
time strategies, utilizing a dynamic pool of resources
managed within virtualized environments. In this
setup, given a set of tasks to be executed, a dispatcher
dynamically allocates resources to tasks based on
their alignment with both technical and qualitative
requirements at both global and local levels. This
approach ensures efficient and adaptive resource
allocation while meeting the pipeline’s broader fair-
ness and performance objectives.

By integrating these three hypotheses, the algorithm en-
sures resource allocation meets technical demands and ad-
heres to fairness principles, fostering ethical and responsible
data science practices.

Our dispatching approach consists of 3 steps: 1) prepara-
tion of the execution environment consisting of available
computing resources with the fairness properties that can
potentially be acceptable to the data science pipeline re-
quirements (Section 3.1); 2) fairness calculation for every
computing resource in the pool (Section 3.2); 3) task dis-
patching seeking for resources that are eligible for a given
task select the best resource according to local and global
FI (Section 3.3).

3.1. Preparation of the Execution
Environment

To prepare the execution environment for a given data sci-
ence pipeline consisting of tasks with input data estimated

computing resources requirement and a fairness objective,
we elaborate on our work in Trust Negotiation [18]. The
first is to build an execution environment with a pool of
available resources tagged with qualitative metrics that to-
tally or partially align to fairness technical and requirements
using the following negotiation algorithm.

The trust negotiation algorithm [18] is designed to dy-
namically establish and manage trust (defined concerning
fairness metrics) among resources in virtual environment
pools. It evaluates trust values for each resource based on its
profiles, including functional and non-functional attributes
and their alignment with the trust requirements of other
resources and tasks. The algorithm supports partial trust
negotiation, allowing resources with suboptimal trust lev-
els to participate under restricted conditions. Trust values
are updated continuously as the execution of the data sci-
ence pipeline tasks state evolves, ensuring adaptability and
fairness. A centralized trust proxy coordinates the negotia-
tion process, collecting profiles, enforcing trust policies, and
resolving conflicts to maximize participation while main-
taining data science tasks’ reliability.

3.2. Fairness Calculation
This dispatching strategy leverages a Fairness Index (FI)
[19] to allocate tasks to the most suitable computing re-
source in a distributed system. FI is computed on the basis
of the following building blocks.

• Computing Resources: Each computing resource
is defined by multiple attributes (e.g., location score,
data provenance, GPU cores) and an initial pool of
available resources.

• Weights: The importance of each factor in the FI
computation is defined in a weights dictionary, al-
lowing customization based on application needs.

• Tasks have resource requirements (denoted as
resource_needs) that the selected computing re-
source must fulfil.

Function calculate_fi computes the Fairness Index
(FI) for each computing resource by combining several met-
rics weighted according to their importance, as follows.

𝐹𝑎𝑖𝑛𝑒𝑠𝑠𝐼𝑛𝑑𝑒𝑥 (𝐹𝐼) =𝛼1𝐿𝑠 + 𝛼2𝑃𝑠+

𝛼3𝐷𝑆𝑝 + 𝛼4𝑀𝑃+

𝛼5𝑇𝑡 + 𝛼6𝐶𝐺𝑃𝑈+

𝛼7𝐶𝑐𝑎𝑙 + 𝛽1𝑇𝐶𝐶𝑂2 + 𝛽2𝐸𝐶

(1)

where:

• Location Score (𝐿𝑠): Proximity or relevance of the
computing resource’s location to the task.

• Data Provenance Score (𝑃𝑠): Suitability of the
computing resource’s data origins for the task.

• Sovereignty Score (𝐷𝑆𝑝): Compliance with data
sovereignty requirements.

• Model Performance (𝑀𝑃 ): Performance of the
models deployed on the computing resource.

• Training Time (𝑇𝑡): Estimated time required to
train models on the computing resource.

• GPU Cores (𝐶𝐺𝑃𝑈 ): Availability of GPU resources.



• Calibration Cycles (𝐶𝑐𝑎𝑙): Computing resource’s
capacity to handle calibration demands.

• Carbon Footprint (𝑇𝐶𝑂2 ): Environmental impact
of utilizing the computing resource.

• Economic Cost (𝐸𝐶): Financial cost associated
with the computing resource’s operation.

