
Flexible RML-Based Mapping of Property Graphs to RDF
Ali Elhalawati1, Anastasia Dimou1, Olaf Hartig2 and Daniel Hernández3

1KU Leuven, Leuven, Belgium
2Linköping University, Linköping, Sweden
3University of Stuttgart, Stuttgart, Germany

Abstract
RDF graphs and (Labeled) Property Graphs (PGs) have emerged as data models for representing graph databases.
Given the differences between the two models, ensuring interoperability between them has become essential, to leverage
the strengths of both models. Various approaches have been proposed to map PGs to RDF graphs. However, these
approaches differ in terms of structure, representation, size of the generated RDF graph, and degree of configuration
provided to the user, making direct comparisons challenging. While declarative methods prevailed to construct RDF
graphs from other data formats, the mapping languages proposed for such transformations have not been considered so
far for mapping PGs to RDF graphs. In this work, we provide a representation of PG-to-RDF approaches through
templates described using RML, a mapping language to construct RDF graphs from heterogeneous data. We show
that all considered PG-to-RDF approaches can be represented in RML and, by having a uniform representation of
them, we can compare them showcasing their differences. Finally, we show that not only can RML be used to capture
PG-to-RDF mappings, but it actually offers more expressive power than the considered PG-to-RDF approaches.

Person
name: Roger Federer

plays
since: 1998

Sport
name: Tennis

Figure 1: A Representation of a PG with a real-life scenario.

n1:Person n2:SportRoger Federer Tennis
ex:playsex:name ex:name

Figure 2: An RDF graph with a real-life scenario.

1. Introduction
Graph databases are powerful representation methods
to model data with relationships and dependencies
across various fields [1, 2]. In graph databases, nodes
normally represent entities, while edges capture their
relationships. The most prominent and widely adopted
forms of graph databases today are Property Graphs
(PGs) [2] and RDF Graphs [3].

Assuming the reader’s familiarity with the concepts
and terminologies of PGs and RDF graphs [4], Fig. 1
shows a PG with two nodes, labeled “Person” and
“Sport”, an edge with the label “plays”, node proper-
ties as name: “Roger Federer”, and an edge property
since: “1998”. Fig. 2 illustrates an RDF graph with
triples having two subjects n1:Person and n2:Sport,
Predicates as ex:plays and ex:name, and objects as
n2:Sport and “Tennis”.

RDF-star [5] is an extension of RDF where the
subject and the object can be triples, i.e. an RDF
triple can be treated as a node within the graph. For

Published in the Proceedings of the Workshops of the
EDBT/ICDT 2025 Joint Conference (March 25-28, 2025),
Barcelona, Spain
$ ali.elhalawati@kuleuven.be (A. Elhalawati);
anastasia.dimou@kuleuven.be (A. Dimou); olaf.hartig@liu.se
(O. Hartig); daniel.hernandez@ki.uni-stuttgart.de
(D. Hernández)
� 0000-0003-1457-0031 (A. Elhalawati); 0000-0003-2138-7972
(A. Dimou); 0000-0002-1741-2090 (O. Hartig);
0000-0002-7896-0875 (D. Hernández)

Copyright © 2025 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

example, the triple n1:Person ex:plays n2:Sport in
Fig. 2 can be the subject to the triple «n1:Person
ex:plays n2:Sport» ex:since “1998”.

PGs and RDF graphs have representational and
structural differences [6]. RDF graphs do not have
edges, properties, or labels, and are not multigraphs
as PGs. On the other hand, RDF graphs rely on IRIs
to have global unique identifiers for RDF components,
unlike PGs that rely on IDs to uniquely identify PG
components only inside the scope of the PG.

Since PGs and RDF graphs differ, the choice be-
tween them depends on the use case. However, to
leverage the strengths of both, several approaches have
been proposed to enable their interoperability. Sev-
eral works exist in the literature on RDF-to-PG map-
ping [7, 8, 9], as well as PG-to-RDF mapping [10, 11,
12, 13, 14, 15, 16]. Some of the PG-to-RDF approaches
provide direct mappings to convert PGs to RDF auto-
matically without user intervention [10, 11, 12], while
other approaches offer configuration on the RDF terms
in the output RDF graph [13], or even generate an
RDF graph for a specific PG sub-graph [14, 15].

Despite the existence of several PG-to-RDF map-
ping approaches, it is hard to compare them directly,
since each approach differs in terms of the structure,
representation, size of the generated RDF graph, the
degree of configuration provided to the user, and as-
sumes different data formats for the input PG. In
addition, these approaches impose restrictions on the
generated RDF terms in their mappings. For example,
all the PG-to-RDF approaches do not allow combining
more than one PG component in one RDF term in the
generated RDF graph, and restrict property values in
a PG to be literals in the generated RDF graph.

Several declarative mapping languages were pro-
posed to construct RDF graphs from heterogeneous
data sources [17]. However, these mapping languages
are not considered so far for mapping PGs to RDF
graphs. The RDF Mapping Language (RML) is a
declarative mapping language used to generate RDF
graphs from heterogeneous data sources [18, 19], by
extending the W3C recommended R2RML [20] to het-
erogeneous data sources. RML has been extended
to RML-star [21], enabling declarative mappings to

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ali.elhalawati@kuleuven.be
mailto:anastasia.dimou@kuleuven.be
mailto:olaf.hartig@liu.se
mailto:daniel.hernandez@ki.uni-stuttgart.de
https://orcid.org/0000-0003-1457-0031
https://orcid.org/0000-0003-2138-7972
https://orcid.org/0000-0002-1741-2090
https://orcid.org/0000-0002-7896-0875
https://creativecommons.org/licenses/by/4.0/deed.en

generate RDF-star graphs.
In this work, we provide a uniform method for com-

paring the existing PG-to-RDF approaches using RML
and show that RML can map PGs to RDF graphs.
We accomplish this by representing each considered
PG-to-RDF mapping approach as a template of RML
mappings and providing a uniform input format for
the PG across all considered approaches. These RML
templates require the user to define only the property
keys and values to be mapped from the PG. This uni-
form representation of the most prominent PG-to-RDF
mapping approaches enables direct comparisons, high-
lighting their differences. In addition, we highlight the
limitations of the considered PG-to-RDF approaches
in generating RDF graphs and showcase that not only
RML supports mapping PG-to-RDF, but it also of-
fers more expressive power and configuration than the
considered PG-to-RDF approaches.

