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Abstract
Recommender systems play a vital role in mitigating information overload by predicting user preferences. While traditional algorithms
like collaborative filtering and content-based filtering have demonstrated their effectiveness, they often struggle to adapt to the dynamic
nature of user preferences over time. This study addresses these limitations by enhancing the Time Correlation Coefficient (TCC) model
with time-aware techniques, providing a more sophisticated understanding of the temporal shifts in user interests. We propose four
advanced methodologies: Content-based Similarity, Time-based Decay, Cuckoo Search Optimization, and Decay Model Selection, each
designed to improve recommendation accuracy by integrating dynamic, time-sensitive elements into the recommendation process.
Our experiments reveal significant improvements in recommendation precision, demonstrating the advantages of these methodologies
over the baseline TCC model in various performance metrics. The results emphasize the effectiveness of these dynamic strategies
in personalizing user experiences, with a balanced approach to both accuracy and computational efficiency. This work lays a solid
foundation for future research in recommendation technologies, offering practical insights and applications that can be extended across
diverse domains. By enhancing recommender systems with a deeper understanding of temporal user behavior, we aim to improve the
overall user experience in digital environments.
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1. Introduction
Recommendation systems are an integral part of many on-
line platforms, designed to deliver personalized suggestions
to users across various sectors [1]. These systems analyze
large volumes of user and item data to predict user pref-
erences, aiming to recommend items that users are likely
to enjoy, even without prior exposure to similar products
or services [2]. Prominent examples such as Amazon and
Netflix have led the way, utilizing recommendation systems
to offer tailored suggestions based on user behavior and
preferences.

There are two primary approaches used in recommen-
dation systems: content-based filtering and collaborative
filtering [3]. Content-based filtering recommends items by
evaluating the attributes of items a user has previously en-
gaged with, whereas collaborative filtering provides recom-
mendations by leveraging the preferences of similar users.
Both methods have their advantages and are frequently com-
bined to enhance recommendation accuracy and reliability.
The content-based filtering approach excels in recommend-
ing items like articles or news by focusing on the properties
of the items themselves [4, 5]. It employs algorithms such
as the Vector Space Model and probabilistic models, includ-
ing the Naive Bayes Classifier, Decision Trees, and Neural
Networks, to analyze item similarities and generate relevant
recommendations [6, 7]. The collaborative filtering tech-
nique uses user-item interaction data to predict preferences
based on the choices of similar users [8, 9, 10, 11]. Although
both content-based and collaborative filtering have proven
effective, they have inherent limitations. Content-based
systems often lack diversity, as they tend to recommend
items similar to those the user has already consumed [12].
Collaborative filtering, while addressing this issue, faces
challenges with scalability, especially in large user bases
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with sparse data [13].
Hybrid recommendation systems have emerged to ad-

dress these issues, integrating the strengths of both content-
based and collaborative filtering to provide more accurate
and diverse recommendations [14]. Leading companies such
as Amazon and Netflix increasingly adopt these hybrid mod-
els, delivering more comprehensive and personalized recom-
mendations by analyzing both content attributes and user
behavior [14, 15]. However, these systems typically assume
static user preferences, failing to capture the temporal evo-
lution of user interests, which naturally shift over time due
to personal growth, changing tastes, and external influences
[12, 16]. To address these shortcomings, time-aware rec-
ommendation systems have been developed, incorporating
temporal data to enhance the accuracy and relevance of
predictions [17, 18, 19]. Recent advancements in this field
have focused on integrating temporal factors into recom-
mendation processes. One such study introduced the Time
Correlation Coefficient (TCC)model, which combines a time
correlation coefficient with optimized K-means clustering to
improve recommendation accuracy [20]. Despite these ad-
vancements, existing time-aware models, particularly those
using the TCC [20], often struggle to fully capture the evolv-
ing nature of user preferences. These models tend to over-
look item similarity and the complex temporal dynamics of
user behavior, leading to less precise recommendations.