The coefficients 𝛼1, . . . , 𝛼7, 𝛽1, 𝛽2 are the weights as-
signed to each metric. They reflect the metrics relative
importance within the fairness index. These weights can be
adjusted based on the data science task’s specific priorities
or fairness objectives.

3.3. Task Dispatching
The FI guides in equation (1) dispatching by selecting re-
sources best suited to meet a given task’s technical and
qualitative requirements. The negotiation algorithm allows
one to choose the right resources that can participate in
the execution of a task. In particular, dispatching function
dispatch_task selects the most suitable server for a given
a task based on its FI and available resources using the fol-
lowing three-steps process.

1. Iterate Over Computing Resources: For each
computing resource, the FI is calculated using
calculate_fi.

2. Eligibility Check: A computing resource is consid-
ered eligible if:

• It has an FI close to the task requirements
among available computing resources.

• It has sufficient resources to meet the task’s
requirements: available_resources ≥
resource_needs.

3. Select the Best Computing Resource: The com-
puting resource with the maximum FI that satis-
fies the resource constraints and can contribute to
achieving the expected global FI is chosen.

Task Allocation Once a suitable computing resource is
selected:

• Resource Deduction: The task’s resource require-
ments are deducted from the available computing
resources.

• Task Assignment Notification: The task is
marked as assigned to the computing resource, and
a confirmation message is sent.

If no suitable computing resource is found, an error is raised.

Example Workflow Let us assume that two servers (“A”
and “B”) have one available computing resource each to
execute a data science pipeline. First, for each resource we
compute its FI, and then match and allocate the tasks in the
pipeline. Considering (0.1, 0.15, 0.2, 0.25, 0.1, 0.05, 0.05, 0.05,
0.05) as weights for metric values (0.8, 0.9, 0.7, 0.95, 0.8, 8,
3, 0.2, 0.5), listed in the order used in equation (1), the FI is
computed as follows:

1. FI Calculation:

• Server A: 𝐹𝐼 = 0.1 · 0.8 + 0.15 · 0.9 + 0.2 ·
0.7+0.25 ·0.95+0.1 ·0.8+0.05 ·8+0.05 ·
3 + 0.05 · 0.2 + 0.05 · 0.5.

• Server B: Similar calculation using its respec-
tive attributes.

2. Best Server Selection: Compare FI scores and re-
source availability. Assign the task to the server
with the highest eligible FI.

3. Task Allocation: Deduct the task’s resource needs
from the selected server’s resources and confirm the
assignment.

3.4. Fairness-Aware AI Resource
Dispatching: A Case Study in Global
Health Research

This document presents a fairness-aware resource dispatch-
ing approach for AI-based model training in global health
research. The study focuses on training a tuberculosis (TB)
diagnostic model using X-ray images from hospitals across
the Global South. The goal is to allocate computational
resources while ensuring fairness, sovereignty, and environ-
mental sustainability.

3.4.1. Available Computing Resources

Table 1 presents the available computing resources, includ-
ing qualitative attributes (e.g., sovereignty, energy type) and
quantitative metrics (e.g., training speed, CO2 emissions).

3.4.2. Pipeline Fairness Constraints

The AI training pipeline consists of two tasks: Data Explo-
ration and Preprocessing, and Model Training. Each task
has FI requirements ensuring respect for sovereignty, sus-
tainability, and computational efficiency (see Table 2).

3.4.3. Fair Dispatching and Negotiation Rounds

Round 1: Initial Task Allocation Data Exploration:

• Eligible servers: S1 (South Africa, FI = 0.9), S4 (Kenya,
FI = 0.85).

• Best match: S1 (Solar-powered, high sovereignty,
low CO2 emissions).

• Initial allocation: S1 OK.

Model Training:

• Eligible servers: S1, S2, S5.
• Best match: S2 (Brazil, fastest GPU, moderate

sovereignty, moderate CO2 emissions).
• Initial allocation: S2 OK.

Round 2: Adjustments for Fairness
Data Exploration:

• S1 requests workload redistribution due to underuti-
lization.

• S4 is added as a backup node to balance workload
and redundancy.

• Final allocation: 70% of workload on **S1**, 30%
on **S4**.