2. Preliminaries
In this section, we revisit the formal definition of
PGs and briefly summarize RML. We refrain from
formally defining RDF graphs as it is unnecessary for
this work and instead, refer to the RDF specification
for details [3]. We adopt the formal definition of PGs
from [6, 12, 4], as follows.

Definition 1. A PG is the tuple (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) such
that 𝑁 is a finite set of nodes and 𝐸 is a finite set
of edges where 𝑁 ∩ 𝐸 = ∅. 𝜌 : 𝐸 → (𝑁 × 𝑁) is the
edge construction total function. 𝜆 : (𝑁 ∪ 𝐸) → 𝐿 is a
total function that maps nodes and edges to labels in
𝐿. 𝜎 : (𝑁 ∪ 𝐸) × 𝑃 → 𝒱𝒜 is a partial function that
takes a node/edge and a property from 𝑃 and assigns
them to a property value from 𝒱𝒜.

Example 1. The formal definition of PGs captures the
PG in Fig. 1 as follows:

𝑁 = {𝑛1, 𝑛2}, 𝜆(𝑛1) = “Person”, 𝜆(𝑛2) = “Sport”,

𝐸 = {𝑒1}, 𝜆(𝑒1) = “plays”, 𝜌(𝑒1) = (𝑛1, 𝑛2),
𝜎(𝑛1, 𝑛𝑎𝑚𝑒) = “Roger Federer”,

𝜎(𝑛2, 𝑛𝑎𝑚𝑒) = “Tennis”, 𝜎(𝑒1, 𝑠𝑖𝑛𝑐𝑒) = “1998”

An RML Mapping Document ℳ describes how to
generate RDF graphs from input data sources. ℳ is
formed from a set of Triples Maps that define how to
generate triples in an RDF graph. A triples map has
zero or one Logical Source, one Subject Map, zero or
more Predicate-Object Maps, and zero or more Graph
Maps. The logical source specifies the input data
source. The subject map defines how to create sub-
jects in triples. A predicate-object map consists of one
or more Predicate Map that defines the rule generating
the predicates in RDF triples. Additionally, a predi-
cate map is accompanied by one or more Object Map
that defines how to generate objects in triples. Graph
maps can be specified in subject maps and object maps
to group the generated triples in named graphs.

To support the extension of RDF with RDF-star,
Delva et al. introduce an extension of RML, RML-
Star [21], which enables the generation of RDF-star
triples. An RML-Star ℳ may include Triples Maps,

Asserted Triples Maps, and Non-Asserted Triples Maps.
The RDF triples constructed by the asserted triples
maps are also generated in the output graph, unlike
the non-asserted triples maps where the constructed
RDF triples are only referenced inside RDF-star triples.
Asserted and non-asserted triples maps contain Star
Maps for subject and object maps. Each Star Map has
a Quoted Triples Map referencing another asserted or
non-asserted triples map.

3. RML Templates for PG-to-RDF
Several works map PGs to RDF graphs, we review
these works and provide their corresponding RML
templated mappings necessary for generating RDF
graphs on a running example. These templated map-
pings only require the user to specify the property keys
and values to be mapped from their PG. In our work,
Neo4j serves as the database system for managing PGs.
Neo4j enables users to query the stored PGs using the
Cypher query language. The query results are then
exported to a JSON using the APOC [22] plugin in
Neo4j. We present the templated RML mappings in
a YARRRML serialization [23]. The full YARRRML
and RML templates of each considered approach are
available in a dedicated GitHub repo (https://github.
com/dtai-kg/PG-to-RDF-RML-Templates).

3.1. The Oracle Approaches
Das et al. [10] introduced three PG-to-RDF direct map-
pings for Oracle databases, which differ in the mapping
of edge properties: reification-based (RF), subproper-
ty-based (SP), and named graph-based (NG). None of
them covers node labels. Predefined transformation
functions IRI and Literal, are used to transfer PG
elements to IRIs and literals in the output RDF graph.

RF Mapping Let 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) be a PG, an
RDF graph is generated from 𝑃 𝐺 as follows:

1. For every 𝑒 ∈ 𝐸 with 𝜌(𝑒) = (𝑛1, 𝑛2) and
𝜆(𝑒) = 𝑙, triples are generated as follows:
IRI(𝑒) rdf: subject IRI(𝑛1).
IRI(𝑒) rdf: predicate IRI(𝑙).
IRI(𝑒) rdf: object IRI(𝑛2).
IRI(𝑛1) IRI(𝑙) IRI(𝑛2).

2. For every 𝑥 ∈ 𝑁 ∪ 𝐸, where 𝑥 is an edge or a
node with 𝜎(𝑥, 𝑝) = 𝑣 where 𝑝 ∈ 𝑃 and 𝑣 ∈ 𝒱𝒜,
a triple is generated following the construction
IRI(𝑥) IRI(𝑝) Literal(𝑣).

Example 2. Applying the RF mapping to the PG in
Fig. 1 yields an RDF graph with the following triples:
pg:e1 rdf: subject pg:n1.
pg:e1 rdf: predicate pg:r/plays.
pg:e1 rdf: object pg:n2.
pg:n1 pg:r/plays pg:n2.
pg:n1 pg:k/name “Roger Federer”.
pg:n2 pg:k/name “Tennis”.
pg:e1 pg:k/since “1998”.

