
Exploring the Application of Replay-Based Continuous Learning
in a Machine Learning Pipeline
Fabian Rensing*, Lucy Ellen Lwakatare and Jukka K. Nurminen

Department of Computer Science, University of Helsinki

Abstract
Replay-based continuous learning (CL) methods are utilized to adapt deployed deep learning (DL) models to evolving data while
minimizing catastrophic forgetting. However, the primary challenge is that most CL methods in the literature do not focus on real
operational data and regression tasks. These key aspects are explored in this study, which applies and evaluates replay-based CL method
in a machine learning pipeline that uses real operational data to retrain a DL model for a maritime use case. This pipeline was adapted to
the application context based on experiments and discussions with domain experts, by enhancing the sample management. Our results
show that even with a small set of replayed samples, the model performance can be improved and catastrophic forgetting can be limited.

Keywords
Continuous learning, machine learning pipeline, replay-based methods

1. Introduction
With the growing integration of technology in the mar-
itime industry, data-driven approaches utilizing operational
and environmental data from sensors onboard have become
prevalent for machine learning (ML) -based performance
monitoring [1]. In addition to the modelling challenge of ac-
curately predicting ship fuel oil consumption (FOC), trained
ML models deployed in real-world settings encounter data
drifts due to factors such as biofouling [1]. To counteract
decay in model accuracy caused by data drifts, the ML mod-
els are continuously retrained with the latest available data.
A continuous learning (CL) strategy is recommended for up-
grading deployed ML models, particularly when constrained
by computational resources and data availability [2].

CL characterizes learning from dynamic data distribu-
tions and describes the ability of ML models to continuously
learn from newly acquired data while retaining previously
learned knowledge [3]. CL addresses the challenge of catas-
trophic forgetting where a model trained on a new dataset
with a different distribution shows a reduced ability to retain
previously learned knowledge [3]. Deep artificial neural net-
work (ANN) models suffer from catastrophic forgetting and
observe a drop in accuracy when previously learned repre-
sentations are overwritten during parameter update after
few iterations of training with the new dynamic data [4].
Generally, retraining the model with all data can address
catastrophic forgetting, however, this practice is considered
inefficient as it introduces significant storage and computa-
tion overheads among others [3].

Several CL methods have been proposed to address
catastrophic forgetting, broadly categorized as parame-
ter isolation/architecture-based, regularization-based, and
replay-based methods [3, 4]. The replay-based CL approach
explored in this study involves storing subsets of historical
data (i.e., exemplars) and combining them with the latest
data to retrain a model. A major issue with most studies
on CL methods is their lack of focus on real-world opera-
tional data [5] and regression tasks [6]. This study addresses
these research gaps. We chose a replay-based CL method

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain
*Corresponding author.
$ fabian.rensing@alumni.helsinki.fi (F. Rensing);
lucy.lwakatare@helsinki.fi (L. E. Lwakatare);
jukka.k.nurminen@helsinki.fi (J. K. Nurminen)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

because it allows the ML pipeline to be set up agnostically
to the model architecture, enabling future extensibility and
adaptability. We address these research questions (RQ):

• RQ1: How does the performance of a replay-based CL
model compare to a model retrained using all_data and
just the current_data?

• RQ2: How well does the replay-based CL model retain
previous knowledge and generalize?

• RQ3: How to determine the optimal exemplar set?

The main contributions are twofold. First, we implement
a replay-based CL method applied to a pre-trained ANN
for FOC prediction using real-world ship sensor data. Addi-
tionally, a comparative analysis is performed alongside two
baseline models, one trained with all_data and the other
with current_data. Second, the paper proposes an approach
to selecting an optimal exemplar set in the replay-based CL
method, taking into consideration the requirements of the
target application.

2. Continous Learning (CL)
CL aims to extract knowledge from an (infinite) stream of
data to gradually extend the existing knowledge of the model
without catastrophic forgetting [7]. CL literature introduces
methods that try to balance the trade-offs between learning
plasticity and memory stability [3]. A model with high sta-
bility is less flexible to changes during training, resulting in
better retention of previous knowledge but less adaptation
to new data. Conversely, a model with a higher plasticity
can better adapt and integrate new knowledge but may lose
previously learned knowledge. Thus, CL methods are eval-
uated from three aspects [3]: model’s incremental quality
(Overall Performance), model’s ability not to forget (Memory
Stability) and model’s ability to learn from a dynamic data
distribution (Learning Plasticity).

