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Abstract
Data quality is needed to properly and reliably use the information represented in the dataset. The increasing volume of data renders
data preparation and cleaning increasingly difficult. Additionally, more diverse types of data structures for databases, like graphs, get
used and need to be handled differently. This leads to the necessity of robust methods to increase data integrity, scalable approaches for
finding and fixing errors, and local-oriented algorithms that can be used to pinpoint attention where needed. In my PhD project, I focus
mainly on knowledge graph structures and define and establish different tools that can be used to clean the knowledge graphs.
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1. Introduction
In today’s data-driven world, information and knowledge
are mined, processed, and used in almost any digital setting.
With the rise of machine learning and artificial intelligence
in many daily applications, most individuals are affected
by their reliability and accuracy in their respective tasks.
Therefore, it is essential that the information and data are
factually correct, if available, or as accurate as possible. One
framework for interacting and working with such data is
Knowledge Graphs (KGs) [1]. A general KG is a network of
heterogeneous information of entities that are connected
with relationships [2]. Entities (nodes) are objects that are
either representations from real life, like people or places, or
abstract concepts. Relations describe the relationships such
objects have with each other. Additionally, there are types
and categories that can be applied to entities and relations.
A complete directed connection between two entities with
a specific relation is called a fact or triple. If nodes and
relations also have properties themself, it is considered a
property graph [3].

KGs are applied in different disciplines of research, such
as medicine [4], social sciences [5], and drug discovery [6].
In daily life, they are also used when searching the web
via Google [7], often unbeknownst to the regular user. If
there is a box to the right of your search result page, it is
a response generated by the KG of Google. These panels
provide factual information on the respective search terms.

KGs can be utilized by experts in the domain to query
for specific information that they require to further their
own research. A current highly relevant use case is the drug
discovery process to save time and money for developing
new medicines. In these projects, it is possible to model the
benefits and side effects of various drug elements before
synthesizing them in the lab for clinical studies [8].

Currently, with the rise of interest in generative AI like
Chat GPT, Gemini, and Copilot, the generation of factual
incorrect but plausible-sounding information has become a
lot easier; this gives a need for factual correct answers. KGs
are one possible solution to aid LLMs with the framework
of retrieval augmented generation (RAG)[9]. This process
allows the respective LLM to query for a factual answer in
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the KG to support the generated answer to the user. If done
correctly, the generated answer will then contain the answer
from the KG, which is correct, given that the underlying KG
has no error.

In all of the mentioned use cases, errors in the results or
the knowledge extracted in the KG can result in higher costs
in time and resources.

In my PhD, I explore the notion of robustness as the abil-
ity of a knowledge base to work as intended even in the
presence of incomplete, erroneous, redundant, and inconsis-
tent data and accommodate such data in a way that reduces
incompleteness and eliminates errors, redundancies, and
inconsistencies. Towards this, I aim to solve the following
research questions:
(RQ1) Is there a measure that provides a prior indication of
the reliability of a KGE on a specific subgraph?
(RQ2) Are there normal forms for graphs that can increase
the data integrity?
(RQ3) Are there logical rules that can be found and utilized
on topic-based subgraphs?

This paper presents the work done in the first two years of
my PhD as well as some ideas for my future work. The struc-
ture is as follows. Section 2 covers the related work regard-
ing our approaches to support knowledge graph cleaning;
Section 3 covers the main contributions; Section 4 presents
future work and challenges; Section 5 concludes the paper.

2. Related Work
Knowledge graph cleaning is the focus of several research
areas. Here, we restrict our focus to the immediate areas
regarding my projects from the first two years as well as
my planned future work.
Knowledge graph embeddings (KGEs) are used com-
monly for various tasks, like detecting missing triples, cor-
recting errors, or question answering [10, 11]. There are
several different KGE types and fitting examples like, Trans-
lational embeddings (TansE [12]), Semantic embeddings (Dist-
Mult [13]), Complex embeddings (ComplEx [14]) and Neural-
network embeddings (ConvE [15]).
Evaluation of embeddings is mainly done with ranking-
based measures, in particular with HITS@k and mean recip-
rocal rank (MRR) for head, tail, and relation prediction [10,
16, 17]. These measures indicate performance globally, but
so far, no measure provides local analysis capabilities.
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Figure 1: Constituents of ReliK on an example KG.