To overcome these limitations, this paper focuses on en-
hancing the recently proposed TCC model, building upon
its foundation to better address the evolving nature of user
preferences over time. In this regard, we propose several
techniques, all of which share the same overarching goal of
improving the TCC model. Each technique offers a distinct
approach, providing valuable advantages in different sce-
narios, but the ultimate objective remains to enhance the
performance and adaptability of the TCC model. This leads
to several important questions:

• How can the accuracy of time-aware recommenda-
tion systems, especially those using the TCC, be
improved to better capture the evolving nature of
user preferences?

• What modifications can be made to the TCC for-
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mula to more effectively integrate item similarity
and temporal dynamics?

• What innovative techniques can be developed to
incorporate temporal context and improve the accu-
racy and relevance of recommendations?

This paper presents the following contributions to address
these challenges:

• Enhancement of the TCC algorithm by incorporat-
ing item similarity scores, improving recommenda-
tion accuracy.

• Development of four innovative algorithms designed
to adapt to the evolving nature of user preferences,
enabling the detection of shifts in interests over time.
These algorithms enhance the ability to deliver per-
sonalized and highly accurate recommendations.

• Extensive experiments conducted on three datasets
(two from Amazon and one from MovieLens),
demonstrating the effectiveness of the proposed
model in improving the accuracy and relevance of
recommendations.

The structure of the paper is as follows: In Section 2,
we provide a review of recent developments in time-aware
recommendation systems and collaborative filtering models.
Section 3 presents the proposed algorithms based on the
Time Correlation Coefficient and its improvements. Section
4 details the experimental setup, including the datasets and
evaluation metrics employed, while Section 5 presents the
results accompanied by a comprehensive analysis. Finally,
Section 6 provides the concluding remarks of the paper.

2. Related Works
Over the past decades, research in recommendation systems
has steadily evolved, progressing from traditional methods
like Collaborative Filtering (CF) and Content-Based Filtering
(CBF) to more sophisticated models that address dynamic
changes in user preferences. Traditional recommendation
systems, though effective, face limitations when it comes to
accounting for temporal aspects of user-item interactions
[1, 21].

A key challenge that traditional recommendation sys-
tems face is their inability to account for the evolution of
user preferences over time. Time- aware recommendation
systems (TARS) seek to remedy this by explicitly incorpo-
rating temporal factors into their models [22, 23]. TARS
leverage the fact that user preferences are not static and
change over time, improving the relevance of recommen-
dations by modeling time-based patterns of user behavior.
One of the earliest and most notable approaches in this field
is Time-SVD++, introduced by Koren [22]. This method
extends the matrix factorization technique by incorporating
time-dependent factors for both users and items, allowing
the model to account for the gradual changes in user pref-
erences. The Time-SVD++ model proved its effectiveness
during the Netflix Prize competition, where it outperformed
many traditional collaborative filtering techniques by mod-
eling user behavior over time.

With considering Temporal Dynamics in Matrix Fac-
torization Building new matrix factorization models have
emerged. Collaborative Evolution (CE) is one such model
that captures temporal changes by introducing a time-
dependent factor into matrix factorization [24]. Another

significant advancement is Collaborative Topic Regression
(CTR), which integrates content-based features with collab-
orative filtering through Latent Dirichlet Allocation (LDA),
incorporating temporal dynamics to track changes in user
preferences over time [25]. Matrix factorization techniques
have also been combined with neural networks to capture
temporal patterns more effectively. For instance, Collabora-
tive Deep Learning (CDL), a hierarchical Bayesian model,
merges deep representation learning for content with collab-
orative filtering for ratings. This model effectively manages
sparse data while capturing the temporal evolution of user
preferences [26].

Beyond matrix factorization, time-aware collaborative
filtering approaches have been extensively explored. Time-
Weighted Collaborative Filtering (T-UCF) applies an expo-
nential decay formula to older data, giving more weight to
recent interactions [27]. This approach ensures that more re-
cent user behaviors have a greater impact on the recommen-
dations, improving accuracy in scenarios where user pref-
erences evolve rapidly. Additionally, temporal clustering
models, such as the multiclass co-grouping (MCoC) model
presented in [28], further enhance recommendation preci-
sion by segmenting users and items into subgroups based
on temporal patterns. Another notable example is Bayesian
Probabilistic Tensor Factorization (BPTF), which models the
user- item interaction as a three-dimensional tensor (user,
item, time). This allows the model to capture the evolution
of both user preferences and item characteristics over time.
The BPTF model, introduced by Xiong et al. [29], is par-
ticularly useful for handling large, sparse datasets, such as
those found in movie recommendation scenarios [30].