For the RF mapping, the template RML mappings to
generate the RDF graph in Ex. 2 are the following:

https://github.com/dtai-kg/PG-to-RDF-RML-Templates
https://github.com/dtai-kg/PG-to-RDF-RML-Templates

Listing 1: The RF Template Mappings
1TM1:
2s: pg:e$(id)
3po:
4- [rdf:predicate , pg:r/$(label)]
5- [rdf:subject , pg:n$(start .id)]
6- [rdf:object , pg:n$(end.id)]
7- [pg:k/since , $(properties . since)]
8TM2:
9s: pg:n$(start .id)
10po:
11- [pg:r/$(label), pg:n$(end.id)]
12- [pg:k/name , $(start . properties .name)]
13TM3:
14s: pg:n$(end.id)
15po:
16- [pg:k/name , $(end. properties .name)]

TM1 generates the triples where the edge is the subject,
while TM2 and TM3 generate the triples where the
source node and the target node are subjects.

SP Mapping For 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎), the corre-
sponding RDF graph is generated such that for every
𝑒 ∈ 𝐸 where 𝜌(𝑒) = (𝑛1, 𝑛2) and 𝜆(𝑒) = 𝑙 triples are
generated as follows:
IRI(𝑒) rdfs: subPropertyOf IRI(𝑙).
IRI(𝑛1) IRI(𝑙) IRI(𝑛2).
IRI(𝑛1) IRI(𝑒) IRI(𝑛2).

For 𝑥 ∈ 𝑁 ∪ 𝐸 with 𝜎(𝑥, 𝑝) = 𝑣, the triples are gener-
ated following step 2 in RF mapping.

Example 3. On the PG of Fig. 1, SP maps edges and
their labels as follows:
pg:e1 rdfs: subPropertyOf pg:r/plays.
pg:n1 pg:e1 pg:n2.

SP overlaps with the RF in the generated RDF graph
for the nodes and properties. However, they differ
in the RDF graph for the edges and their labels by
relying on the subPropertyOf relationship to express
the edges instead of reification. This requires slight
modifications to the template in Listing 1, the modified
template is available in our dedicated GitHub repo.

NG Mapping For 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎), an RDF
graph is generated following the NG mapping as fol-
lows: (i) For every 𝑒 ∈ 𝐸 where 𝜌(𝑒) = (𝑛1, 𝑛2)
and 𝜆(𝑒) = 𝑙 a triple is generated and grouped in
a named graph following the construction IRI(𝑛1)
IRI(𝑙) IRI(𝑛2) IRI(𝑒), (ii) for every 𝜎(𝑒, 𝑝) = 𝑣, we
group the edge properties in named graphs following
the construction IRI(𝑒) IRI(𝑝) Literal(𝑣) IRI(𝑒),
(iii) for every 𝑛 ∈ 𝑁 , the triples are generated as step
2 in RF mapping.

Example 4. On the PG of Fig. 1, the NG mapping
groups edges, labels, and properties in named graphs:
pg:n1 pg:r/plays pg:n2 pg:e1.
pg:e1 pg:k/since “1998” pg:e1.

NG mapping is similar to RF and SP in generating
RDF graphs for PG nodes and node properties. How-
ever, it differs in generating RDF graphs for edges,
edge properties, and edge labels. Slight modifications
are required for the template in Listing 1, where edge
relations, properties, and labels are placed in named
graphs categorized by the edges.

3.2. Singleton Property Graph Approach
Nguyen et al. [11] propose a direct PG-to-RDF map-
ping through an intermediate unified graph model
called Singleton Property Graph (SPG). SPGs capture
the structures of both PGs and RDF graphs. To trans-
form PGs into SPGs, each node and edge in the PG is
mapped to a node in the SPG. Furthermore, two edges
are introduced in the SPG: one connects the edge’s
created node to the source node, and the other links
the edge’s node to the destination node. The same
non-configurable transformation functions IRI and
Literal defined in the Oracle approaches are assumed.
Also, three unique IRIs IRI𝑖𝑛, IRI𝑜𝑢𝑡, IRI𝑙𝑎𝑏𝑒𝑙 are
used to describe the edge relation and node/edge la-
bels in the output RDF graph. The PG is mapped
to an SPG, which is mapped to an RDF graph as
follows: Let 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) be a PG, for every
𝑛 ∈ 𝑁 and 𝜆(𝑛) = 𝑙𝑛 a triple is generated following
the construction IRI(𝑛) IRI𝑙𝑎𝑏𝑒𝑙 Literal(𝑙𝑛). For ev-
ery 𝑒 ∈ 𝐸 with 𝜌(𝑒) = (𝑛1, 𝑛2) and 𝜆(𝑒) = 𝑙𝑒 triples
are generated as follows:
IRI(𝑛1) IRI𝑖𝑛 IRI(𝑒).
IRI(𝑒) IRI𝑜𝑢𝑡 IRI(𝑛2).
IRI(𝑒) IRI𝑙𝑎𝑏𝑒𝑙 Literal(𝑙𝑒).

For 𝑥 ∈ 𝑁 ∪ 𝐸, the triples are generated as step 2 in
RF mapping.

Example 5. Applying the SPG mapping to the PG in
Fig. 1 yields an RDF graph as follows:
ex:n1 rdfs:label “Person”.
ex:n1 ex:name “Roger Federer”.
ex:n2 rdfs:label “Sport”.
ex:n2 ex:name “Tennis”.
ex:e1 rdfs:label “plays”.
ex:e1 ex:since “1998”.
ex:n1 ex: nodeToedge ex:e1.
ex:e1 ex: EdgeTonode ex:e2.

SPG does not differentiate between edge and node
labels. To address this, a variation of the SPG mapping
was proposed [6], where the unique IRI IRI𝑙𝑎𝑏𝑒𝑙 is split
into two distinct IRIs IRI𝑒𝑙𝑎𝑏𝑒𝑙 and IRI𝑛𝑙𝑎𝑏𝑒𝑙 for edge
and node labels respectively.