CL methods are extensively described in the literature
(we refer the reader to [3]). One straightforward, practical
approach is to store a few samples from the old data distri-
butions and use them in subsequent training, as employed
in replay-based CL methods [4]. Regularization-based CL
methods do not consider historical data but rather freeze
a copy of the old model to regularize parameter changes
[3]. Parameter isolation or architecture-based CL methods
assign different model parameters for different tasks [3].

1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:fabian.rensing@alumni.helsinki.fi
mailto:lucy.lwakatare@helsinki.fi
mailto:jukka.k.nurminen@helsinki.fi
https://creativecommons.org/licenses/by/4.0/deed.en

Fabian Rensing et al. CEUR Workshop Proceedings 1–6

Current
generation data

replay_data

Combine current
generation data with

exemplar set

Model Training and Evaluation Model Storage and
Deployment

current_data

Combine current
generation data with all

previous generations data

Exemplar Set Update exemplar set

Sample selection
from current

generation data

All historical
training data

all_data

Split data into Generations
and iterate over
each generation

Figure 1: Overview of our experiment ML training pipeline

Replay-based CL methods select and store a small subset
of past data (i.e., exemplars), in limited storage space to
be replayed during training sessions along with new data
[3, 4]. Alternatively to this reharsal approach, the exemplar
set is used as constraint generators to characterize valid
gradients [4]. The exemplar set size is fixed for all training
sessions. After each session, new exemplars from the latest
dataset replace an equal number of the oldest exemplars [7].
Given the fixed memory size of the exemplar set, selecting
and discarding exemplars is crucial [4, 3]. Exemplars can
be chosen and removed randomly, or through advanced
methods that evaluate and discard the least valuable ones
to optimize space [8, 4].

3. Experiment
The ML training pipeline depicted in Figure 1 illustrates our
experimental setup for testing the replay-based CL method.
The implementation code is available on GitHub1.

3.1. Training Data and Pipeline
The training data consisted of historical sensor time se-
ries data collected from an anonymized container ship over
two years. The historical experiment dataset includes over
175,000 rows, with data points spaced 5 minutes apart. The
dataset’s columns are detailed in Table 1. Utilizing a times-
tamp column, the experiment dataset was divided into five
1https://github.com/UH-MLOps/replay-cl-in-ml-pipelines

0 1 2 3 4
Generation

0

20000

40000

60000

80000

Tr
ai

ni
ng

 S
et

 S
ize

replay
all_data
current_data

Figure 2: Training set sizes per model and generation.

equal parts, each serving as a distinct training dataset for
the pre-trained ANN model. These divisions are henceforth
referred to as training generations. Data distribution plots
for each training generations are in the GitHub repository.

In the replay-based approach, samples from previous
datasets are kept in an exemplar set and replayed during
model training alongside new data. The experiments are set
up to first train an ANN model with the data of generation
zero. In our study, the architecture of an optimal ANN model
for predicting ship FOC, as discussed in [9], was adopted
and utilized. Post generation zero, before retraining begins,
the new generation data is mixed with the exemplar set.
After retraining, new exemplars are added from the recent
data to the set, with an equivalent number of old exemplars
removed.

The training pipeline manages data generations, handles
training data and exemplar sets, and follows a conventional
training process, with each dataset split into training and
validation sets using an 80% split ratio. The models are
trained from scratch, with hyperparameters, such as the
number of hidden layers, remaining unchanged. The num-
ber of training epochs is fixed at 30 for all models, except
for the generation zero model, which undergoes training
for 80 epochs. The trained models were evaluated based on
their calculated mean squared error (MSE) when predicting
on the validation sets for each generation. The architecture
and hyperparameter configurations of the pre-trained ANN
model are presented in Table 1.

