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Abstract
Data integration (DI) for years has been among the most frequently researched topics. A common goal of DI is to make
heterogeneous and distributed data available for an end user in a unified format that is suitable for analyses. Research and
development works resulted in a few standard DI architectures. In all of them data are moved from data sources (DSs) into an
integrated system by means of an integration layer. This layer runs DI processes that are complex workflows composed of
multiple tasks responsible for extracting data from DSs and making them available for analytics. Methods for developing DI
processes have been researched and developed for decades, but designing and managing DI processes is still difficult and time
costly. Moreover, the still open problems include: (1) the optimization of DI processes, (2) managing user-defined functions in
DI processes, especially available as black-boxes, and (3) discovering and managing broken data lineage in a DI pipeline. In
this position paper we formulate the three research hypotheses concerning the aforementioned problems and show how
these hypotheses can be verified to develop the missing solutions.
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1. Introduction and motivation
For years, the widespread of complex, data-driven sys-
tems has been observed (e.g., in medicine, agriculture,
smart cities). They produce huge volumes of highly het-
erogeneous data (a.k.a. big data). These data need to be
integrated to feed various analytical and machine learn-
ing (ML) applications. Consequently, data integration (DI)
techniques are core components of information systems.
DI architectures and processes are among very frequently
researched topics [1, 2, 3, 4].

DI aims at consolidating data from multiple distributed
and heterogeneous data sources (DSs), to deliver these
data to an end user in a common format. Research and
development works resulted in a few standard DI archi-
tectures, namely: federated [5] and mediated [6], data
warehouse (DW) [7], data lake (DL) [8], data lake house
(DLH) [9], and (7) data mesh [10]. In all of these archi-
tectures, data are moved from DSs into an integrated
system by means of an integration layer. This layer is
implemented by a sophisticated software, which runs the
so-called DI processes.

DI processes range from simple to complex workflows
of dozens to thousands of tasks. These tasks are responsi-
ble for extracting data from DSs, transforming data into
a common model and data structures, cleaning data, and
loading them into either a central repository (i.e., a DW,
DL, or DLH) or making them available in virtual integra-
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tion architectures (i.e., federated, mediated, or data mesh).
DI processes are managed by a dedicated software, called
a DI engine (ETL engine in DW architectures) [11, 12, 13].

Methods for designing DI processes have been re-
searched and developed for decades (see [14, 15]). Despite
these substantial number of works, designing and man-
aging DI processes is still difficult and time costly [16].
Moreover, the still open fundamental research prob-
lems include: (1) the optimization of DI processes, (2)
managing user-defined functions (UFDs) in DI processes,
and (3) managing data lineage in a DI pipeline. In this
position paper we discuss possible solutions to these prob-
lems. This discussion is motivated by our cooperation
with the IT sector and with the banking sector.

2. Related research

2.1. Optimization of DI processes
Any DI process has to finish its work within a given
time window, typically a few hours, in order to make a
DW/DL/DLH available for users. Because a DI process (1)
moves large volumes of heterogeneous data between DSs
and a DW/DL/DLH and (2) executes complex data pro-
cessing algorithms, its execution is time costly. Therefore,
providing solutions for efficient execution of DI processes
(a.k.a. DI process optimization) is of high importance,
since it is crucial for the whole DI architecture. Big data
(with their volume and complexity) further increase the
difficulty of DI process optimization. In order to reduce
the execution time of a DI process, a few classes of solu-
tions have been proposed by industry and research.

Industry approaches are based on the following op-
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timization techniques: scaling-up or scaling-out a data
integration server or adding a specialized hardware like
FPGAs [17, 18], parallel processing of DI tasks, and mov-
ing the execution of some DI tasks into a DS - this tech-
nique is commonly called push-down [19, 20].

Research approaches draw upon the following ideas.
The first class of solutions is based on changing the
order of DI tasks (a.k.a. task reordering), so that a
new reordered process is more efficient that the original
one [21, 22, 23, 24]. These methods are computationally
too expensive (exponential) [21] - the search space of
all possible valid orders of tasks in such processes is
too large to be fully searched. As a consequence, the
applicability of these methods is limited to rather simple
DI processes. Moreover, none of the aforementioned
approaches supports the optimization of DI processes
with UDFs. The reordering of operators is based on the
semantics of the operators, which is well known and
understood for traditional relational operators. On the
contrary, the semantics of UDFs is frequently unknown.