Functional dependencies (FDs) define directed relation-
ships between attributes in the data. Therefore they are
used as blocks to construct keys and normal forms [18].
Similarly, FDs tailored to graph models are pairs of a graph
pattern and an implication [19, 20, 21].
Data normalization uses normal forms (NF) to reduce data
redundancies in the chosen representation, like first, second,
third, and BC normal form [18] for relational databases.
BCNF has been extended towards XML documents and their
underlying tree structure [22, 23, 24] as a first step toward
general graphs. A recent attempt at graph normalization
has been made that uses uniqueness constraints [25] and
graph-tailored functional dependencies [26] that target node
properties. This leaves a gap of NFs that handle all parts of
a graph and are not zoned in on the node level.
Rule mining in KGs finds logic rules that can be used to
find and fill in missing information throughout the data [27,
28]. These also provide human-readable statements that
can be used for the reasoning process to fill in the graph.
These rules are evaluated and constructed from a global
perspective, which could lead to topic-specific rules being
overlooked that are still relevant and valid in their respective
contexts.

3. Contributions
Here, we first discuss our completed work on reliability
in knowledge graph embeddings and then introduce our
current endeavors on normal forms for graphs. In the initial
project ReliK, we defined and evaluated a new metric for
the local reliability of KGEs. In the second project, which is
in the process of being submitted, we looked into property
graphs and established normal forms for them to reduce
data redundancy.

3.1. ReliK
KGEs are heavily used for a variety of downstream tasks
that rely on the underlying KG being complete and the KGE
being well trained. Their evaluation so far has only been
done on a global scale with their respective tasks in mind.
Therefore, an open problem is amore general metric that can
indicate behavior independent of the application while also
being unprejudiced towards the chosen embedding model
or the underlying data.

These issues can be addressed by our measure ReliK [29],
which is a straightforward yet principled approach that
assesses the reliability of a KGE’s performance on a specific
downstream task within a particular section of the KG, all
without executing the task or (re)training the KGE. ReliK
only relies on the existing embedding scores as a black box.

These scores are only used to create a ranking that is fed
into our measure.

Specifically, two rankings are used to get the value for a
triple. Figure 1 shows what is considered to be part of the re-
spective ranking. Namely, the two negative neighborhoods
that are used to measure the triple against. The negative
neighborhood aimed at the head (ℎ) part of the triple con-
sists of all triples with the form (ℎ, ?, ?) that are not part
of the original KG. For the tail (𝑡), this is done in a similar
manner. Then, the embedding score for the neighborhoods
and the correct triple 𝑥ℎ𝑟𝑡 is evaluated, and the ranking is
established. This gets put into the following formula to
constitute the ReliK score.

ReliK(𝑥ℎ𝑟𝑡) =
1
2
( 1
rank𝐻(𝑥ℎ𝑟𝑡)

+ 1
rank𝑇(𝑥ℎ𝑟𝑡)

) .

This can also be extended to a subgraph level by taking
the mean of the respective ReliK scores for all triples in the
subgraph.

Consequently, ReliK is agnostic to (1) the specific charac-
teristics of a given KGE, (2) the particular KG in question,
and (3) does not require any KGE retraining. Furthermore,
(4) ReliK is task-agnostic: its design principles are so broad
that it is naturally suited for a wide range of downstream
tasks for more details. Finally, (5) ReliK possesses the local-
ity property, allowing its computation and semantics to be
tailored to specific parts of the KG. Overall, our ReliK mea-
sure fully meets all the aforementioned criteria. It is also
important to note that ReliK can be utilized to evaluate the
effectiveness of a KGE for a downstream task, even when
we only have access to the embeddings for privacy or other
reasons, rather than the original KG.

ReliK is simple, intuitive, and easy to implement. Despite
that, its exact computation requires processing all the pos-
sible combinations of entities and relationships for every
single fact of interest. Therefore, we also introduced two
approximations to calculate a good estimate of the exact
ReliK for large KGs. One of them is a good approximation
in expectation, while the other is a strict lower bound of the
original ReliK if this is needed for theoretical guarantees.

To showcase that both of these approximations work as
expected, we present both runtime and MSE for a small
dataset in which the calculation of the accurate ReliK is
feasible.

To verify our metric and its approximations, we have
conducted an extensive study in which we evaluate against
measures like MRR for tail, relation, and triple classification,
as well as more complicated tasks with query answering
and rule mining.

The results of the experiments support that ReliK corre-
lates with the accuracy of the prediction and classification
tasks, which provides deeper insight into the reliability of
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Figure 2: Fragments of graph satisfying 1GNF and 2GNF, with
associated patterns and GFDs.

KGEs. Especially ReliK is able to differentiate between the
correct and incorrect rule instances for complex logical rules
as well as guiding the rule mining in subgraphs towards
high-confidence rules.

3.2. Graph normal forms
Graph databases like property graphs do have sources of
redundancies like any database can have. This issue can be
resolved in relational databases or XML files via the concept
of normal forms (NF) and a process to transform the original
data into that format.

For graph databases, this does not exist in the same format
yet. Still, the foundations like graph functional dependen-
cies [19, 20, 21] and a first attempt that focuses on nodes
have been made [26].

