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Abstract
Recent advances in natural language understanding have heightened the interest in AI systems capable of answering queries across
multiple data modalities, such as structured database tables and unstructured text. Current approaches typically rely on Large Language
Models (LLMs) to facilitate queries between these modalities, which incurs substantial computational costs and often yields suboptimal
performance. To this direction, this research introduces a novel query execution engine designed to bridge diverse data modalities,
leveraging the high-efficiency querying capabilities of database systems with the advanced reasoning capacities of LLMs. This paper
presents a prototype architecture for such a multi-modal database system, detailing its core components and their functionalities to
demonstrate how it can achieve effective, scalable query processing across structured and unstructured data.
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1. Introduction
The evolution of modern data warehouses has introduced
unprecedented challenges and opportunities, with data vol-
umes now encompassing multiple modalities, such as struc-
tured table data, unstructured text, and images. Each data
type possesses a unique structure, necessitating tailored
querying methods that effectively harness the properties
of each modality. However, despite these advances, exist-
ing systems struggle to generalize queries across multiple
modalities, presenting a key limitation in addressing the
needs of diverse, cross-modal data integration tasks.

Database management systems (DBMS) excel in perform-
ing rapid, efficient, and precise queries on extremely large
data volumes at scale. However, their primary focus remains
on exact computation at scale, with limited reasoning ca-
pabilities [1]. In contrast, Large Language Models (LLMs)
excel at processing natural language data across massive tex-
tual corpora, offering logical reasoning over unstructured
data due to the model’s ability to embed knowledge within
its weights [2]. This distinction highlights a crucial gap
between traditional DBMS architectures and the reasoning
and flexibility capabilities that LLMs bring to unstructured
data processing.

Numerous contemporary applications demand complex
queries that integrate information across multiple modali-
ties [3]. Current dominant approaches for multi-modal data
integration include retrieval-augmented generation (RAG),
similarity-based search, and Text2SQL. These techniques,
however, exhibit limitations in both the diversity of query
types they can accommodate and their query execution per-
formance. Text2SQL methods, for instance, are effective for
natural language queries that have a direct SQL equivalent,
whereas RAG systems are constrained to point lookups in-
volving only a limited number of records, requiring an LLM
to execute the join operation.

To this direction, my doctoral research seeks to bridge
the gap between the approaches of LLMs and traditional
database systems to enable efficient, flexible hybrid search
queries. The objective is to develop a prototype neural
query execution engine equipped with novel algorithms
for efficient data access and join operations, leveraging the
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strengths of both learned models and traditional database
methods, for rapid and precise query execution across mul-
tiple data modalities. The proposed neural execution engine
seeks to empower database systems with the flexibility to
handle diverse data modalities and complex query types, ad-
dressing a critical need in the field of data management and
paving the way for next-generation data retrieval solutions.

2. Related Work
Recent works in natural language understanding require
retrieving and reasoning, like question answering. For such
knowledge-intensive tasks, it is required to assimilate in-
formation from different sections of large different inputs
such as books and article collections [4]. To this direction,
the notions of Virtual Knowledge Bases (VKBs) [5, 6, 4] and
Memory Networks [7, 8] are proposed, in which entity men-
tions in text are transformed into dense representations to
represent properties or relations expressed with text pas-
sages.

Moreover, the advanced reasoning capabilities of LLMs
using RAG in question answering, has emerged a new area
of research where the system takes as input both structured
and unstructured data for reasoning over different modal-
ities [1, 9, 3, 10, 11, 12, 13, 14], or use the LLMs as a query
engine to pose SQL queries [2].

Simultaneously, the database community has introduced
an innovative research direction involving learning-based
techniques to enhance query execution. Advances such as
learned sorting [15] and learned scans and joins algorithms
[16, 17] have demonstrated highly promising results in opti-
mizing traditional query processes. These methods indicate
that machine learning techniques can significantly improve
fundamental database operations, reinforcing the potential
for a hybrid approach that integrates both database and
LLM methodologies.

3. Research Questions
The main purpose of this research proposal is the develop-
ment of a prototype execution engine able to execute queries
combining different data modalities. The implementation
of such a novel system, emerges a set of research questions:
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Figure 1: Architecture of Neural Execution Engine. The sys-
tem accepts a multi-modal SQL query and fetches the related
database and mention tables. Next the optimizer generates a
hybrid execution plan with: database scans (rectangles), mention
tables scans (circles), database join (triangle) database-mention
table join (trapezoid)

RQ1 How can structured database tables and unstructured
data sources, like text documents, be effectively associ-
ated to form a unified querying framework?