A special class of reordering is the push-down tech-
nique. The principle of this technique is to move data
processing from a DI engine into a DS server for execu-
tion [19, 20, 25]. However, push-down so far has been
researched and developed mainly for relational DSs. To
the best of our knowledge, push-down for a few non-
relational DSs is available in Informatica and Spark. In-
formatica is able to push-down filters, joins, and aggre-
gations into a Hadoop cluster. Spark query programming
library allows to push-down filter predicates and aggre-
gations to Parquet, ORC, and a few relational databases
connected to via a JDBC driver [26].

Despite these solutions are available in software tools,
still open problems concern among others: (1) efficient
implementation of a pushed-down operation in a DS,
given its functionality and internal features, (2) an over-
all method for assessing profitability of push-down, (3)
extending push-down to key-value, column-family, doc-
ument, and graph storage.

The second class of solutions uses parallel processing
of either individual tasks within a process or portions
of the process [27, 28, 29, 30, 31]. A challenge in this
approach is to figure out the most efficient parallelization
scheme for a given DI task, or a subset of tasks, or the
whole DI process [32], especially when DI processes use
UDFs. Task parallelization has been researched quite
extensively and a few sound solutions to this challenge
have been proposed.

2.2. UDFs in DI processes
Big data integration processes use not only predefined DI
tasks available in DI design, development, and manage-
ment tools [12], but also require the deployment of user
defined functions. UDFs allow to implement code snip-

pets of a logic tailored to a specific and non-typical, data
processing problem. Thus, UDFs extend the functionality
of a DI architecture with tailored tasks. UDFs represent
code written in multiple programming languages, exter-
nal to a DI design environment and a DI engine. Typically,
such UDFs are treated by a DI engine as black-boxes (fur-
ther called black-box UDFs - BBUDFs), i.e., code snippets
whose internal logic and performance characteristics are
unknown.

Multiple works addressed the usage of UDFs in data
engineering. They can be categorized as: (1) explicit code
annotations by a programmer [33, 34, 35, 36], (2) static
code analysis and debugging [33, 37, 38], (3) efficient
compilation and execution [39, 40, 41, 42], (4) UDFs in
database queries [43, 44, 45, 46], and (5) UDFs in data
pipelines [36, 47, 48]. Most of these solutions assume that
UDFs are treated as white-boxes (their implementation
code is accessible), which prevents their applications to
BBUDFs.

Using a BBUDF in a DI process makes such a process
difficult to optimize and manage (e.g., impact analysis).
First, because the internal logic of such a BBUDF is un-
known. Second, its performance characteristics have to
be learned, which is a time consuming task. Third, it
causes data lineage (see Section 2.3) extremely challeng-
ing. For this reason, discovering the internal logic and
performance characteristics of BBUDFs is of paramount
importance for building efficient DI processes with data
lineage.

2.3. Data lineage in DI processes
Data lineage is a set of techniques that document the
lifecycle of data, including source information and any
data transformations that have been applied within any
DI process [49]. These techniques are crucial for data
management, governance, and compliance, since they
provide insights into where data came from and how
they were processed along a data pipeline. Data lineage
techniques have been researched for decades. They can
be categorized according to a few taxonomies.

The first one divides them into annotation-based and
inversion-based. In the annotation-based techniques,
input data are annotated with information about their
origin and how they were processed along a data pipeline.
The annotations are propagated throughout the whole
pipeline to be included in final results [50, 51, 52, 53,
54]. The inversion-based techniques invert queries,
trying to infer the original data that produced the result
of a given query [55, 56, 57]. To this end, the so-called
inversion functions are used.

The second taxonomy divides lineage techniques into
tuple-level and value-level. The tuple-level lineage sup-
ports tracking the processing of individual data rows, e.g.,
[58, 55]. The value-level lineage supports tracking the



lineage of specific values within rows, e.g., [56].
The third taxonomy organizes lineage into eager and

lazy. In the eager technique, a lineage information is built
for all output data while executing a query (analysis) [59,
60, 61, 62, 63, 64]. In the lazy technique, this information
is constructed after a query was executed, e.g., [55].