Table 1
Summary of experiment data and model architecture

Dataset (anonymized container ship)

• Input Features: speed over ground; course over ground;
draft; wind (speed, direction); wind wave (height, direction,
period), swell (height, direction, period); water depth; cur-
rent (speed, direction)

• Output: Fuel mass flow in Kg/s (min:0, max:2.691, std:0.68)

Model (feedforward NN) architecture

• Hidden layers: 10 with 10 neurons in each layer
• Activation function: Leaky ReLU; Optimizer: ADAM

2

Fabian Rensing et al. CEUR Workshop Proceedings 1–6

1 2 3 4 5 6
Generation

0

1000

2000

3000

4000

5000

Ex
em

pl
ar

 S
et

 S
ize

Equal Subset Size

1 2 3 4 5 6
Generation

0

1000

2000

3000

4000

5000
Increasing Subset Size

Gen 1 samples
Gen 2 samples
Gen 3 samples
Gen 4 samples
Gen 5 samples
Gen 6 samples

Figure 3: Subset sizes in the exemplar set for the two different operation modes. 6 generations of data, exemplar set size
𝑀 = 5000, and a limit 𝑛 = 5 generations that are stored.

3.2. Lower and Upper Boundary Models
The main difference between all models is the amount of
training data used during the retraining runs. The upper
boundary model, named all_data, is trained on the current
generation data and all historical datasets of previously seen
generations combined. The all_data model is expected to
perform best since it is trained on all available datasets.

The lower boundary model, named current_data, is
trained only with the new dataset available in the current
generation. This model acts as the lower bound and is ex-
pected to perform poorly compared to the others, demon-
strating the effect of catastrophic forgetting because training
data is limited to the current generation. For this model, the
training pipeline is set up with an exemplar set size of zero
such that no historical samples are collected. Figure 2 shows
the sizes of the training sets that are used for each model
generation. The training set always consists of the current
generation training data plus the samples stored in the ex-
emplar set. The different sizes of the datasets are expected
to influence the runtime of each training and the result-
ing model’s performance. For reproducibility, the pipeline
ensures that all libraries that use randomness are seeded
before the experiment runs.

3.3. Replay-based CL Approach
In each generation, 𝑡, the model is trained based on a
new dataset 𝐷𝑡 combined with the exemplar set 𝐸1:𝑡−1 =
{𝐸1, 𝐸2, . . . , 𝐸𝑡−1}. The exemplar set comprises selected
samples from the previous training datasets. The training
objective for generation 𝑡 is minimize the total loss 𝐿𝑡:

𝐿𝑡 =
∑︁

{𝑥,𝑦}∈𝐷𝑡∪𝐸1:𝑡−1

𝐿(𝑥, 𝑦, 𝜃𝑡)

𝐿 is the loss function that calculates the model error
given input data 𝑥, the expected output 𝑦, and the model
parameters 𝜃𝑡. This error is calculated for every input in
the combined dataset and summed to give the total loss
𝐿𝑡. Once the model is trained, the current dataset 𝐷𝑡 gets
sampled for exemplars, which are added to the exemplar set.
The training pipeline automatically evaluates the trained
model before the next training generation starts, where the
same model is retrained on the next dataset.

3.3.1. Exemplar Set and Selection

The exemplar set is used for storing and replaying samples
collected from previous datasets. An important property is

that the exemplar set always stores a fixed amount of sam-
ples, meaning old ones are dropped from the set when new
samples are selected. An exemplar set 𝐸1:𝑡−1 at generation
𝑡 consists of subsets that contain samples from previous gen-
erations data 𝐸1:𝑡−1 = {𝐸1, 𝐸2, . . . , 𝐸𝑡−1}, where each
subset 𝐸𝑖 contains samples from the 𝑖-th generation dataset.
These subsets’ combined size equals the total size 𝑀 set for
the exemplar set.