In another study, Ahmadian et al. [31] proposed the
Recommender System with Temporal Reliability and Con-
fidence (RSTRC), which integrates temporal factors into
reliability and confidence measurements. This system dif-
fers from previous work by incorporating time into both
the confidence scores and reliability assessments of user
profiles, thereby improving recommendation precision. Fur-
thermore, FSTS, a novel search technique incorporating both
time-sensitive parameters and stability variables, has been
evaluated on the MovieLens dataset. The algorithm demon-
strated improvements in coverage, popularity, recall, and
precision, although it struggled with the dynamic changes
in time-sensitive factors [32]. Cui et al. [20] developed a
model specifically for Internet of Things (IoT) environments,
combining a Time Correlation Coefficient with a refined
K-means clustering algorithm. By leveraging temporal dy-
namics, their model demonstrated a 5.2 % improvement in
recommendation accuracy on datasets such as MovieLens
and Douban. This highlights the increasing importance of
temporal factors in domains where user preferences are
heavily time dependent. However, it encountered limita-
tions in capturing time-dependent user preferences, which
our study aims to address.

Our research integrates temporal dynamics to model the
evolution of user preference behaviors more effectively. Our
primary focus is on enhancing the Time Correlation Coef-
ficient (TCC) by incorporating item similarity scores, al-
lowing the model to account for both temporal variations
and item-specific relationships. Furthermore, we introduce
innovative algorithms designed to determine a personal-
ized interest-shifting parameter for each user, enabling the
system to dynamically adapt to changes in each user pref-
erences over time. These advancements collectively aim to
improve the precision and relevance of the recommenda-



tions provided by the TCC model.

3. Methodology
In this paper, we address key limitations in current time-
aware recommendation system, particularly the Time Cor-
relation Coefficient (TCC) model. The TCC model is one
of the foundational approach for time-aware recommenda-
tions. It employs a coefficient (TCC) to adjust all ratings,
incorporating the influence of time on user interests. , but it
faces two critical limitations: (1) it applies a uniform, static
attenuation coefficient to all user ratings without adapting
to user behavior or context, and (2) it does not consider item
similarity, which is essential for capturing relationships be-
tween items in a user’s preference profile.

To overcome these limitations, we propose a set of four
methodologies, each designed to supplement and improve
the TCC model. While all these methods share the ultimate
goal of enhancing the accuracy and performance of TCC,
they address different aspects of its improvement. Three
methodologies focus on determining the attenuation coeffi-
cient dynamically, making it more adaptive and personal-
ized, while one of them addresses the lack of item similarity
in TCC.

The Proposed Methods:

1. Content-Based Similarity (Addressing Item Similar-
ity): Incorporates item similarity into TCC using
NLP techniques to analyze item content, ensuring
older ratings for similar items remain relevant.

2. Time-Based Decay (Addressing Dynamic Attenuation
Coefficient): Introduces a time-sensitive coefficient
to model the diminishing relevance of older ratings,
adapting to temporal dynamics.

3. Decay Model Selection (Addressing Dynamic Atten-
uation Coefficient): Dynamically selects the most
suitable decay model based on user behavior and
dataset characteristics.

4. Cuckoo Search Optimization (Addressing Dynamic
Attenuation Coefficient): Optimizes the attenuation
coefficient using metaheuristic techniques to adapt
to evolving user preferences.

To validate the proposed approaches, we conduct experi-
ments on real-world datasets, including Amazon and Movie-
Lens. The results demonstrate that these methods effec-
tively improve the TCC model’s accuracy and performance
in diverse recommendation scenarios.

In the following sections, we first discuss the limitations
of the existing TCC model in Section 3.1. From Sections 3.2
to 3.5, we provide detailed descriptions of each proposed
method, highlighting their specific contributions to refining
the TCC model.