The lineage information is typically represented either
by IDs that are attached to source tuples (and in some
cases their individual attributes), e.g., [59, 61, 62] or by
additional structures that relate source and final (after
processing) data, e.g., [64].

More advanced solutions using annotation were pre-
sented in [53, 65, 66] - these solutions are known as the
semiring provenance model. It leverages the mathemat-
ical structure of semirings to represent and analyze a
lineage information.

3. The missing pieces
From the analysis of the state of the art on managing
DI processes, we draw the following conclusions. First,
while the push-down technique has been researched
mainly for relational DSs, to the best of our knowledge,
the applicability and efficiency of this technique on big
data sources still faces mulitple open issues. Second, the
optimization of DI processes with UDFs has not yet been
researched enough to provide advanced and acceptable
solutions. This problem becomes especially challenging
for UDFs made available as black-boxes. For BBUDFs,
a still open research question is how to reason about
performance and internal logic of such UDFs. Third, the
existing data lineage techniques (both from research and
industry) do not handle cases when lineage links are
broken by temporary objects.

In this context, the main goal of the paper is to point
out to research methods for managing DI processes
with the focus on: (1) efficient push-down methods on
non-relational DSs - as the method of increasing per-
formance of DI processes, (2) learning the performance
characteristics of black-box UDFs and, if possible, their
internal logic - as the method of optimizing the execu-
tion of DI processes with BBUDFs, (3) discovering and
managing data lineage in DI processes in the presence
of temporary objects and UDFs, which broke lineage -
with the aim of providing additional functionality to data
governance. In this paper we formulate the following
research hypotheses (with their verification methods
detailed in Section 4).

H1: we foresee that it will be possible to build a push-
down optimizer that will be able to: (1) assess whether
a given DI task profits from being pushed-down and (2)
propose efficient (alternative) implementations of a given
task pushed-down into a particular DS. As a consequence,
we envisage that the push-down technique applied to

non-relational data sources will allow to increase per-
formance of DI processes (i.e., reduce their execution
time). Based on the developed execution cost models and
implementation of code snippets, it will be possible to
efficiently push-down typical DI tasks [19] into the most
popular non-relational DSs.

H2: we foresee that it will be possible to label BBUDFs
with known performance classes. First, these classes
will be built by ML techniques from performance charac-
teristics (e.g., RAM usage, CPU usage) of known UDFs.
Second, performance characteristics of a given BBUDF
will be collected and used to assign the BBUDF to one
of the already known performance classes. Since similar
code snippets expose similar performance characteristics
[67], at some extent, a given performance class might
represent a similar internal logic of code snippets. This
approach will allow to reason (with a given probability)
about an expected BBUDF performance and (in some
cases) about its internal logic. As a consequence, it might
be further possible to decide whether a given BBUDF
could be reordered (in the spirit of [21]) and/or paral-
lelized (in the spirit of [68]).

H3: we foresee to be able to develop techniques for
discovering broken lineage links between data and data
objects (e.g., tables, views, materialized views, stored
procedures and functions). The techniques should offer
the discovery of the broken lineage links from a given
data object onward as well as from a given data object
backwards. Every discovered link will be accompanied
by a probability of its connection with another object. To
this end, we envisage using ML and statistical modeling.

4. Possible solutions
In order to verify hypotheses H1-H3 (and hopefully to
prove them) we foresee to start researching and develop-
ing the solutions outlined in this section.

4.1. Hypothesis H1
To prove H1 it is necessary to conduct research on the
most popular non-relational DSs i.e., key-value, column-
family, text, and graph. To this end, an execution cost
model for each typical tasks being pushed-down (e.g.,
filtering, value transformation, structure transformation,
data anonymization) should be formulated for each type
of a given data source. This would allow us to design
implementation code skeletons for tasks pushed-down
into these storage systems.

There are two fundamental research questions on the
push-down technique. Q1: whether a given DI task
pushed-down will cause an overall system performance
improvement? Q2: given that the answer for Q1 is posi-
tive, how to efficiently implement a given task in a given



DS? In order to answer Q1, one could train a binary clas-
sifier on various types of data describing DSs, DI tasks,
and performance characteristics, as discussed below.