We showcase the template RML mappings by gen-
erating the RDF graph in Ex. 5 as follows:

Listing 2: The SPG Template Mappings
1TM1:
2s: ex:n$(id)
3po:
4- [rdfs:label , $(labels)]
5- [ex:name , $(properties .name)]
6TM2:
7s: ex:n$(start .id)
8po:
9- [ex: nodeToedge , ex:e$(id)]
10TM3:
11s: ex:e$(id)
12po:
13- [rdfs:label , $(label)]
14- [ex: edgeTonode , ex:n$(end.id)]
15- [ex:since , $(properties . since)]

TM1 generates RDF triples that describe the prop-
erties of nodes in the graph. TM2 generates triples
that link the source node to the edge. TM3 generates
triples that describe the edge’s properties and label
and connect the edge to the target node.

3.3. RDF-Star-Based Approach
Hartig [13] proposes an RDF-star-based mapping ap-
proach that converts PGs to RDF-star graphs by de-
scribing edge properties using RDF-star triples, where
the triple connecting the edge label to the source
node and the target node is used as the subject in
these RDF-star triples. This approach enables users
to choose patterns for generating IRIs that denote
edge labels and property keys, and the desired RDF
term in the resulting RDF-star graph for certain PG
components. The functions IRI, Literal, 𝜑 and 𝛾
take a PG component 𝐶 and transfer it to an RDF
term such that IRI(𝐶) and Literal(𝐶) generate an
IRI and a literal. 𝜑(𝐶) generates either a literal or an
IRI, and 𝛾(𝐶) generates a blank node or an IRI. The
functions IRI, 𝜑, and 𝛾 are configurable, i.e. the user
can define the IRIs to be used, as well as the desired
RDF term in 𝜑 and 𝛾. In addition, an IRI IRI𝑙𝑎𝑏𝑒𝑙 is
used to describe the presence of a node label.

Let 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) be a PG, for every 𝑛 ∈ 𝑁
where 𝜆(𝑛) = 𝑙𝑛 a triple is generated following the
construction 𝛾(𝑛) IRI𝑙𝑎𝑏𝑒𝑙 𝜑(𝑙𝑛). For every 𝑛 ∈ 𝑁
with 𝜎(𝑛, 𝑝) = 𝑣, a triple is generated following the
construction 𝛾(𝑛) IRI(𝑝) literal(𝑣). For every 𝑒 ∈
𝐸 where 𝜌(𝑒) = (𝑛1, 𝑛2) and 𝜆(𝑒) = 𝑙𝑒, a triple is
generated following the construction 𝛾(𝑛1) IRI(𝑙𝑒)
𝛾(𝑛2). For every 𝑒 ∈ 𝐸 where 𝜌(𝑒) = (𝑛1, 𝑛2), 𝜆(𝑒) =
𝑙𝑒 and 𝜎(𝑒, 𝑝′) = 𝑣′, the triple describing the edge is
reused as a subject to generate the RDF-star triple
«𝛾(𝑛1) IRI(𝑙𝑒) 𝛾(𝑛2)» IRI(𝑝′) literal(𝑣′).

Example 6. We show how to generate the RDF-star
triples for edge properties on the PG in Fig. 1:
ex:n1 ex:plays ex:n2.
<<ex:n1 ex:plays ex:n2 >> ex:since “1998”.

In this approach, the edge triple uses the edge label
as a predicate, raising the question of what happens if
edges have no label. This approach overlaps with the
SPG approach in producing node labels and properties.
The difference lies in expressing the edge relations,
labels, and properties using RDF-star. The mappings
in Listing 2 are modified with RML-star mappings to
generate the desired triples. We provide this modified
template in our GitHub repo.

3.4. PGO Approach
Tomaszuk et al. proposed the Property Graph Ontol-
ogy (PGO), an OWL ontology designed for describing
PGs in RDF [12]. Users are restricted to using the
predefined ontology terms provided by PGO and can
only integrate these terms with a limited set of other
ontologies specified in [12]. The same non-configurable
transformation functions IRI and Literal described
in the oracle approach are used to convert a PG com-
ponent to an IRI or literal.

Let 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) be a PG, each node/edge
property mapping 𝜎(𝑥, 𝑝) = 𝑣 is assumed to have a
unique identifier 𝜎𝑥,𝑝,𝑣. For every 𝑛 ∈ 𝑁 , a triple is
generated following the construction IRI(𝑛) rdf:type
pgo:Node. For each 𝑛 ∈ 𝑁 with 𝜎(𝑛, 𝑝) = 𝑣, a
triple is generated following the construction IRI(𝑛)
pgo:hasNodeProperty IRI(𝜎𝑛,𝑝,𝑣). For every 𝑒 ∈ 𝐸
where 𝜌(𝑒) = (𝑛1, 𝑛2), triples are generated as follows:

IRI(𝑒) rdf:type pgo:Edge.
IRI(𝑒) pgo: startNode IRI(𝑛1).
IRI(𝑒) pgo: endtNode IRI(𝑛2).

For each 𝑒 ∈ 𝐸 with 𝜎(𝑒, 𝑝) = 𝑣 a triple is generated fol-
lowing the construction IRI(𝑒) pgo:hasEdgeProperty
IRI(𝜎𝑒,𝑝,𝑣). For 𝑥 ∈ 𝑁 ∪ 𝐸 such that 𝜎(𝑥, 𝑝) = 𝑣 the
following triples are generated:
IRI(𝜎𝑥,𝑝,𝑣) rdf:type pgo: Property .
IRI(𝜎𝑥,𝑝,𝑣) pgo:key Literal(𝑝).
IRI(𝜎𝑥,𝑝,𝑣) pgo: value Literal(𝑣).

For 𝑥 ∈ 𝑁 ∪ 𝐸 where 𝜆(𝑥) = 𝑙, the triple IRI(𝑥)
pgo:label Literal(𝑙) is generated.