3.1. Time Correlation Coefficient (TCC)
The Time Correlation Coefficient Collaborative Filtering
(TCCF) is a recommendation approach that enhances accu-
racy by integrating temporal dynamics into the recommen-
dation process. Traditional collaborative filtering methods
often assume static user preferences, overlooking the phe-
nomenon of ”interest drift,” where user preferences evolve
over time. TCCF mitigates this issue by assigning greater
weight to more recent interactions, as reflected in the Time

Correlation Coefficient (TCC) formula [20]:

tcc𝑖 = 1 − 1
√2𝜋𝜎

(1 − exp (−Δ𝑡2

2𝜎2
)) (1)

where:

• Δ𝑡 = 𝑡𝑖 − 𝑡1 is the time difference between the 𝑖-th
and most recent interaction.

• 𝜎 is the attenuation coefficient.

Algorithm steps are in below:

1. Time Differences Calculation: Compute the time
differences (Δ𝑡) between user interactions.

2. Determine 𝜎: Use a single static attenuation coeffi-
cient determined through trial and error.

3. Calculate TCC: Apply the formula above to com-
pute TCC values for all user ratings, weighting them
accordingly.

4. Generate Recommendations: Utilize the adjusted
ratings to produce personalized recommendations.

Limitations: While effective, this method has certain
limitations:

1. Static AttenuationCoefficient: The use of a single
𝜎 value does not account for individual user behav-
iors or dynamically changing preferences.

2. Lack of Item Similarity Consideration: TCC
does not incorporate item similarity, which is a crit-
ical factor in refining recommendations.

To overcome these challenges, this study proposes en-
hancements to the TCC model, which will be explained in
the following.

3.2. Content-Based Similarity Model
This approach balances historical and recent user interac-
tions to maintain the influence of past evaluations, thus
enhancing personalization. The TCC cannot be calculated
accurately without considering item similarity. Even older
ratings can be valuable if the item is highly similar to the
most recent item the user has rated. Proposed enhancements
to the TCC involve using NLP techniques to calculate item
similarity. Specifically, descriptive attributes of products are
analyzed to determine similarity between the most recently
rated item and others. Algorithm steps are in below:

1. Descriptive Feature Analysis: Analyze product
features (e.g., brand, material) using NLP techniques
such as TF-IDF.

2. Similarity Score Calculation: Compute the cosine
similarity between the most recently rated product
𝑓recent and previously rated products 𝑓𝑗:

𝑠(𝑓recent, 𝑓𝑗) =
⟨𝑓recent, 𝑓𝑗⟩
‖𝑓recent‖‖𝑓𝑗‖

(2)

3. Threshold and Rating Check:
• If the similarity score 𝑠(𝑓recent, 𝑓𝑗) is above

a predefined threshold (based on domain
knowledge and datasets) and the rating 𝑟𝑗 ≥ 4,
set:

TCC = 1 (3)

• Otherwise, calculate the TCC based on its for-
mula (Equation 1) and then multiply it by all
ratings 𝑟𝑗 for each user



4. Generate Recommendations:
• Use the adjusted TCC values to generate rec-

ommendations.

The proposed approach improves recommendation preci-
sion by considering item similarity and recent ratings, dy-
namically adjusting the TCC to reflect current user interests.
It enhances efficiency through the use of NLP techniques for
similarity calculations, delivering more precise and relevant
recommendations.

3.3. Time-Based Decay Method
This method, along with the two subsequent approaches,
dynamically calculates a personalized attenuation coeffi-
cient (𝜎) for each user, in contrast with the baseline model
where 𝜎 was static and determined via trial and error. By
tailoring 𝜎 to user behavior, this method captures temporal
patterns more effectively, improving the personalization
and accuracy of recommendations. The approach uses an
exponential decay model to account for the diminishing
influence of past interactions over time. Algorithm steps
are in below:

1. Time Differences Calculation: Compute the time
differences (time-diff𝑖) between consecutive interac-
tions using normalized timestamps.

2. Determine Decay Factor: Set a constant decay
factor (here is considered 0.5 as a balance) to control
the rate at which past interactions lose relevance.

3. Exponential Decay: Use the formula:

𝜎𝑖 = exp(−decay-factor ⋅ time-diff𝑖) (4)

This dynamically computes the decay coefficient (𝜎)
for each interaction.