Model Training:

• S2 alone does not meet fairness goals.
• S5 (Argentina) is added to improve fairness in re-

gional distribution.
• Final allocation: S2 (60%) + S5 (40%).



Table 1
Server profiles with qualitative and quantitative attributes

Server ID Region CPU (Cores) GPU (TFLOPS) RAM (GB) Energy Type Sovereignty CO2 (kg/hr) Training Speed
S1 South Africa 64 120 512 Solar 0.9 0.1 500
S2 Brazil 128 200 1024 Hydro 0.7 0.2 700
S3 India 48 90 256 Coal 0.5 1.2 400
S4 Kenya 32 75 128 Wind 0.85 0.05 300
S5 Argentina 96 150 768 Nuclear 0.6 0.4 600

Table 2
Pipeline fairness constraints

Task Sovereignty Min CO2 Max (kg/hr) Training Speed Min (images/sec)
Data Exploration ≥ 0.8 ≤ 0.3 N/A
Model Training ≥ 0.6 ≤ 0.8 ≥ 500

3.4.4. Final Task Allocation

The final task allocation is shown in Table 3. The table
outlines the optimized distribution of tasks across servers
following a negotiation process. It highlights how tasks such
as Data Exploration and Model Training are allocated to
specific servers, with percentages indicating the workload
distribution. For instance, Data Exploration is split between
Server 1 (70%) and Server 4 (30%), ensuring a balanced work-
load and incorporating redundancy for reliability. Similarly,
Model Training is divided between Server 2 (60%) and Server
5 (40%), with adjustments aimed at improving fairness in
the training process. The table reflects a careful considera-
tion of workload balancing, fairness, and system reliability,
suggesting that the allocation was designed to optimize re-
source utilization and prevent overloading any single server.

Table 3
Final Allocation After Negotiation

Task Final Server Allocation Fairness Adjustments
Data Exploration S1 (70%), S4 (30%) Balanced workload, redundancy
Model Training S2 (60%), S5 (40%) Improved fairness in training

3.4.5. Impact of Fair Dispatching

• Improved Regional Fairness: Avoids bias by dis-
tributing tasks across multiple Global South regions.

• Energy-Aware Allocation: Prioritizes solar and
wind-powered servers for lower carbon footprint.

• Preserved Data Sovereignty: Ensures data gov-
ernance laws are respected in high-sovereignty re-
gions.

• Optimized Compute Efficiency: Training tasks
leverage high-GPU servers while balancing fairness.

This case study demonstrates how the Fairness Index
(FI)-based dispatching enables equitable AI model training
for global health research while optimizing environmental
impact, sovereignty, and computational fairness. The nego-
tiation mechanism ensures balanced allocations, preventing
regional bias and enhancing responsible AI development.

4. Fair and Responsible Dispatching
in Practice

The experimental setting evaluates the proposed fair dis-
patching approach by simulating a representative scenario

with diverse resource pools, fairness metrics, and data sci-
ence pipelines. The goal is to demonstrate how the dis-
patcher allocates resources to meet the global Fairness Index
(FI) expectations associated with data science pipelines.

Resources Pools. We created three distinct patterns of
resource pools, each with varying capacity and fairness
metrics:

• High-Capacity, Low-Fairness Pool: Large servers with
extensive computational resources (64 GPU cores,
512 GB RAM).
Fairness Metrics:

Location Score: Low (0.3)
Sovereignty Score: Low (0.4)
Carbon Footprint: High (0.8)
Economic Cost: Medium (0.6)

• Balanced-Capacity, Medium-Fairness Pool: Mid-sized
servers with moderate computational resources (32
GPU cores, 256 GB RAM).
Fairness Metrics:

Location Score: Medium (0.6)
Sovereignty Score: Medium (0.7)
Carbon Footprint: Medium (0.5)
Economic Cost: Low (0.4)

• Low-Capacity, High-Fairness Pool: Small servers with
minimal computational resources (8 GPU cores, 64
GB RAM).
Fairness Metrics:

Location Score: High (0.9)
Sovereignty Score: High (0.85)
Carbon Footprint: Low (0.2)
Economic Cost: Low (0.3)

Data Science Pipelines. We defined three pipelines with
varying tasks, resource requirements, and global FI expecta-
tions:

• Pipeline A - High Computational Demand. Prior-
itizes computational efficiency, cost over fairness,
and higher weights for GPU cores and training time.