Features of a DS should include among others: (1) a
DS type, its producer and software version, (2) the sup-
port for indexes, if any, (3) the type of a query optimizer,
if any, (4) the support for parallel processing, (5) current
deployment architecture - centralized or distributed, (6)
physical parameters of hardware (e.g., the number of
CPUs, main memory size, disk type).

Features of a DI task executed in a DI engine should
include among others: (1) task type (e.g., filtering, joining,
aggregating, window function), (2) performance charac-
teristics of the task (CPU time, elapsed processing time,
RAM usage, I/O usage) for various data volumes and
types - they will be collected by means of experiments.

Features of a pushed-down DI task should include
among others: (1) task type (e.g., filtering, joining, aggre-
gating, window function), (2) performance characteristics
of the task (CPU time, elapsed processing time, RAM us-
age, I/O usage) for various data volumes and types and
various set ups of a DS.

Performance characteristics of each DS should in-
clude CPU time, elapsed processing time, RAM usage, I/O
usage, for various workload types of DI processes. These
characteristics will be collected and stored in a repository
for DI processes without and with pushed-down tasks.

In order to answer Q2 we envisage the following ap-
proaches. The fist one could be based on a pre-defined
library of code templates. For a given DI task, there
will be a few code alternatives available for each DS. The
selection of a given code template will be based on the
decision of another classifier, learned on performance
characteristics of these code templates in a given DS. The
second approach could utilize a genetic algorithm to
evolve a given code template from the library. As in the
classical genetic approach to producing code snippets,
each code template would be evaluated by means of a fit-
ness score, based on how efficiently it performs a specific
task. The third solution could apply Large Technology
Models (LTMs) for the generation of code snippets, e.g.,
[69, 70] of pushed-down tasks. In this solution one could
use the aforementioned features of data sources, DI tasks,
and their performance characteristics to prompt an LTM.

4.2. Hypothesis H2
Proving H2 is based on the assumption that knowing
the performance class of a BBUDF one can get some
insights (with a certain level of probability) on the kind of
operations being executed and performance (for example
w.r.t. a data volume) of the BBUDF, by analyzing other
(known) UDFs belonging to the same class. Moreover,
understanding how to parallelize the BBUDF can also be
figured out in some cases by analyzing the parallelization

techniques applied to the known UDFs in the same class.
Being able to apply parallelization to a given BBUDF is a
major step towards its performance improvement.

The solution could be based on machine learning
(ML) techniques. To support the solution, the following
components are foreseen: (1) the repository of perfor-
mance characteristics of known (white-box) UDFs, which
include CPU and RAM usage as well as I/O and elapsed
processing time, all represented as time series (TSs), (2)
classification algorithms for TSs, and (3) similarity mea-
sures for TSs. We assume that classes of performance
characteristics of known UDFs have been built on TSs
obtained from excessive experiments in parallel and cen-
tralized computing architectures. The white-box UDF
characteristics are labeled to reflect their performance
classes with parallelization and without. Based on these
characteristics, various classifiers will be built to classify
BBUDFs based on their performance characteristics.

When a new BBUDF is made available in the system,
its performance characteristics are collected by means
of experiments. Having collected the characteristics, the
classification algorithms assign the BBUDF a label rep-
resenting one of the existing performance classes. We
anticipate two alternative scenarios of TSs classification,
namely: (1) a few independent classifiers and (2) an en-
semble of classifiers (a.k.a. Time Series Forests).

Our prior preliminary work on this problem [67]
showed that popular classification algorithms, namely:
kNN, ROCKET [71], and HIVE-COTE [72] produced
promising results on TSs classification. This approach
can be substantially extended by enlarging the set of clas-
sifiers with two that recently have gained high popularity
in the research community, i.e., multi-layer perceptron
[73] and CatBoost [74]. Moreover, the models can be
build based on much larger experiments and for much
broader types of BBUDFs, implementing operations like
those listed in [19] but on non-relational data.

Notice that in order to classify TSs, a similarity mea-
sure is needed. In [67], we used the dynamic time warp-
ing (DTW) similarity measure [75]. TSs being compared
may differ in amplitude, length, and phase. For this rea-
son it is necessary to normalize them before comparing
[76, 77]. We foresee extensive validation not only DTW
but also other advanced similarity measures, like mo-
tifs [78], shapelets [79], locality-sensitive hashing [80],
possibly combined with DTW, as inspired by [81, 82].