Example 7. We show a sample of the PGO mapping
on the PG in Fig. 1:
ex:n1 rdf:type pgo:Node.
ex:n1 pgo:label “Person”.
ex:n1 pgo: hasNodeProperty ex:p1.
ex:n2 rdf:type pgo:Node.
ex:p1 rdf:type pgo: Property .
ex:p1 pgo:key “name”.
ex:p1 pgo:value “Roger Federer”.
ex:e1 rdf:type pgo:Edge.
ex:e1 pgo: startNode ex:n1.
ex:e1 pgo: endNode ex:n2.
ex:e1 pgo:label “plays”.
ex:e1 pgo: hasEdgeProperty ex:p2.
ex:p2 rdf:type pgo: Property .
ex:p2 pgo:key “since”.
ex:p2 pgo:value “1998”.

Besides relying on specific ontology terms, the PGO
translation generates a large RDF graph even for a
small PG, as repeated triples are generated for PG
components to comply with the ontology. To adapt
to the assumption of having unique property IDs, we
attach the property value to the node/edge and use
it as a unique ID for each property. In addition, to
correctly construct triples specialized to nodes/edges,
we use functions in RML to check the type of the PG
component. The template RML mappings to generate
the RDF graph in Ex. 7 are as follows.

Listing 3: The PGO Template Mappings
1TM1:
2s: ex:n$(id)
3condition :
4function : idlab -fn: equal
5parameters :
6- [grel: valueParameter , $(type), s]
7- [grel: valueParameter2 , "node", o]
8po:
9- [a, pgo:Node]
10- [pgo:label , $(labels)]
11- [pgo: hasNodeProperty ,
12ex:p_$(properties .name)_$(id)]
13TM2:
14s: ex:e$(id)
15condition :
16function : idlab -fn: equal
17parameters :
18- [grel: valueParameter , $(type), s]
19- [grel: valueParameter2 ,
20" relationship ", o]
21po:
22- [a, pgo:Edge]
23- [pgo: hasEdgeProperty ,
24ex:p_$(properties . since)_$(id)]
25TM3:
26s: ex:p_$(properties .name)_$(id)

27po:
28- [a, pgo: property]
29- [pgo:key , "name "]
30- [pgo:value , $(properties .name)]
31TM4:
32s: ex:p_$(properties . since)_$(id)
33po:
34- [a, pgo: property]
35- [pgo:key , " since "]
36- [pgo:value , $(properties . since)]
37TM5:
38s: ex:e$(id)
39po:
40- [pgo:startNode , ex:n$(start .id)]
41- [pgo:endNode , ex:n$(end.id)]
42- [pgo:label , $(label)]

TM1 generates the triples that identify the node, at-
tach the node to its label, and create the unique prop-
erties IDs for each node. TM2 does the same as TM1
but for edges. TM3 and 4 construct the triples to
describe the node/edge properties. TM5 generates the
triples that describe the edge label, and connect the
edge to its source and target nodes.

3.5. PRSC and PREC Approaches
Bruyat [24] introduces two user-defined mappings that
convert PGs to RDF PRSC [15] and PREC [14].

PRSC [15] is defined as mapping rules written in
RDF-star [25]. PRSC mapping rules are divided into
target and production parts. The target specifies
the intended component in the PG based on its type
(node or edge), label, and property names. The labels
and property names of the target node/edge must be
specified since omitting them implies that they do not
exist in the original PG. In the production part of
the rule, the user specifies the desired output in the
RDF-star graph. Let 𝑃 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜎) be a PG,
PRSC assumes the following variables:

• pvar:self represents 𝑛 ∈ 𝑁 or 𝑒 ∈ 𝐸 in the
form of a blank node.

• pvar:source represents the source node 𝑛1 of
any edge 𝑒 with 𝜌(𝑒) = (𝑛1, 𝑛2) as a blank node.

• pvar:destination represents the target node
𝑛2 for any edge 𝑒 with 𝜌(𝑒) = (𝑛1, 𝑛2) in the
form of a blank node.

• prec:valueOf(p) is a literal representing the
value 𝑣 for 𝜎(𝑥, 𝑝) = 𝑣 where 𝑥 ∈ 𝑁 ∪ 𝐸, 𝑝 has
to be specified.

In the production part of every rule, users can combine
these variables with any desired constant IRI to define
the intended output in the RDF-star graph.

Example 8. Applying this PRSC rule on the PG in
Fig. 1 selects edges with a specific label and property:
_: playsRule a prec: PRSCEdgeRule ;
prec:label “plays”;
prec: propertyKey “since”;
prec: produces
<<<<pvar: source ex:plays pvar: destination >>>>

ex:since “since”^^ prec: valueOf .

As a result of this rule, the RDF-star triple «_:n1
ex:plays _:n2» ex:since “1998” is generated.

It is observed that, in any PRSC rule, if a user in-
tends to target a specific node or edge 𝑥, they are

required to specify all the property names and labels
of 𝑥, even if these are not intended to be included
in the production part of the rule. This requirement
can be tedious, particularly for property graphs with
numerous properties and labels.

PREC [14] follows the same structure as PRSC
but introduces some differences. In the target part of
PREC rules, the target can be a property instead of
only a node/edge. Moreover, unlike PRSC, omitting
certain property names of the target node or edge does
not imply their non-existence. PREC is deemed in [24]
as a low-level mapping that is “not user-friendly" and
“difficult" as it requires the user to be very familiar
with the language and learn an extensive vocabulary
to utilize it effectively. Another limitation of PREC is
that it sometimes produces unexpected triples specif-
ically in cases where different nodes/edges share the
same property names. In addition, PREC cannot deal
with nodes/edges having empty labels.