RQ2 How can dense vector representations be constructed
to preserve both the semantic richness of text and the
structural integrity of database entities?

RQ3 What new operators are required and how can
database operators be adapted to process queries in-
volving structured and unstructured data?

RQ4 How can a cost-based query optimizer be designed
to generate efficient execution plans for hybrid queries
involving structured and unstructured data?

RQ5 What techniques can be employed to ensure the query
engine scales efficiently for large datasets across multi-
ple modalities?

3.1. Research Opportunities
Building upon the related work, the proposed query en-
gine represents a significant advancement in addressing the
previously outlined research questions.

Virtual Knowledge Bases (VKBs) generate dense repre-
sentations of real-world entities, such as those found within
Wikipedia, to enable querying. However, these representa-
tions have not been applied within the context of database
systems. A key component of this research involves estab-
lishing connections between database entities, as defined by
the data model of each database, and external text corpora
or additional modalities, such as images.

Furthermore, the current state-of-the-art approach for
integrating multiple data modalities relies on Multi-Modal
Large Language Models (MLLMs). This methodology typi-
cally employs large-scale LLMs to process queries, a strategy
that is computationally expensive and constrained by the
input size limitations inherent to LLMs.

The primary objective of this research is to enable effi-
cient execution of multi-modal queries capable of manag-
ing large-scale data in a manner aligned with traditional
database systems. To achieve this, the research will extend
conventional database operators, such as scans and joins,
by developing novel implementation algorithms designed
to process diverse data modalities.

4. A Prototype of A Neural Database
Engine

In this section, an overview of the proposed neural database
execution engine is provided. Suppose the example query:
"Find all customers who purchased ’Product X’ and had posi-
tive experience regarding the quality of the product, within
the past six months.". This query is transformed into a multi-
modal SQL query and sent to the engine for execution. The
example query will assist to describe several aspects of the
proposed system, along with the execution flow of a hybrid
query between database tables and a text corpora.

In Figure [1], we present the architecture of our query
engine. The example query is parsed and the system fetches
the Product and Sales database tables and their related men-
tion tables. Then, the optimizer is invoked to generate an
optimal execution plan for the given query. The optimizer
faces many challenges like selecting the appropriate scan
and join operators within and across modalities, while pre-
dicting their optimal order in the execution plan. In Figure 1,
different physical operators are separated to make clear the
different processing steps. Finally, the generated execution
plan is submitted to the neural engine for execution.

Before the query engine can execute queries across both
data modalities, a preparatory phase, referred to as mention
tables construction, is required. In the provided example,
mentions of ’Product X’ must be recognized within text
passages. In this phase, the system generates a series of
key-value (KV) tables that bridge the information within
database tables and text documents stored in blob storage.

The objective of these KV tables is to create dense vec-
tor representations of entities (keys) that encapsulate the
knowledge embedded in the text corpus (values). These
representations are structured to seamlessly integrate with
a Transformer model, enabling efficient and effective pro-
cessing by the query engine in subsequent stages.

Upon initializing these learned tables, the execution en-
gine is ready to process queries. When a query is posed,
the system parses it and generates an optimal execution
plan. The plan selection process resembles that of tradi-
tional database systems, wherein the optimizer explores the
space of possible execution plans and evaluates candidate
plans based on a cost model.

Given the hybrid nature of the proposed query engine,
which supports queries across multiple data modalities, it
is necessary to define new hybrid operators capable of han-
dling data from both structured and unstructured sources,
like scans, projections, joins etc. These operators are de-
signed to facilitate seamless integration and processing of
data across the diverse modalities enclosed by the system.

During the next subsections, the main components of the
proposed query engine are describes. Initially, the process
of mention tables is described, a methodology to associate
table data with the available text corpus. Next, the core of
the execution engine is detailed, focusing on the needed
operators and the query optimizer of the system.

4.1. Mention Tables
As previously noted, it is essential to establish associations
between data from database tables and the available text
documents, defining the specific types of information to be
retrieved and assimilated across these data sources [4]. The
database schema provides a structured representation of the



entities within the database, with clearly defined properties
for each entity type.