To conclude, our previous works on discovering the in-
ternals of BBUDFs was based on a try and error approach
[83], but it turned out to be applicable only to a small class
of simple DI tasks (implementing filtering, projection, fil-
tering+projection), as in general the problem transforms
to the Boolean Satisfiability Problem (belonging to the
NP-complete class) [84]. For this reason, in our opinion
the only sound solution to reason about the internals
of BBUDFs should be based on ML techniques.



4.3. Hypothesis H3
Verifying H3 could be based on the relational data model
due to the fact that: (1) it contains a well defined and rich
set of commands in the Data Definition Language and (2)
it is one of the most popular data models, and (3) broken
lineage has not been studied for this model. Since it is
possible to discover only verisimilar broken lineage links,
two alternative discovery approaches are foreseen. The
first one is based on ML, whereas the second one - on
statistical modeling.

The ML approach uses two different probabilistic
classifiers, where classes represent data objects and links
between them represent possible lineage links. Each link
is labeled with a probability of one object being connected
to another object. This approach has already been veri-
fied on a small pilot project [85] and for some simple sce-
narios real broken links were discovered. However, this
approach still needs to be substantially extended to: (1)
handle more complex broken lineage links, with longer
chains of dependencies between objects, (2) improve
the obtained prediction quality (e.g., measure F1), (3)
be learned on substantially larger and versatile database
schemas, and (4) provide advanced and clear visualiza-
tions of lineage graphs and discovered broken links.

The statistical approach assumes applying the Hid-
den Markov Model (HMM) that by learning the patterns in
data transformations can automatically generate lineage
graphs of data objects. In this application of the HMM,
states represent different data sets and structures of data
objects (e.g., tables, views, materialized views), observa-
tions represent transformations applied to data and data
objects, transition probability represents the probability
of moving from one hidden state to another, and emis-
sion probability represents the likelihood of observing
a particular transition. Thus, the model will discover
and represent the sequence of data and data object states
and transformations that occurred in a given DI process
from a DS, through a staging area to a destination system,
which in our case will be a data warehouse.

The model can be learned and tested on historical lin-
eage links acquired from code repositories (e.g., GitHub)
and recognized database benchmarks (e.g., tpc.org). At
this stage of our research, we envisage using the popu-
lar Baum-Welch algorithm to tune the parameters of the
HMM and the Viterbi algorithm for discovering the most
likely sequence of transitions from one state to another
[86].

5. Conclusions
From the analysis of the state of the art on managing DI
processes, we draw the following conclusions.

• Push-down has been researched mainly for re-

lational DSs. To the best of our knowledge, the
applicability and efficiency of this technique on
big data sources reveals multiple open issues.

• The optimization of DI processes with UDFs has
not yet been researched enough to provide ad-
vanced and acceptable solutions. This problem
becomes especially challenging for UDFs made
available as black-boxes. For BBUDFs, a still open
research question is how to reason about perfor-
mance and internal logic of such UDFs.
The fact, that we have previously been cooperat-
ing with IBM Software Lab Kraków (Poland) on
pilot projects on: (1) developing techniques for
push-down on NoSQL DSs [87, 88] and (2) learn-
ing about BBUDFs [67], shows that solutions to
these problems are of interest and value for the
IT sector.

• From our cooperation with the financial sector
in Poland, we received a feedback clearly indi-
cating that solutions for discovering data lineage
links and visualizing them for large data reposito-
ries (like data warehouses) is of significant impor-
tance. Legacy systems typically do not maintain
data lineage and there is an evident need to build
and visualize such links in these systems. For
example, a small DW in one of the companies
in the financial sector includes over 11000 stored
procedures and functions, with over 2 million
of codes and over 5000 of (materialized) views.
Building and visualizing lineage even for such a
small legacy DW is challenging. The problem
is aggravated with the presence of temporary
objects and UDFs that break data lineage. Un-
fortunately, the existing data lineage techniques
(both from research and industry) do not handle
cases when lineage links are broken by temporary
objects.

The aforementioned conclusions motivate us to ad-
dress these three research problems in this position paper.
We consider them as important missing solutions in the
data integration research.
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