Despite the high degree of configuration, PREC and
PRSC share some limitations. Both systems convert
the entire PG to an RDF graph following the PGO
ontology [12], this proved some scalability issues as
mentioned in [15]. Both systems enforce certain RDF
term types for each PG component, e.g., nodes/edges
are always blanks and property values are always lit-
erals. Property values are enforced to be used only as
objects in the output RDF graph, and it is impossible
to combine different PG components in one RDF term.

PRSC Solution Let 𝑚PRSC be a set of mappings in
PRSC format, every mapping rule 𝑟 in 𝑚PRSC has
a target t and a production prod. t has a type
node or edge, a possible-empty label 𝑙, and a possible-
empty set of property names 𝑃 . prod represents an
RDF-star graph where every triple in prod can con-
tain user-defined constant IRIs, another triple, or a
PRSC-defined variable 𝑑𝑣. For every 𝑟 in 𝑚PRSC, if
t has a type node, then for any 𝑑𝑣 ∈ prod, 𝑑𝑣 ∈
{𝑝𝑣𝑎𝑟:𝑠𝑒𝑙𝑓, 𝑝𝑟𝑒𝑐:𝑣𝑎𝑙𝑢𝑒𝑂𝑓(𝑝)} where 𝑝 is a property
name in the PG. Otherwise, if t has a type edge,
then 𝑑𝑣 ∈ {𝑝𝑣𝑎𝑟:𝑠𝑒𝑙𝑓 , 𝑝𝑣𝑎𝑟:𝑠𝑜𝑢𝑟𝑐𝑒, 𝑝𝑣𝑎𝑟:𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛,
𝑝𝑟𝑒𝑐:𝑣𝑎𝑙𝑢𝑒𝑂𝑓(𝑝)}.

For every 𝑟 in 𝑚𝑃 𝑅𝑆𝐶 , let 𝒞(𝑟) → 𝑐𝑞 be a function
that constructs a cypher query 𝑐𝑞 for 𝑡 in 𝑟. We show
how to construct 𝑐𝑞 based on the content of 𝑡 as follows:

• if 𝑡 has type node, a non-empty label 𝑙, and
𝑃 = {𝑝1, 𝑝2, . . . 𝑝𝑗} where 𝑗 ≥ 0:
MATCH (n:𝑙) WHERE n.𝑝1 IS NOT NULL AND

n.𝑝2 IS NOT NULL . . . AND n.𝑝𝑗 IS NOT
NULL AND size(keys(n)) = 𝑗 RETURN

(n)

• if 𝑡 has type node, an empty label, and 𝑃 =
{𝑝1, 𝑝2, . . . 𝑝𝑗} where 𝑗 ≥ 0:
MATCH (n) WHERE size(labels (n)) = 0 AND

n.𝑝1 IS NOT NULL AND n.𝑝2 IS NOT
NULL . . . AND n.𝑝𝑗 IS NOT NULL AND
size(keys(n)) = 𝑗 RETURN (n)

• if 𝑡 has type edge, a non-empty label 𝑙, and
𝑃 = {𝑝1, 𝑝2, . . . 𝑝𝑗} where 𝑗 ≥ 0:
MATCH (n) -[r:𝑙]->(q) WHERE n.𝑝1 IS NOT

NULL AND n.𝑝2 IS NOT NULL . . . AND n.
𝑝𝑗 IS NOT NULL AND size(keys(r)) =
𝑗 RETURN (r)

PG comp. RF SP NG SPG star PGO
nodes 0 0 0 1 1 1
node labels 0 0 0 1 1 1
edges 4 3 1 q 3 1 3
edge label 1 1 1 q 1 1 1
node prop. 1 1 1 1 1 4
edge prop. 1 1 1 q 1 1* 4

Table 1
Minimum no. of triples per PG component

The 𝑠𝑖𝑧𝑒(𝑘𝑒𝑦𝑠()) condition ensures only a specific num-
ber of properties as PRSC operates. After constructing
𝑐𝑞, 𝑐𝑞 can be exported to a JSON 𝐽𝑆𝑂𝑁𝑐𝑞 with any
PG database system, where 𝐽𝑆𝑂𝑁𝑐𝑞 contains all the
necessary components to generate the corresponding
RDF-star graph. 𝐽𝑆𝑂𝑁𝑐𝑞 is then provided to RML
mappings as an input data source and combined with
the user-defined constant IRIs in prod to generate the
RDF-star graph intended by 𝑟.

3.6. Discussion
We compare the considered PG-to-RDF approaches in
terms of the no. of triples per PG component (Table 1).
We notice that PGO generates the most triples for
properties, while Oracle generates the most triples for
edges. RDF-star constructs RDF-star triples (*) when
mapping edge properties, while NG generates named
graphs (q) when mapping edges, edge labels, and edge
properties. PRSC is not mentioned in Table 1 as it
allows configuring the no. of triples.

We observe that all the approaches considered have
limitations. All the approaches limit every PG com-
ponent to certain RDF term types, e.g., all the ap-
proaches restrict the property values to be literal in the
generated RDF graph. Most approaches lack configu-
ration. Only the PRSC approach allows configuration
in the content and size of the generated RDF/RDF-
star graphs, but this does not include properties. The
RDF-star approach also allows configuration in the
generated RDF graph concerning the IRI patterns and
the RDF terms for certain PG components. None
of the approaches supports using more than one PG
component within a single IRI, e.g., it is not possible
to generate an RDF term containing an IRI with both
the node and its label from a PG, which means that
each PG component must be mapped to a single RDF
term. None of the approaches supports combining the
PG with other data sources for RDF construction if
the user is interested in joining data across different
data sources. None of the approaches supports having
triples in the object of an RDF-star triple.

3.7. RML as a Flexible Solution
Besides covering all the PG-to-RDF translations con-
sidered, RML overcomes all their limitations by pro-
viding full control over the RDF terms, the desired
output (RDF or RDF star), and the ability to combine
multiple components from the input data. We show-
case in Listing 4 RML-star mappings that generate a
custom RDF graph for portions of the PG in Fig. 1.
This RDF graph is impossible to generate with any of
the considered PG-to-RDF approaches and shows the

great mapping flexibility of RML. The full version of
the Listing is provided in the dedicated GitHub repo.