– Weights:
Location Score: 0.1
Data Provenance Score: 0.1
Sovereignty Score: 0.1
Model Performance: 0.3
Training Time: 0.2
GPU Cores: 0.2

– Tasks:
Data preprocessing: Requires medium re-
sources (16 GPU cores, 128 GB RAM).
Model training: Requires high resources (48
GPU cores, 256 GB RAM).

– Global FI Expectation: Medium FI ≥ 0.65).



• Pipeline B - Low Computational Demand, High
Fairness. Prioritize fairness metrics like location,
sovereignty, and carbon footprint over computa-
tional efficiency.

– Weights:
Location Score: 0.3
Data Provenance Score: 0.2
Sovereignty Score: 0.3
Model Performance: 0.1
Training Time: 0.05
GPU Cores: 0.05

– Tasks:
Data cleaning: Requires low resources (8 GPU
cores, 64 GB RAM).
Model tuning: Requires medium resources
(16 GPU cores, 128 GB RAM).

– Global FI Expectation: High FI ≥ 0.8.

• Pipeline C - Balanced Computational and Fairness
Requirements.

– Weights
Location Score: 0.2
Data Provenance Score: 0.2
Sovereignty Score: 0.2
Model Performance: 0.2
Training Time: 0.1
GPU Cores: 0.1

– Tasks:
Feature engineering: Requires medium re-
sources (16 GPU cores, 128 GB RAM).
Model training: Requires medium resources
(32 GPU cores, 256 GB RAM).

– Global FI Expectation: Medium-High FI ≥
0.75.

Experimental Scenario for Evaluating Fair Dispatch-
ing We considered three scenarios to evaluate the fair dis-
patching approach under diverse conditions. We describe
the setup, objective, and expected outcome for each scenario.
The Baseline Scenario provides a reference for understanding
default behavior. The Increased Capacity Scenario highlights
the impact of resource abundance on fairness outcomes. The
Dynamic Fairness Adjustment Scenario tests the adaptability
of the algorithm to evolving fairness goals and resource
constraints.

Baseline Scenario: It aims to evaluate the default behavior
of the fair dispatching algorithm without any adjustments
to resource capacities, fairness weights, or pipeline require-
ments.
Setup: A predefined set of resource pools with varying capac-
ities and fairness properties (e.g., location, carbon footprint,
economic cost). Data science pipelines with diverse tasks
(data preparation, model training) and fixed fairness expec-
tations.
Key Focus: Understand how well the algorithm meets fair-
ness requirements using the existing resources and configu-
ration without negotiation or dynamic adjustments.
Expected Outcome: A clear baseline to identify pipelines that
succeed or fail to meet fairness expectations and highlight
areas for improvement.

Increased Capacity Scenario: It aims to evaluate how
increasing resource availability affects the ability of the dis-
patcher to meet fairness requirements.
Setup: Resource pools have their capacities increased by a

fixed factor (e.g., 1.5x or 2x) while retaining the same fair-
ness properties. Data science pipelines remain unchanged
in terms of tasks and fairness expectations.
Key Focus: Examine whether additional resource availability
reduces negotiation calls, improves global FI scores, or leads
to better task allocation outcomes.
Expected Outcome: Insights into the impact of resource abun-
dance on fairness and efficiency in dispatching, demonstrat-
ing the scalability of the approach.

Dynamic Fairness Adjustment Scenario: It aims to eval-
uate the ability of the dispatching algorithm to adapt to
scenarios where fairness weights or expectations are dy-
namically adjusted.
Setup: Fairness weights for qualitative metrics (e.g.,
sovereignty, carbon footprint) are modified to prioritize spe-
cific fairness dimensions over others. Data science pipelines
have dynamic FI expectations based on task priority or exter-
nal conditions. The dispatcher employs negotiation strate-
gies to adapt to these changes.
Key Focus: Evaluate the flexibility of the algorithm to han-
dle shifting priorities and fairness goals while maintaining
efficient resource allocation.
Expected Outcome: Demonstration of the adaptability of the
approach, with insights into how fairness trade-offs affect
allocation outcomes.