𝑀 =

𝑡−1∑︁
𝑖=0

|𝐸𝑖|

The choice of 𝑀 is critical when setting up the pipeline.
To reduce the amount of data and computation during the
training process, 𝑀 should be as small as possible while
still fulfilling the goal of mitigating catastrophic forgetting
[7]. Previous literature has no established approaches for
determining a good value for 𝑀 . Researchers [7] have men-
tioned and used a size of 1% of the whole training dataset.
This study uses an exemplar set size of 2% (4078 rows) of
the entire generation dataset, as further explained below.

In literature, the exemplar set is often implemented such
that each subset has the same number of samples: |𝐸𝑖| = 𝑀

𝑡
.

To always maintain the total size 𝑀 of the exemplar set,
the subsets’ size must be updated after each new sampling.
This means subsets already in the exemplar are reduced to
free up space for adding new exemplars from the current
dataset. The downside of this approach is that the number
of new samples introduced gets smaller with every genera-
tion, limiting the influence of each sample set during future
training sessions.

For this study, domain experts suggested that in the con-
text of ship performance prediction current historical data
is more relevant than older data when training a model.
Given this knowledge, the exemplar set was extended with
two new functionalities. First, a limit 𝑛 on the number of
subsets kept in the exemplar set was implemented. This
way, the number of subsets can grow up to 𝑛 stored sub-
sets before the oldest subset gets dropped when new data is
sampled, keeping the number of stored sets constant. This
also ensures static subset sizes that will stay constant over
multiple generations when the limit of 𝑛 is reached. Sec-
ondly, a different operation mode for the exemplar set was
implemented. In this new mode, the subsets are not kept at
equal sizes, and newer data is prioritized by storing more
samples from recent datasets. The following formula was
implemented to calculate the subset sizes at generation 𝑡
when the exemplar set contains 𝑡− 1 subsets:

3

Fabian Rensing et al. CEUR Workshop Proceedings 1–6

|𝐸𝑖| = 𝑀 * 2𝑖

𝑡(𝑡− 1)
, 𝑖 ∈ [1, 𝑡− 1]

For example, in generation 𝑡 = 4 the calculated subset
sizes are |𝐸1:𝑡−1| = |{ 1

6
𝑀, 2

6
𝑀, 3

6
𝑀}| = 𝑀 .

Figure 3 shows these functionalities in our experiment
setup. The setup has six generations of data, the total ex-
emplar set size is 𝑀 = 5000, and the limit is set to 𝑛 = 5
generations that are kept in the exemplar set. After genera-
tion 5 the oldest subset for generation 1 is removed because
of the set limit.

4. Results
This section presents experiment results collected with the
training pipeline. In all belwo evaluations and plots, the
base model represents generation zero, and the retrained
models represent generations one to four. Thus, genera-
tion zero shows the performance of the shared base model,
while generations one to four show the assessments of the
retrained models using the different training setups.

4.1. Replay-based CL Model Performance
(RQ1)

RQ1 evaluates how the replay model compares to the other
two baseline models trained either on all_data and cur-
rent_data. Figure 4 shows the performance (MSE) of the
three models against the current generation validation set.

0 1 2 3 4
Generation

0.01

0.02

0.03

0.04

0.05

0.06

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

replay
all_data
current_data

Figure 4: Model performance per generation evaluated on the
generations validation set.

The replay model has the lowest MSE in generations
one and two, but it gets overtaken by the all_data model
in generations three and four. The plot shows the best
performance for all three models in generation three and
the poorest in generation four. The poor performance is
likely due to the changes in data patterns/distributions in
the training and validation datasets. In our GitHub2 repo
we provide distribution plots for the three most influential
sensor measurements, that show a high overlap between
the distributions of training and testing data in generation
three, and a different distributions between training and test
data in generation four. In summary, the replay-based CL
approach has a slightly better but comparable performance
to the current_data approach. The all_data approach is
worse in the first generations compared to the replay and

2https://github.com/UH-MLOps/replay-cl-in-ml-pipelines

current_data approach but then improves in the third and
fourth generations, beating the other two approaches.

When considering a production setup, the runtime of a
training run is significant to evaluate since a long training
process binds computing resources, which could accumulate
high costs of operation when the training pipeline is run
repeatedly over a long period, performing many lengthy
retrainings. A model’s training runtime depends on the
model’s architecture, i.e., the number of neurons in the
model and the amount of training data used.