Listing 4: Highly Flexible RML Mappings
1TM1:
2s: ex:$(labels)/$(properties .name)
3po:
4- [ex:nodeID , $(id)]
5TM2:
6s: ex:$(start . properties .name)
7po:
8- [ex:$(label),
9$(end. properties .name)]
10TM3:
11s: ex: since
12po:
13- p: ex:$(properties . since)
14o:
15- quoted : TM2

Applying the RML mappings in Listing 4 on the PG
in Fig. 1 results in the following RDF-star graph:
<ex: Person / Roger %20 Federer > ex: nodeID “1”.
<ex: Sport /Tennis > ex: nodeID “2”.
<ex: Roger %20 Federer > ex: plays “Tennis”.
ex: since ex :1998 <<ex: Roger %20 Federer ex:

plays “Tennis”>>.

This RDF graph generated from Listing 4 shows that
RML can flexibly map PG components to RDF. TM1
generates the first and second triples, where the object
is the node, and the subject is an IRI combining the
property value and label. Such triples are not achiev-
able by any of the considered PG-to-RDF approaches,
as they force the property value to be an object literal.
They also restrict PG nodes to be IRIs or blank nodes
and do not allow mapping multiple PG components
as a single IRI. TM2 generates the third triple, which
is used as an object in TM3 to generate the fourth
RDF-star triple. None of the considered approaches
allows using triples in the object of an RDF-star triple.

4. Conclusions
In this work, we presented RML as a uniform and flex-
ible solution for mapping PGs to RDF. We studied the
most prominent PG-to-RDF translations and provided
templated RML mappings that show RML’s capabil-
ity in performing these translations. For future work,
we plan to conduct a thorough performance compar-
ison between the considered PG-to-RDF approaches
in generating RDF graphs with RML.

Acknowledgments

Hartig’s contributions to this work were funded by
Vetenskapsrådet (the Swedish Research Council, project
reg. no. 2019-05655). Dimou and Elhalawati’s contri-
butions to this research were partially supported by
Flanders Make, the strategic research centre for the
manufacturing industry, and the Flemish Government
under the “Onderzoeksprogramma Artificiële Intelli-
gentie (AI) Vlaanderen” program. Hernández’s contri-
butions to the work were funded by the German Re-
search Foundation, DFG (GA SFB-1574-471687386).

References
[1] Tian, Yuanyuan, The World of Graph Databases

from An Industry Perspective, SIGMOD Rec. 51
(2022). doi:10.1145/3582302.3582320.

[2] Robinson, Ian and Webber, Jim and Eifrem, Emil,
Graph Databases: New Opportunities for Con-
nected Data, 2nd ed., O’Reilly Media, Inc., 2015.

[3] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1
Concepts and Abstract Syntax, Recommendation,
World Wide Web Consortium (W3C), 2014. URL:
http://www.w3.org/TR/rdf11-concepts/.

[4] Angles, Renzo and Arenas, Marcelo and Barceló,
Pablo and Hogan, Aidan and Reutter, Juan and
Vrgoč, Domagoj, Foundations of Modern Query
Languages for Graph Databases, ACM Comput.
Surv. 50 (2017). doi:10.1145/3104031.

[5] Hartig, Olaf and Champin, Pierre-Antoine and
Kellogg, Gregg and Seaborne, Andy, RDF-
star and SPARQL-star, W3C Final Community
Group Report, 2021. URL: https://w3c.github.
io/rdf-star/cg-spec/2021-12-17.html.

[6] Khayatbashi, Shahrzad and Ferrada, Sebastián
and Hartig, Olaf, Converting property graphs to
RDF: a preliminary study of the practical impact
of different mappings, in: Proceedings of the 5th
ACM SIGMOD Joint International Workshop on
Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA),
ACM, 2022. doi:10.1145/3534540.3534695.

[7] R. Angles, H. Thakkar, D. Tomaszuk, Mapping
RDF Databases to Property Graph Databases,
IEEE Access 8 (2020). doi:10.1109/ACCESS.2020.
2993117.

[8] D. Tomaszuk, RDF Data in Property Graph
Model, in: Metadata and Semantics Research,
Springer International Publishing, 2016. doi:10.
1007/978-3-319-49157-8_9.

[9] G. Abuoda, D. Dell’Aglio, A. Keen, K. Hose,
Transforming rdf-star to property graphs: A pre-
liminary analysis of transformation approaches,
in: Proceedings of the QuWeDa 2022: 6th
Workshop on Storing, Querying and Benchmark-
ing Knowledge Graphs co-located with ISWC,
CEUR-WS.org, 2022. URL: https://ceur-ws.org/
Vol-3279/paper2.pdf.

[10] Das, Souripriya and Srinivasan, Jagannathan and
Perry, Matthew and Chong, Eugene Inseok and
Banerjee, Jayanta, A Tale of Two Graphs: Prop-
erty Graphs as RDF in Oracle., in: Proceedings
of the 17th International Conference on Extend-
ing Database Technology, EDBT, OpenProceed-
ings.org, 2014. doi:10.5441/002/edbt.2014.82.

[11] Nguyen, Vinh and Yip, Hong Yung and Thakkar,
Harsh and Li, Qingliang and Bolton, Evan
and Bodenreider, Olivier, Singleton Property
Graph: Adding A Semantic Web Abstraction
Layer to Graph Databases., in: Proceedings
of the Blockchain enabled Semantic Web Work-
shop (BlockSW) and Contextualized Knowledge
Graphs (CKG) Workshop co-located with ISWC,
CEUR-WS.org, 2019. URL: https://ceur-ws.org/
Vol-2599/CKG2019_paper_4.pdf.