4. Calculate TCC: Integrate the computed 𝜎 into the
TCC formula to adjust ratings, ensuring recommen-
dations reflect the temporal relevance of user inter-
actions.

5. Generate Recommendations: Use the adjusted
TCC values to generate recommendations.

This method enhances temporal sensitivity by adapting
to shifts in user preferences, using a smooth exponential
decay function for realistic modeling.

3.4. Decay Model Selection Method
This approach employs both exponential and Gaussian de-
cay functions to analyze how user ratings evolve over time.
By utilizing a dual-model technique, it identifies whether
ratings decline rapidly (exponential) or steadily (Gaussian),
offering insights into user engagement and satisfaction. The
method aims to dynamically adapt to temporal changes in
user preferences, enhancing the accuracy of time-aware
recommendations. Algorithm steps are in below:

1. Check for Sufficient Data: Ensure at least two
data points are available for model fitting.

2. Fit Exponential Decay Model: Use the formula
provided in Equation 5 to fit the data and extract the
decay parameter 𝑏exp.

3. Fit Gaussian Decay Model: Use the formula pro-
vided in Equation 6 to fit the data and extract the
decay parameter 𝑏gauss.

4. Return Decay Parameters: Provide both 𝑏exp and
𝑏gauss for further analysis.

5. Calculate TCC: Integrate the decay parameters into
the Time Correlation Coefficient (TCC) formula to
compute the final coefficient.

6. Generate Recommendations: Use the decay pa-
rameters to refine user ratings and improve engage-
ment strategies.

The decay functions are defined as follows:

𝑦exp = 𝑎 ⋅ 𝑒−𝑏exp𝑥 (5)

𝑦gauss = 𝑎 ⋅ 𝑒
−(

𝑥−𝑏gauss
𝑐 )

2

(6)

where:

• 𝑎 is the initial value or amplitude, determining the
starting point of the decay curve.

• 𝑏exp and 𝑏gauss are the decay rate parameters, indi-
cating how quickly the decay occurs over time.

• 𝑐 is the standard deviation in the Gaussian model,
controlling the width of the decay curve and indicat-
ing how spread out the decay is around the mean.

Decay functions provide valuable insights into user be-
havior by revealing how quickly user satisfaction diminishes
over time. For instance, a rapid decline (exponential) may
indicate the need for immediate follow-ups, while a gradual
decline (Gaussian) suggests sustained engagement efforts.
Additionally, decay parameters enable forecasting trends,
allowing organizations to proactively address potential de-
clines in user satisfaction.

3.5. The Cuckoo Search Optimization
Technique

In this section, we explain the Cuckoo Search optimization,
a metaheuristic algorithm inspired by the brood parasitism
behavior of cuckoo birds. We then describe the steps in-
volved in using Cuckoo Search to determine the optimal
sigma (𝜎) value for each user, which is critical for improving
recommendation accuracy.

3.5.1. Cuckoo Search Algorithm

The Cuckoo Search algorithm is a metaheuristic optimiza-
tion technique that excels in solving complex optimization
problems by balancing exploration and exploitation. It uses
random nest selection and Lévy flights for exploration, in-
spired by the cuckoo bird’s brood parasitism behavior. The
algorithm operates under the following key rules [20]:

• Random egg-laying in nests.
• Retaining nests with the best eggs (solutions).
• Generating new nests via Lévy flights if a nest is

discovered with a probability 𝑝.

The position update for a cuckoo is defined as:

y(𝑡
′)

𝑖 = y(𝑡)𝑖 + 𝛽 ⋅ 0.01 ⋅ 𝑀 ⋅ (y(𝑡)𝑖 − q(𝑡)𝑔 ) ⋅ 𝑠 (7)

where:

• y(𝑡
′)

𝑖 and y(𝑡)𝑖 represent the positions of the 𝑖-th
cuckoo at times 𝑡′ and 𝑡, respectively.

• 𝛽 > 0 is the scaling factor for the step size.



• 𝑀 is a randomized value from the Lévy distribution.
• 𝑠 is a random variable generated using a normal

(Gaussian) distribution, 𝑁(0, 1).