Dispatching Process We implemented a dispatching pro-
cess as follows.

1. Input: Resource pools, pipelines, and associated
weights.

2. Task Allocation: Calculate the FI for each resource
for every task based on pipeline-specific weights.
Select the resource with the highest FI that satisfies
the task’s resource requirements.

3. Global FI Validation: After all tasks are dispatched,
compute the overall pipeline FI as the weighted aver-
age of the allocated resources’ FIs. Ensure the global
FI meets the pipeline’s expectations.

Figure 1 shows our results. The plot represents the Global
FI (Fairness Index) scores of three pipelines (Pipeline_A,
Pipeline_B, and Pipeline_C) under different scenarios. The
height of the bars represents the global FI scores achieved
for each pipeline, and annotations indicate the number of
negotiation calls required during the resource allocation
process.

The dashed line indicates the threshold FI value, a bench-
mark for evaluating whether the pipelines meet fairness
expectations. Its example value, 0.75, means that a pipeline
must achieve a global FI score of at least 0.75 for the re-
sources allocated to its tasks to be considered fair according
to the predefined criteria. Pipelines above the threshold
have a global FI score greater than or equal to 0.75. This
indicates that the resource allocation meets or exceeds fair-
ness requirements. In the plot, these bars are coloured green.
Pipelines below the threshold have a global FI score of less
than 0.75. This indicates that the allocation of resources
did not meet the fairness criteria.

The threshold serves as a critical benchmark for evaluat-
ing pipeline performance against fairness expectations. It
enables comparative analysis by distinguishing pipelines
that meet fairness criteria from those that fall short. For
pipelines below the threshold, it provides guidance for im-
provement, highlighting the need for adjustments such as
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Figure 1: Experimental results of dispatching with negotiation across different pipelines and scenarios

changing fairness metric weights, increasing resource avail-
ability, or using negotiation processes to adjust task require-
ments. In addition, the threshold is highly adjustable, allow-
ing it to be tailored to the specific fairness priorities of the
system. For example, a higher threshold imposes stricter
fairness requirements, ensuring more equitable resource
allocation, while a lower threshold relaxes these require-
ments, increasing the likelihood that pipelines will meet
expectations. This flexibility makes the threshold a versatile
tool for evaluating and improving the fairness of resource
allocation strategies.

Interpretation of Initial Experiments. In the Baseline
Scenario (see Figure 1) Pipeline_A, achieves the highest
FI score (∼ 7, 8), well above the threshold, with no need
for negotiation. Pipeline_B and Pipeline_C have lower FI
scores (∼ 2, 42 and ∼ 4, 22, respectively) and require two
negotiation calls each. Thus, they did not meet the fair-
ness expectations. There was no significant difference in
FI scores for the increased capacity scenario compared to
the baseline scenario, indicating that increasing resource
capacity did not directly influence the allocation or fairness
outcomes. Negotiation calls remain the same, implying that
the adjustments in this scenario did not alleviate the need
for negotiations in resource allocation. For the higher fair-
ness priority case, FI scores for Pipeline_B and Pipeline_C
improve slightly compared to the baseline (e.g., Pipeline_B’s
score increases from 2, 42 to 2, 60). The number of negotia-
tion calls remains constant, but the adjustments in fairness
weights reflect a positive impact on pipelines with lower
FI scores. Pipeline_A remains unaffected due to its already
high FI score. For the reduced expectations scenario, FI
scores and negotiation calls remain unchanged compared to
the baseline. This scenario indicates that lowering fairness
expectations (e.g., reducing FI thresholds) does not impact
the allocation process but would allow more pipelines to
"pass" the evaluation if the threshold is considered.

Pipeline_A consistently performs well, regardless of the
scenario, suggesting it aligns better with the resource pool or
has fewer resource constraints. Pipeline_B and Pipeline_C

struggle to meet fairness expectations across all scenarios,
with relatively low FI scores and the need for negotiation
to adjust resource allocations. Higher fairness priority im-
proves fairness for pipelines with lower FI scores, making it
the most promising scenario for addressing disparities. The
increased capacity and reduced expectations scenarios do
not significantly change the allocation outcomes, highlight-
ing that resource availability or relaxed thresholds alone are
insufficient to improve fairness outcomes.