Thus, an initial processing step is proposed between the
different data sources, where each passage in text documents
is annotated with the main entities (fact tables) from the
database and we highlight entity mentions in the passage
with special tokens. Figure [2] shows the construction of
mention tables. Representations of these tokens are later
used to generate entity encodings.

The goal of mention tables is to gather these database
entity encodings into matrices constructing key-value stores
containing the dense vector representations for each entity
in text documents forming a virtual knowledge base of the
available text documents, like [7, 4, 18, 8]

4.2. Neural Query Execution
To extend the querying capabilities of traditional database
systems across multiple data modalities, it becomes neces-
sary to adapt and expand conventional database operators
to effectively manage and process data from both structured
and unstructured sources.

Within a neural database system, operators are catego-
rized into two distinct types: a) single-modal operators,
which are designed to process a single data modality (e.g.,
structured table data or unstructured text passages), such as
scan operations, and b) multi-modal operators, which are
capable of processing and associating inputs across multiple
data modalities, such as join and aggregation operations,
that integrate information from both structured and unstruc-
tured sources. Thus, there is an emerging need to extend
traditional relational algebra used in database systems, to
describe the new neural operators for different modalities.

In database systems, all operators in relational algebra
take as input a relation and the output is the result of the
operator applied on the input relation, which is again a
relation. In the case of the proposed query engine, we need
to define the neural operators regarding the scan, filter and
project of mention tables, as well the join implementation
between the a database table and a mention table.
Scan Mention Tables Scan operations over mention

tables enable efficient querying and processing of entity-
associated text passages. These include entity retrieval scans,
which extract passages linked to specific entities, like ’Prod-
uct X’ in example query, and mention highlight scans, which
identify all occurrences of targeted entities. Contextual sim-
ilarity scans rank passages based on semantic relevance to a
query vector, while entity-to-entity relationship scans reveal
co-occurrences within text. Additional methods, such as
aggregated entity statistics scans and temporal or categorical
filters, allow for deeper insights by analyzing mention fre-
quency, context diversity, or filtering by specific attributes.
Advanced operations, like neighborhood scans for exploring
entity connections and multi-modal entity scans for linking
to database tables, further enhance the querying capabilities
of mention tables. These methods leverage the dense vector
representations of entities to facilitate robust and flexible
data exploration.

Join Mention & Database Tables For join operations in
the proposed query engine, two types of joins are possible:
a) joins within mention tables and b) hybrid joins between
database and mention tables.

Joins within mention tables enable the discovery of rela-
tionships between entities based on shared textual contexts
or semantic relevance. These include entity co-occurrence

Figure 2: Mention Tables represent entities inside database ta-
bles into vector representations.

joins, which retrieve passages where multiple entities are
mentioned together, and contextual similarity joins, which
link entities based on the similarity of their dense vectors
and passage-level joins, which connect text passages that
reference related entities, enabling richer narratives

Joins between mention tables and database tables inte-
grate structured and unstructured data to provide a unified
query interface. Entity-ID joins link entities in mention ta-
bles to their corresponding database records, while property-
based joins combine entities based on shared attributes, such
as linking customer mentions with their structured profiles.
In the example query, the first join of the execution plan
is an Entity-ID join between Product database and mention
tables. Aggregated knowledge joins enrich database records
with insights from text passages, and hybrid semantic joins
bridge structured relationships in the database with seman-
tic similarity in mention tables, enabling advanced querying
across diverse data modalities.

While the traditional database operators are well-defined,
the landscape of neural operators for execution is an active
area of research. There are efforts from the database com-
munity enhancing traditional operators [15, 16, 13] with
neural models for faster query processing, while there are
approaches that propose learned operators, e.g learned scans
and joins [17]. Further, the proposed query engine can uti-
lize the reasoning capabilities of LLMs to provide reasoning
or summaries on the results of the aforementioned oper-
ators at the end of query results or on some intermediate
step of query processing. In the provided example, the LLM
is invoked to evaluate all reviews text passages per product.

4.3. Query Optimization
The query optimizer for the proposed neural execution en-
gine bridges the gap between structured and unstructured
data processing, enabling efficient query execution across
database tables and mention tables. By integrating tradi-
tional database strategies with neural processing, it ensures
scalability and adaptability for hybrid, multi-modal queries.