Figure 5 shows the average training runtime for each
training approach. The experiments were conducted on
an average laptop with no specialized hardware, e.g. GPU,
which could speed up the training process. The training
runtimes for the all_data model are increasing in every
generation, which is explained by the increasing training
dataset in every generation (see Figure 2). While this is
an unfavourable behaviour regarding computing time, the
results in the section 4.2 show that the all_data model per-
forms the best for mitigating catastrophic forgetting. This
shows an important trade-off between training runtime and
model performance.

The training runtimes for the replay and current_data
models are constant in each retraining since their training
dataset are also of constant size. The only difference be-
tween the two models is the slightly increased runtime of
the replay model, which can be explained by the 3500 rows
of exemplars added to the current generation training data.

0 1 2 3 4
Generation

0

1

2

3

4

5

6

7

Tr
ai

ni
ng

 T
im

e
(m

in
)

replay
all_data
current_data

Figure 5: Average model training time in minutes.

4.2. Catastrophic Forgetting and
Generalization (RQ2)

RQ2 evaluates the capability of the replay-based CL ap-
proach to mitigate catastrophic forgetting while also gener-
alizing its learned knowledge effectively to predict unseen
future events successfully. The evaluation of catastrophic
forgetting is done by testing the replay model on historical
data. If the performance is lower than before the retraining,
the model has ’forgotten’ what it has learned. To evalu-
ate this, each model generation is evaluated against the
validation data of generation zero. The experiment results
assessed by the MSE are shown in Figure 6.

The replay model in generation one performs slightly
worse than the other two models but then improves its per-
formance in later generations. This shows that catastrophic
forgetting can be limited even with a limited exemplar set
that gets replayed during training. Comparing the perfor-
mance of the replay and the all_data model, it can be seen

4

Fabian Rensing et al. CEUR Workshop Proceedings 1–6

0 1 2 3 4
Generation

0.02

0.03

0.04

0.05

0.06

0.07
M

SE
replay
all_data
current_data

Figure 6: Performance of each model generation validated
against the validation set of generation zero.

that the replay model performs only slightly worse in most
generations, which is impressive considering the significant
size difference of the training datasets between the models.

The Evaluation of model generalization is done by the
performance of the replay model in predicting the unseen
validation data of generation four. Figure 7 shows the result
of these experiments.

0 1 2 3 4
Generation

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

M
SE

replay
all_data
current_data

Figure 7: Performance of each model generation validated
against the validation set of the last generation.

The experiments show good generalization results for all
three models, which confirms that all models successfully
learn the data patterns of the sensor data. The replay model
generalization performance is close to the all_data model
and overall better than the current_data model. The worst
overall performing model of the retrained models is the
current_data model, especially in generation three, with an
error of 0.06. Interestingly, there is a significant improve-
ment in the performance of the replay model compared to
the current_data model, considering the only difference be-
tween the two are the 3500 rows of historical data available
to the replay model. This limited set of historical samples
brings the accuracy of the replay model close to the per-
formance of the all_data model, which has access to all
historical data for training.

4.3. Exemplar Set Size (RQ3)
RQ3 investigates the optimal exemplar set by conducting
multiple experiments with different sizes to evaluate the
selected exemplar set size. The selected size of 3500 rows
is compared against a set half its size with 1750 rows and a
set twice its size with 7000 rows. Since the primary goal of
replay-based CL is to reduce the possibility of catastrophic

forgetting, the same evaluation as in Section 4.3 is performed
to assess the model’s performance on the validation data of
generation zero. Figure 8 shows the prediction performance
of three replay-based models.

0 1 2 3 4
Generation

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

M
SE

replay3500
replay1750
replay7000

Figure 8: Prediction performance of the three different replay
models against the validation set of generation zero.

Although the replay1750 model starts well in generation
one, it quickly loses prediction accuracy in later generations,
showing the effect of catastrophic forgetting in a similar
pattern as the current_data model in Figure 6. This confirms
the expectation that an exemplar set with only 1750 rows
is insufficient in the scenario of our study. The replay3500
and the replay7000 model show better performances across
all generations. The replay7000 model performs best except
in generation three, showing a relatively constant mean
squared error between 0.020 and 0.026 across all generations.