Advantages

• Customizable Fairness: Weights allow prioritiza-
tion of sustainability, cost, or performance.

• Dynamic Allocation: The strategy adapts to server
attributes or task requirements changes.

• Fair Resource Utilization: Ensures resource allo-
cation considers technical and qualitative factors.

Limitations

• Complex Weight Tuning: Achieving an optimal
balance among factors requires careful weight con-
figuration.

• Scalability: Performance may degrade with many
servers and tasks due to computational overhead in
FI calculations.

5. Conclusions and Future Work
This paper presents a pioneering approach to fair and re-
sponsible resource dispatching for data science pipelines
by incorporating technical and qualitative metrics into the
allocation process. Integrating fairness metrics provides
a foundation for equitable computational resource man-
agement, aligning with technofeminism and ecofeminism
principles. The proposed dispatching mechanism shows
potential for balancing computational efficiency with social
and environmental fairness.



Fair resource dispatching, guided by qualitative fairness
metrics, aligns deeply with the principles of technofemi-
nism and ecofeminism by challenging systemic inequities
and promoting inclusivity in allocating computational and
environmental resources. Technofeminism, which seeks
to dismantle the gendered biases embedded in technolog-
ical systems, benefits from fairness-driven resource allo-
cation by ensuring marginalized voices —often excluded
from decision-making processes —have equitable access to
technological infrastructure. Qualitative fairness metrics
provide a framework for identifying and correcting histor-
ical imbalances, such as privileging Global North projects
over Global South initiatives or reinforcing patriarchal pri-
orities.

Ecofeminism, focusing on the interconnectedness of en-
vironmental justice and gender equality, similarly intersects
with fair dispatching practices. Prioritizing energy-efficient,
sustainable resource management and fair dispatching sup-
ports ecofeminism’s aim to mitigate environmental harm
caused by unchecked technological expansion. Together,
these frameworks foster a redistribution of resources that
values diverse perspectives, reduces systemic harm, and
integrates sustainability with social justice in technology.

Open issues and Futurework. While the results demon-
strate the feasibility and relevance of the approach, it repre-
sents an initial step toward a broader vision of fair resource
dispatching. Several directions for future work emerge from
this study:

• Scalability and Realism: Experimentation with large-
scale and more realistic resource pools and pipelines,
including heterogeneous and dynamic resource en-
vironments. Deployment in real-world settings such
as federated learning systems or global data science
collaborations.

• Dynamic and Adaptive Weights: Development of
algorithms that dynamically adjust fairness weights
based on pipelines or systems’ evolving priorities
and constraints.

• Stability feature of resource allocation: Consider this
feature as constant reallocation in response to minor
changes can lead to inefficiencies; thus, incorporat-
ing stability mechanisms in future solutions would
help avoid unnecessary reallocations, contributing
to overall cost reduction efforts.

• Inclusion of feedback loops to learn from past al-
locations and refine the weight configuration over
time.

• Negotiation Strategies: Advanced negotiation algo-
rithms for handling resource shortages or conflicts
while maintaining fairness. Integration of predictive
analytics to proactively anticipate negotiation needs
and optimize the resource allocation process.

• Cross-Domain Applications: Extension of the frame-
work to interdisciplinary domains such as climate
modelling, medical research, and global develop-
ment projects, where fairness and resource optimiza-
tion are critical.

• Enhanced Qualitative Metrics: Expansion of the fair-
ness index to include new dimensions such as cul-
tural representation, gender inclusivity, and accessi-
bility. Use of machine learning models to quantify
qualitative metrics more accurately.

• Transparency: Development of visualization tools
for stakeholders to understand and monitor the allo-
cation process and its fairness outcomes.

• Governance: Design of governance mechanisms to
ensure accountability in fairness-driven dispatching
decisions.

Addressing these challenges can evolve the proposed frame-
work into a robust, scalable, and adaptable system for fair
resource dispatching. Future experiments should involve di-
verse datasets and scenarios to validate the approach under
varying conditions and demonstrate its utility for advancing
ethical and responsible computational practices.
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