A core characteristic of the optimizer is its cost-based
approach, which evaluates potential query execution plans
based on resource consumption, including computation
time, cardinality estimation on both database and mention
tables, memory usage, and I/O overhead. For neural opera-
tors, additional factors such as the cost of vector similarity
computations and embedding generation are built-in the
cost model, ensuring an accurate evaluation of query plans.

Moreover, two very important aspects are the query de-
composition and the cross-modal data flow. The optimizer
decomposes complex queries into into modality-specific
sub-queries, ensuring efficient processing of structured and
unstructured data by simultaneously selecting the most ap-
propriate operators, as well as, their optimal order in the
execution plan. In this context, the proposed execution plan



should minimizes redundant computations and intermedi-
ate results, optimizing data transfer between operators, for
efficient cross-modal data flow.

Finally, the optimizer is designed to adapt to dynamic
query workloads and evolving data characteristics by sup-
porting runtime re-optimization. It monitors operator per-
formance during execution and adjusts plans as needed.
Furthermore, it integrates pre-trained or fine-tuned neu-
ral models for unstructured data processing, ensuring their
effective and efficient use in query execution.

5. Conclusions and Future Work
This paper presents a prototype query engine designed to
execute queries across multiple data modalities efficiently
and at scale. A central proposition of this work is the initial
association of key entities from the database with their cor-
responding references within the text corpus. The system
then constructs mention tables, key-value tables containing
dense vector representations of entities and their related tex-
tual passages. The results of this approach have the poten-
tial to inspire new algorithms that link structured database
information with external unstructured data sources.

Furthermore, this novel tabular representation of unstruc-
tured text enables the development of specialized operators
that the query engine must support. The design and im-
plementation of these operators establish the foundational
components of the envisioned query engine. Additionally,
the integration of these operators calls for the development
of a new generation of query optimizers capable of gener-
ating efficient execution plans across both structured and
unstructured data modalities. This research lays the funda-
mentals for a novel approach to querying multi-modal data
and opens new avenues for future exploration in hybrid
query optimization and execution strategies.

Acknowledgments
This work has been partially supported by DataGEMS,
funded by the European Union’s Horizon Europe Research
and Innovation programme, under grant agreement No
101188416 and by project MIS 5154714 of the National Recov-
ery and Resilience Plan Greece 2.0 funded by the European
Union under the NextGenerationEU Program.

References
[1] A. Biswal, L. Patel, S. Jha, A. Kamsetty, S. Liu, J. E.

Gonzalez, C. Guestrin, M. Zaharia, Text2sql is not
enough: Unifying ai and databases with tag, arXiv
preprint arXiv:2408.14717 (2024).

[2] M. Saeed, N. De Cao, P. Papotti, Querying
large language models with sql, arXiv preprint
arXiv:2304.00472 (2023).

[3] L. Patel, S. Jha, C. Guestrin, M. Zaharia, Lotus:
Enabling semantic queries with llms over tables of
unstructured and structured data, arXiv preprint
arXiv:2407.11418 (2024).

[4] Y. Zemlyanskiy, J. Ainslie, M. de Jong, P. Pham, I. Eck-
stein, F. Sha, Readtwice: Reading very large documents
with memories, in: Proceedings of NAACL, 2021.

[5] B. AlKhamissi, M. Li, A. Celikyilmaz, M. Diab,
M. Ghazvininejad, A review on language models as

knowledge bases, 2022. URL: https://arxiv.org/abs/
2204.06031. arXiv:2204.06031.

[6] M. de Jong, Y. Zemlyanskiy, N. A. FitzGerald, F. Sha,
W. W. Cohen, Mention memory: incorporating textual
knowledge into transformers through entity mention
attention, in: 10th International Conference on Learn-
ing Representations, ICLR 2022, 2022.

[7] S. Sukhbaatar, J. Weston, R. Fergus, et al., End-to-end
memory networks, Advances in neural information
processing systems 28 (2015).

[8] Z. Zhong, T. Lei, D. Chen, Training language
models with memory augmentation, in: Proceed-
ings of the 2022 Conference on EMNLP, Association
for Computational Linguistics, 2022, pp. 5657–5673.
URL: https://aclanthology.org/2022.emnlp-main.382/.
doi:10.18653/v1/2022.emnlp-main.382.