For local search (when a cuckoo’s nest is observed), the
position update is defined as:

y(𝑡+1)𝑖 = y(𝑡
′)

𝑖 + rand ⋅ (y(𝑡
′)

𝑘 − y(𝑡
′)

𝑗 ) (8)

where:

• y(𝑡
′)

𝑘 and y(𝑡
′)

𝑗 represent randomly selected positions
of other cuckoos at time 𝑡′.

• rand is a uniformly generated random variable that
guides the exploration process.

3.5.2. Optimization Steps Using Cuckoo Search

The Cuckoo Search optimization technique is used to de-
termine the optimal sigma (𝜎) value for each user, which is
critical for improving the precision and recall of recommen-
dations. Algorithm steps are in below:

1. Data Preprocessing: Load and preprocess the
dataset to extract user ID, item ID, rating, and times-
tamp.

2. Population Initialization: Create a diverse set of
initial sigma (𝜎) values within a specified range.

3. Lévy Flight: Update sigma values using Lévy flight
steps (Equation 7) to balance exploration and ex-
ploitation.

4. Fitness Function: Evaluate the performance of
each sigma value using a fitness function based on
precision and recall metrics:

𝑓 (𝜎) = precision(𝜎) + recall(𝜎) (9)

5. Calculate TCC: Integrate the optimized sigma val-
ues into the Time Correlation Coefficient (TCC) for-
mula to compute the final coefficient.

6. Generate Recommendations: Use the optimized
TCC values to generate personalized recommenda-
tions for each user.

This optimization method fine-tunes the sigma (𝜎) value
for each user, enhancing precision and recall, and thereby
boosting overall recommendation accuracy. By adapting
to evolving user interests, the system remains resilient to
changes in behavior and preferences. The personalized
sigma values ensure that recommendations are tailored to
individual users.

4. Experimental Evaluation

4.1. Datasets
In our evaluation, we utilize three datasets to assess the
proposed methods: the Amazon Phones and Accessories
dataset with 20.8M ratings, 1.3M items, and 11.6M users,
the Amazon Video Games dataset containing 4.6M ratings,
137.2K items, and 2.8M users which the timespan for these
datasets is from 1996 to 2023[33], and the MovieLens dataset
[34], which includes 20000263 ratings across 27278 movies
which collect from 1995 to 2015. These diverse datasets
offer a robust evaluation platform for the proposed tech-
niques. They contain realworld user interactions, including
ratings, users, and timestamps, providing authentic data

for training recommendation algorithms. These datasets
cover a wide range of products and media, enabling the
evaluation of methods across diverse contexts. Both Ama-
zon and MovieLens datasets support collaborative filtering
techniques, leveraging user-item interactions to identify
patterns. However, the results can vary across different
datasets due to the temporal dynamics and data character-
istics. Additionally, the diversity in rating patterns, time
intervals, and the inclusion of temporal features like time
differences or timestamps can influence how effectively the
model adapts to the dataset’s structure. Thus, the alignment
between the dataset’s temporal properties and the method’s
design significantly impacts performance.

4.2. Evaluation Metrics
To validate the proposed approaches, we employed several
comparison metrics, including Recall, Precision, F-measure,
and Mean Absolute Error (MAE), alongside time complexity
analysis and memory usage. These metrics are crucial for
assessing the performance and effectiveness of recommen-
dation systems. They introduced shortly in below:

1. Recall (R): Recall measures the ability of the rec-
ommendation system to identify relevant items. It
is calculated as the ratio of the number of recom-
mended items that are also favorite items for the user
to the total number of favorite items. The formula
for recall is given by:

𝑅 =
|𝐴(𝑖) ∩ 𝐵(𝑖)|

|𝐵(𝑖)|
(10)

Here, 𝐴(𝑖) is the number of recommended items to
the target user 𝑢, and 𝐵(𝑖) is the number of favorite
items for user 𝑢.