5. Discussion and Conclusion
This section discusses the results and concludes the study
with general observations. From the findings presented
for RQ1 in Section 4.1, the replay-based approach showed
good performance across all training generations. This is
a significant result since the model’s main task in a pro-
duction scenario is to accurately predict the ship’s current
performance until new data is available. The replay-based
CL approach has a lower error rate than the current_data
approach in all training generations. The replay-based ap-
proach also has the smallest combined error over all training
generations out of the three approaches. This shows that
the samples in the exemplar set help the replay model suc-
cessfully improve its prediction performance in contrast to
the current_data approach with no access to historical data.

Interestingly, the all_data model performs worst out of
the three in generations one and two. A possible explana-
tion for this is that the all_data model likely has higher
model stability compared to the other two model types,
meaning it is less likely to change during training. This
stability is caused by the extensive dataset on which it gets
trained. Since all historical data is present during training,
the model is optimized to predict all data with an equally
high accuracy. In contrast to that, the replay approach (and
the current_data approach) focuses the training on the cur-
rent generation data and can therefore achieve a higher
accuracy on this smaller current dataset. Considering the
suggestions of the domain expert mentioned in Section 3.3.1
regarding the use of historical data for model training, it
can be argued that higher model plasticity seen in the replay
and current_data approaches is favorable, because it allows

5

Fabian Rensing et al. CEUR Workshop Proceedings 1–6

the model to adapt closer to the current dataset. Generally,
changes in performance are expected in the context of mar-
itime ship performance prediction since ships experience a
broad range of weather conditions and operational settings
over their lifetime. If specific patterns are not contained in
a model’s training data, it is nearly impossible for the model
to accurately estimate a new operational condition [10]. For
example, a model trained on calm weather data will lack the
capability to accurately estimate a ship’s fuel consumption
in a high winds scenario.

RQ2 (Section 4.2) aimed to evaluate the effect of catas-
trophic forgetting on the three compared models. In the
context of ship performance prediction, the model must ac-
curately predict a ship’s performance in various operational
conditions. Since not all conditions are encountered within a
limited timespan of the ship’s lifetime, the prediction model
must remember previously encountered conditions even if
they have not been part of the last training data. As ex-
pected, the current_data model performed worst in this test
since it did not consider historical data during retraining and
successively forgot knowledge it had learned in earlier gen-
erations. More importantly, the difference in performance
were compared between the replay and all_data models.
The replay model performed exceptionally, considering its
limited dataset compared to the all_data model. Consid-
ering the domain context of the models, this result shows
successful mitigation of forgetting across many generations
when using a replay-based CL approach. The slightly worse
performance of the replay model is explained by the limited
amount of historical data the model has access to during
training. These two differences in performance and size
of training data highlight the trade-off that has to be con-
sidered when setting up a CL training pipeline, which is
also discussed by [8]: Which performance is expected af-
ter training? What amount of training data (and therefore
training runtime) is within defined limits? The answer to
both questions depends on the specific usage context and
available resources for the pipeline operation. Considering
the findings of training runtimes, it can be concluded that
an unconstrained training set that grows with every gen-
eration, as seen for the all_data model, will not be feasible
for a production setup. Therefore, the question about the
dataset size should be reasoned on a fixed size.

RQ3 (Section 4.3) considers different sizes for the exem-
plar set used in a replay-based CL approach. Most literature
[7], do not state a specific approach to determine the exem-
plar set size. Only [7] mentioned their exemplar set size,
which was used as the starting point of this study. Regarding
the exemplar selection approach, a common practice is to
randomly select exemplars while also maintaining an equal
size of exemplar subsets [7]. However, the common prac-
tice was refined in this study based on inputs from domain
experts that favoured recent data points in the exemplar set.
As a result, the exemplar set kept more samples of recent
generations and only a few samples from older generations.
The latter consideration aimed to select data points that
accurately show a ship’s performance in various weather
conditions while being sensitive not to include outliers and
sensor errors. As noted by researchers, samples with higher
deviations, specific patterns, and worse predictions are im-
portant to mitigate catastrophic forgetting [4, 8].