In our project, we establish a set of five graph normal
forms (GNF) that use and build on top of these ideas by con-
sidering the complete graph in its structure. The process of
utilizing edges and their properties cannot be done trivially
from the NFs of the relational setting.

To define the GNFs, we use graph functional dependen-
cies (GFDs) that consist of a pattern and a one-way depen-
dency between two sets of attributes. An example of such
can be seen in Figure 2.
1GNF disallows implicit links between nodes that could

be represented by regular edges and nested attributes that
hide data complexity. Increasing from there, the 2GNF for-
bids the replication of attribute values that are dependent on
the key of a different node; 3GNF disallows partial depen-
dencies from a key towards attributes; 4GNF only allows

attributes directly dependent on a superkey; EGNF removes
all value duplication by enforcing that every property is a
key.

We provide algorithms that transform any property graph
into its respective GNF versions without losing any infor-
mation that may be stored in the database. One example of
how a graph not in 2GNF can be transformed into one can
be seen in Figure 2. In this small example, the attribute year
from paper nodes can be connected to the name of confer-
ence nodes with the GFD FD1, which states that the publish
year of a paper is determined by the name of the conference
it was published in. This is a violation of the 2GNF, and in
order to remove the violation, the attribute year is moved
into the conference node. When done for all conference and
paper nodes, this reduces possible redundancy throughout
the graph and preserves information. It should be noted
that to query for the same piece of information, a different
query is needed between the original snippet and the 2GNF
version of it.

To show that our established GNFs do reduce data re-
dundancy, we perform experiments in which we count the
total number of attribute values in a selection of datasets,
perform the transformations into the GNFs, and then count
in the transformed datasets. The number of attribute values
is getting lower as more GNFs are applied, thus showing
that GNFs are able to increase the data integrity by reducing
redundancy in graphs. The process of transforming into
the different GNFs incurs the addition of new edges and
nodes to the dataset to facilitate the changes needed for the
consolidation of information.

4. Future Work
The next avenue to look into for graph cleaning for my
PhD project is rule mining. Specifically, the problem of
contextual rule mining is about the possibility of rules hav-
ing context and a local neighborhood of validity. So far
rule mining has been nearly exclusively done on a global
scale [27, 30, 28, 31, 32], this could lead to topic-specific
rules to be overlooked in the process. Additionally focusing
on a specific area of a KG to mine rules opens up the chance
of generating higher complexity rules and structures.

Just selecting random subgraphs probably does not suf-
fice. Such subgraphs should capture different contexts like
domain, temporal, or geographical areas. Therefore a new
method, similar to community detection, will be needed to
avoid human-heavy annotation of datasets. Especially since
topic areas will not necessarily be strongly connected to
communities in KGs.

Another challenge is guaranteeing significance and sta-
tistical support for the rules based on a smaller search space.
Here, the absolute support of a rule in a subgraph will be at
most equal to the global setting, which leads to a trade off
between subgraph size and statistical significance.

To motivate the validity of contextual rule mining, we
report some preliminary experiments on a subset of the Free-
base dataset that has six annotated domains in the graph1.
In Table 1 we see some results of applying the rule mining
method AMIE [27] on both the complete set as well as ex-
clusively the respective domains. In three of these topic
area subgraphs we were able to find rules that are not found
and presented in the entire set of these six domains. This
observation supports the claim that these kinds of rules
1https://people.cs.aau.dk/~matteo/notes/freebase-data-dump.html

https://people.cs.aau.dk/~matteo/notes/freebase-data-dump.html


Domain Triples Rules Dom. specific

complete 4302875 1636 -
organization 1767483 106 0
government 613575 405 17
military 260973 68 4
business 1408406 758 11
geography 139900 5 0
finance 112538 66 0

Table 1
Domain details in size and number of mined rules

exist in KGs. Further investigation of the relevance and
significance of rules found in this approach is needed as
to how to apply this concept on datasets that do not have
domains pre-labeled.

5. Conclusion
In my PhD, I study the notion of robustness in knowledge
bases. Towards this I investigate the reliability of knowledge
graph embeddings, eliminating redundancies in graphs, and
contextual rule mining.

Specifically, ReliK (1) gives the possibility of verifying
which areas of knowledge graph embedding can and should
be used in the cleaning and knowledge completion process.
Enforced by an intuitive metric that can be applied indepen-
dent of model choice. Graph normal forms (2) provide the
needed reduction in data redundancy that increases data
integrity, as well as giving a standardized way to normalize
the data. Finally, I present locally aware rules (3) as a future
project that can be used to get topic-specific rules, which
can be further used to establish correctness in applicable
subgraphs in a nuanced approach.
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