2. Precision (P): Precision evaluates the relevance of
the recommended items. It is defined as the ratio of
the number of recommended items that are actually
relevant to the total number of recommended items.
The formula for precision is given by:

𝑃 =
|𝐴(𝑖) ∩ 𝐵(𝑖)|

|𝐴(𝑖)|
(11)

3. F-measure: The F-measure combines precision and
recall into a single score, providing a balanced view
of the model’s performance. It is particularly useful
in imbalanced class scenarios. The formula for F-
measure is:

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ⋅ 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(12)

where 𝑃 is precision and 𝑅 is recall.
4. Mean Absolute Error (MAE): MAE measures the

average absolute difference between predicted and
actual ratings, providing a straightforward assess-
ment of recommendation quality. A smaller MAE
indicates better recommendation quality. The MAE
is calculated as:

𝑀𝐴𝐸 =
∑𝑁

𝑖=1 |𝑥𝑖 − 𝑦𝑖|
𝐴

(13)

Here 𝑥𝑖 is the predicted user’s score, 𝑦𝑖 is the actual
user’s score, and 𝐴 is the recommended items to the
intended user.



Table 1
MAE Comparison Across Datasets

Method MovieLens MAE Cellphone MAE Videogame MAE Average MAE

TCC 0.8258 1.2402 1.3472 1.1377
Content-Based 0.6864 1.1744 1.2968 1.0525
Time-Based 0.8236 1.1255 1.3161 1.0884
Cuckoo Search 0.8964 1.0925 1.2952 1.0947
Decay Model 0.8204 1.2222 1.3666 1.1364

Table 2
Precision Comparison Across Datasets

Method MovieLens Precision Cellphone Precision Videogame Precision Average Precision

TCC 0.7604 0.7473 0.7941 0.7673
Content-Based 0.8729 0.7859 0.8283 0.8290
Time-Based 0.7622 0.7764 0.8016 0.7801
Cuckoo Search 0.7778 0.8502 0.8252 0.8177
Decay Model 0.7613 0.7567 0.8016 0.7732

5. Time Complexity: Time complexity measures the
efficiency of an algorithm by analyzing how its run-
time grows as the input size increases. It is typi-
cally expressed using Big-O notation to represent
the upper bound of an algorithm’s growth rate. The
general formula for time complexity is:

𝑇 (𝑛) = 𝑂(𝑓 (𝑛)) (14)

Here 𝑇 (𝑛) represents the time complexity as a func-
tion of the input size 𝑛. 𝑂(𝑓 (𝑛)) describes the growth
rate of the algorithm (e.g., 𝑂(1), 𝑂(𝑛), 𝑂(𝑛2), etc.).

6. Memory Usage (Space Complexity): Memory
usage refers to the amount of storage an algorithm
requires during its execution. This includes both
fixed storage (e.g., constants, program code) and
variable storage that depends on the input size. The
general formula for memory usage is:

𝑆(𝑝) = 𝐴 + 𝑆(𝐼 ) (15)

Here 𝐴 is the fixed part, such as constants or pro-
gram code. 𝑆(𝐼 ) is the variable part, which depends
on the input size 𝐼 (e.g., recursion stack, dynamic
memory allocation).

5. Experimental Result

5.1. comparison based on MAE, Precission,
Recall,and F-measure

The results of the comparison between the basic variant
of the TCC model and the proposed models, based on ten
recommended items, are presented for different metrics.
Based on given result in Table 1, 2, 3, and 4:

• Content-Based achieves the lowest MAE on average
(1.0525), outperforming TCC by 7.48% on average.

• Time-Based also slightly improves over TCC with a
4.33% reduction in MAE.

• Cuckoo Search does not outperform TCC for MAE
consistently but is comparable.

• Cuckoo Search achieves the best F-measure (0.6460),
improving over TCC by 22.25%.

• Content-Based improves F-measure by 8.42%, while
Time-Based shows an improvement of 3.66%.

• Cuckoo Search achieves the best recall (0.7402), im-
proving over TCC by 10.13%.

• Content-Based and Time-Based also slightly outper-
form TCCF with 2.99% and 1.49% increases in Recall,
respectively.

• Content-Based achieves the highest average preci-
sion (0.8290), improving over TCC by 8.04%.

• Cuckoo Search also significantly improves, showing
a 6.58% increase in precision over TCC.