The experiments show that the best-performing model for
mitigating catastrophic forgetting is the replay7000 model,
which has the most training data. However, this model also
has the longest training runtime. It was decided to use the

replay3500 model with an exemplar set size of 3500 for the
experiments since its performance regarding mitigation of
catastrophic forgetting was considered as satisfactory and
also its quicker training time was determined as beneficial
for experiments on the limited available hardware. As men-
tioned above and also supported by [8], this trade-off must
be considered individually for each application scenario.
Considering the application scenario of the study, a signifi-
cant factor that should be considered in a production setup
is the number of ships for which this pipeline will be op-
erated. For one ship, increasing the exemplar set size and
training runtime might be feasible to improve prediction
performance. However, when considering a production sce-
nario where the pipeline trains models for multiple ships,
it has to be determined if the execution environment has
the necessary resources to handle the increased amounts of
data and computational loads that accumulate for the ships.

Acknowledgments
The work was funded by the VesselAI EU project3, enabling
the collaboration between the Uni. of Helsinki and NAPA4.

References
[1] P. Gupta, A. Rasheed, S. Steen, Ship performance

monitoring using machine-learning 254 (2022) 111094.
[2] I. Prapas, B. Derakhshan, A. R. Mahdiraji, V. Markl,

Continuous training and deployment of deep learning
models, Datenbank-Spektrum 21 (2021) 203–212.

[3] L. Wang, X. Zhang, H. Su, J. Zhu, A comprehensive
survey of continual learning: Theory, method and
application, IEEE Transactions on Pattern Analysis
and Machine Intelligence (2024) 1–20.

[4] B. Bagus, A. Gepperth, An Investigation of Replay-
based Approaches for Continual Learning, in: 2021
International Joint Conference on Neural Networks,
2021, pp. 1–9.

[5] J. Hurtado, D. Salvati, R. Semola, M. Bosio,
V. Lomonaco, Continual learning for predictive main-
tenance: Overview and challenges, Intelligent Systems
with Applications (2023) 200251.

[6] Y. He, B. Sick, Clear: An adaptive continual learning
framework for regression tasks, AI Perspectives 3
(2021) 2.

[7] S. Gao, H. Zhang, C. Gao, C. Wang, Keeping Pace with
Ever-Increasing Data: Towards Continual Learning
of Code Intelligence Models, in: 45th International
Conference on Software Engineering, 2023, pp. 30–42.

[8] G. Merlin, V. Lomonaco, A. Cossu, A. Carta, D. Bacciu,
Practical Recommendations for Replay-Based Contin-
ual Learning Methods, in: Image Analysis and Pro-
cessing Workshops, Springer, 2022, pp. 548–559.

[9] Z. Zhao, Cost-Effective Decision Making in Weather
Routing using Machine Learning-generated Simu-
lation Data, 2023. URL: http://hdl.handle.net/10138/
565800.

[10] A. Coraddu, L. Oneto, F. Baldi, F. Cipollini, M. Atlar,
S. Savio, Data-driven ship digital twin for estimating
the speed loss caused by the marine fouling 186 (2019)
106063. doi:10.1016/j.oceaneng.2019.05.045.

3https://cordis.europa.eu/project/id/957237
4https://www.napa.fi/

6

http://hdl.handle.net/10138/565800
http://hdl.handle.net/10138/565800
http://dx.doi.org/10.1016/j.oceaneng.2019.05.045
https://www.napa.fi/

	1 Introduction
	2 Continous Learning (CL)
	3 Experiment
	3.1 Training Data and Pipeline
	3.2 Lower and Upper Boundary Models
	3.3 Replay-based CL Approach
	3.3.1 Exemplar Set and Selection

	4 Results
	4.1 Replay-based CL Model Performance (RQ1)
	4.2 Catastrophic Forgetting and Generalization (RQ2)
	4.3 Exemplar Set Size (RQ3)

	5 Discussion and Conclusion