[9] L. Patel, P. Kraft, C. Guestrin, M. Zaharia, Acorn:
Performant and predicate-agnostic search over vector
embeddings and structured data, Proceedings of the
ACM on Management of Data 2 (2024) 1–27.

[10] A. Dargahi Nobari, D. Rafiei, Dtt: An example-driven
tabular transformer for joinability by leveraging large
language models, Proceedings of the ACM on Man-
agement of Data (SIGMOD) 2 (2024). URL: https://doi.
org/10.1145/3639279. doi:10.1145/3639279.

[11] G. Badaro, M. Saeed, P. Papotti, Transformers
for tabular data representation: A survey of mod-
els and applications, Transactions of the Associa-
tion for Computational Linguistics 11 (2023) 227–249.
URL: https://aclanthology.org/2023.tacl-1.14/. doi:10.
1162/tacl_a_00544.

[12] M. J. Cafarella, C. Re, D. Suciu, O. Etzioni, M. Banko,
Structured querying of web text, in: 3rd Biennial Con-
ference on Innovative Data Systems Research (CIDR),
Asilomar, California, USA, 2007.

[13] C. Liu, M. Russo, M. Cafarella, L. Cao, P. B.
Chen, Z. Chen, M. Franklin, T. Kraska, S. Madden,
G. Vitagliano, A declarative system for optimizing ai
workloads, arXiv preprint arXiv:2405.14696 (2024).

[14] Y. Lin, M. Hulsebos, R. Ma, S. Shankar, S. Zeigham,
A. G. Parameswaran, E. Wu, Towards accurate and
efficient document analytics with large language
models, 2024. URL: https://arxiv.org/abs/2405.04674.
arXiv:2405.04674.

[15] A. Kristo, K. Vaidya, U. Çetintemel, S. Misra, T. Kraska,
The case for a learned sorting algorithm, in: Proceed-
ings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’20, As-
sociation for Computing Machinery, New York, NY,
USA, 2020, p. 1001–1016. URL: https://doi.org/10.1145/
3318464.3389752. doi:10.1145/3318464.3389752.

[16] I. Sabek, T. Kraska, The case for learned in-
memory joins, Proc. VLDB Endow. 16 (2023)
1749–1762. URL: https://doi.org/10.14778/3587136.
3587148. doi:10.14778/3587136.3587148.

[17] M. Urban, C. Binnig, Eleet: Efficient learned query
execution over text and tables, volume 17, VLDB En-
dowment, 2024, pp. 4867–4880.

[18] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bor-
des, J. Weston, Key-value memory networks
for directly reading documents, in: Proceed-
ings of the 2016 Conference on EMNLP, Associa-
tion for Computational Linguistics, Austin, Texas,
2016. URL: https://aclanthology.org/D16-1147. doi:10.
18653/v1/D16-1147.

https://arxiv.org/abs/2204.06031
https://arxiv.org/abs/2204.06031
http://arxiv.org/abs/2204.06031
https://aclanthology.org/2022.emnlp-main.382/
http://dx.doi.org/10.18653/v1/2022.emnlp-main.382
https://doi.org/10.1145/3639279
https://doi.org/10.1145/3639279
http://dx.doi.org/10.1145/3639279
https://aclanthology.org/2023.tacl-1.14/
http://dx.doi.org/10.1162/tacl_a_00544
http://dx.doi.org/10.1162/tacl_a_00544
https://arxiv.org/abs/2405.04674
http://arxiv.org/abs/2405.04674
https://doi.org/10.1145/3318464.3389752
https://doi.org/10.1145/3318464.3389752
http://dx.doi.org/10.1145/3318464.3389752
https://doi.org/10.14778/3587136.3587148
https://doi.org/10.14778/3587136.3587148
http://dx.doi.org/10.14778/3587136.3587148
https://aclanthology.org/D16-1147
http://dx.doi.org/10.18653/v1/D16-1147
http://dx.doi.org/10.18653/v1/D16-1147

	1 Introduction
	2 Related Work
	3 Research Questions
	3.1 Research Opportunities

	4 A Prototype of A Neural Database Engine
	4.1 Mention Tables
	4.2 Neural Query Execution
	4.3 Query Optimization

	5 Conclusions and Future Work