5.2. Comparison based on Time Complexity
and memory usage

As you can see in Table 5:

• Content-Based: More computationally efficient than
TCC due to its focus on vector dimensions (𝑑) rather
than trial steps (𝑗). In terms of memory usage is
slightly higher than TCC due to the inclusion of
vector dimensions, but still manageable for smaller
𝑑.

• Time-Based: Simpler and faster than TCC, focusing
only on user-record pairs without trial steps. More
efficient than TCC, in memory usage, with linear
scaling based on the number of records (𝑚).

• Cuckoo Search: Provides optimization capabilities
for 𝜎, though computationally expensive in terms of
iterations (𝑖) and population size (𝑝).Extremely low
in memory usage, making it suitable for memory-
constrained environments.

• Decay Model: Faster than TCC due to its focus on
decay fitting (𝑓), which is typically small.its memory
usage is moderate, scaling linearly with records (𝑚)
and filtered data (𝑘).



Table 3
Recall Comparison Across Datasets

Method MovieLens Recall Cellphone Recall Videogame Recall Average Recall

TCC 0.3119 0.9009 0.8038 0.6722
Content-Based 0.3329 0.9148 0.8291 0.6923
Time-Based 0.3273 0.9060 0.8133 0.6822
Cuckoo Search 0.4963 0.9018 0.8226 0.7402
Decay Model 0.3242 0.9066 0.8097 0.6802

Table 4
F-measure Comparison Across Datasets

Method MovieLens F-Measure Cellphone F-Measure Videogame F-Measure Average F-Measure

TCC 0.2865 0.6708 0.6277 0.5283
Content-Based 0.3122 0.7188 0.6870 0.5727
Time-Based 0.3007 0.6988 0.6434 0.5476
Cuckoo Search 0.4703 0.7694 0.6983 0.6460
Decay Model 0.2984 0.6811 0.6426 0.5407

5.3. Overall Comparison and Key insight
• Content-Based:

Performance: Achieves the lowestMAE (7.48% lower
than TCC) and the highest Precision (8.04% higher),
making it the most accurate method for prediction
tasks.
Time Complexity 𝑂(𝑛 ⋅ 𝑚 ⋅ 𝑑), efficient for large-scale
systems.
Memory Usage: Slightly higher than TCC (𝑂(16𝑑 +
40𝑚)), manageable for smaller 𝑑.
Best Use Case:Accuracy-driven tasks with balanced
computational and memory requirements.

• Cuckoo Search:
Performance: Achieves the highest F-Measure
(22.25% higher) and Recall (10.13% higher) than TCC,
making it ideal for applications where both accuracy
and recall are critical.
Time Complexity: 𝑂(𝑖 ⋅ 𝑝 ⋅ 𝑛 ⋅ 𝑚), computationally
expensive.
Memory Usage: Extremely low (𝑂(8 ⋅ (𝑝 + 5))), ideal
for memory-constrained environments.
Best Use Case: Performance-critical applications
with sufficient computational resources.

• Time-Based:
Performance: Modest improvements in F-Measure
(3.66%) and MAE (4.33%) over TCC.
Time Complexity: 𝑂(𝑛 ⋅ 𝑚), the simplest and most
computationally efficient method.
Memory Usage: Linear (𝑂(24𝑚)), highly scalable.
Best Use Case: Real-time or resource-constrained
environments.

• Final selection:
Best Overall: Content-Based for its balance of per-
formance, computational efficiency, and memory
usage.
Best for Performance: Cuckoo Search for superior
recall and F-Measure.
Best for Simplicity: Time-Based for scalability and
low resource requirements.

6. Conclusion
In conclusion, this study has advanced the understanding
of time-aware recommendation systems by addressing the
limitations of existing algorithm, Time Correlation Coeffi-
cient (TCC). The proposed methodologies—Content-based,
Cuckoo Search, Decay Model, and Time-Based—highlight
the need to balance performance with computational effi-
ciency. Future research should focus on the generalizability
of these methods across diverse datasets and the integration
of real-world user feedback, ensuring that recommendation
systems continue to evolve and effectively meet users’ dy-
namic preferences. Ultimately, these advancements aim to
enhance user experience and foster greater satisfaction and
loyalty.
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