[12] Tomaszuk, Dominik and Angles, Renzo and
Thakkar, Harsh, PGO: Describing Property

Graphs in RDF, IEEE Access 8 (2020). doi:10.
1109/ACCESS.2020.3002018.

[13] Hartig, Olaf, Foundations to Query Labeled
Property Graphs using SPARQL, in: Joint
Proceedings of the 1st International Workshop
On Semantics For Transport and the 1st Inter-
national Workshop on Approaches for Making
Data Interoperable co-located with SEMANTiCS,
CEUR-WS.org, 2019. URL: https://ceur-ws.org/
Vol-2447/paper3.pdf.

[14] Bruyat, Julian and Champin, Pierre-Antoine and
Médini, Lionel and Laforest, Frederique, PREC:
semantic translation of property graphs, in: 1st
workshop on Squaring the Circles on Graphs,
SEMANTiCS, 2021. URL: https://hal.science/
hal-03407785v1.

[15] Bruyat, Julian and Champin, Pierre-Antoine and
Médini, Lionel and Laforest, Frederique, PRSC:
From PG to RDF and back, using schemas, Se-
mantic Web (2024). doi:10.3233/SW-243675.

[16] NeoSemantics, Accessed: 2025-01-06. URL: https:
//github.com/neo4j-labs/neosemantics.

[17] D. Van Assche, T. Delva, G. Haesendonck, P. Hey-
vaert, B. De Meester, A. Dimou, Declarative
RDF graph generation from heterogeneous (semi-
)structured data: A systematic literature review,
Journal of Web Semantics (2023). doi:https:
//doi.org/10.1016/j.websem.2022.100753.

[18] A. Dimou, M. Vander Sande, P. Colpaert, R. Ver-
borgh, E. Mannens, R. Van de Walle, RML:
A Generic Language for Integrated RDF Map-
pings of Heterogeneous Data, in: Proceedings of
the 7th Workshop on Linked Data on the Web,
CEUR, 2014. URL: http://ceur-ws.org/Vol-1184/
ldow2014_paper_01.pdf.

[19] A. Iglesias-Molina, D. Van Assche, J. Arenas-
Guerrero, B. De Meester, C. Debruyne, S. Joza-
shoori, P. Maria, F. Michel, D. Chaves-
Fraga, A. Dimou, The RML Ontology: A
Community-Driven Modular Redesign After a
Decade of Experience in Mapping Heteroge-
neous Data to RDF, in: International Semantic
Web Conference, Springer, 2023. doi:10.1007/
978-3-031-47243-5_9.

[20] S. Das, S. Sundara, R. Cyganiak, R2RML: RDB
to RDF Mapping Language, Working Group Rec-
ommendation, 2012. URL: http://www.w3.org/
TR/r2rml/.

[21] T. Delva, J. Arenas-Guerrero, A. Iglesias-Molina,
O. Corcho, D. Chaves-Fraga, A. Dimou, RML-
star: A declarative mapping language for RDF-
star generation, 2021. URL: https://ceur-ws.org/
Vol-2980/paper374.pdf.

[22] APOC, Accessed: 2025-01-06. URL: https://
neo4j.com/docs/apoc/current/.

[23] YARRRML, Accessed: 2025-01-06. URL: https:
//rml.io/yarrrml/.

[24] Bruyat, Julian, From property graphs to knowl-
edge graphs, Theses, INSA Lyon, 2024. URL:
https://hal.science/tel-04772451.

[25] D. Beckett, T. Berners-Lee, E. Prud’hommeaux,
G. Carothers, RDF 1.1 Turtle – Terse RDF Triple
Language, Recommendation, World Wide Web
Consortium (W3C), 2014. URL: http://www.w3.
org/TR/turtle/.

http://dx.doi.org/10.1145/3582302.3582320
http://www.w3.org/TR/rdf11-concepts/
http://dx.doi.org/10.1145/3104031
https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
https://w3c.github.io/rdf-star/cg-spec/2021-12-17.html
http://dx.doi.org/10.1145/3534540.3534695
http://dx.doi.org/10.1109/ACCESS.2020.2993117
http://dx.doi.org/10.1109/ACCESS.2020.2993117
http://dx.doi.org/10.1007/978-3-319-49157-8_9
http://dx.doi.org/10.1007/978-3-319-49157-8_9
https://ceur-ws.org/Vol-3279/paper2.pdf
https://ceur-ws.org/Vol-3279/paper2.pdf
http://dx.doi.org/10.5441/002/edbt.2014.82
https://ceur-ws.org/Vol-2599/CKG2019_paper_4.pdf
https://ceur-ws.org/Vol-2599/CKG2019_paper_4.pdf
http://dx.doi.org/10.1109/ACCESS.2020.3002018
http://dx.doi.org/10.1109/ACCESS.2020.3002018
https://ceur-ws.org/Vol-2447/paper3.pdf
https://ceur-ws.org/Vol-2447/paper3.pdf
https://hal.science/hal-03407785v1
https://hal.science/hal-03407785v1
http://dx.doi.org/10.3233/SW-243675
https://github.com/neo4j-labs/neosemantics
https://github.com/neo4j-labs/neosemantics
http://dx.doi.org/https://doi.org/10.1016/j.websem.2022.100753
http://dx.doi.org/https://doi.org/10.1016/j.websem.2022.100753
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://dx.doi.org/10.1007/978-3-031-47243-5_9
http://dx.doi.org/10.1007/978-3-031-47243-5_9
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
https://ceur-ws.org/Vol-2980/paper374.pdf
https://ceur-ws.org/Vol-2980/paper374.pdf
https://neo4j.com/docs/apoc/current/
https://neo4j.com/docs/apoc/current/
https://rml.io/yarrrml/
https://rml.io/yarrrml/
https://hal.science/tel-04772451
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/

	1 Introduction
	2 Preliminaries
	3 RML Templates for PG-to-RDF
	3.1 The Oracle Approaches
	3.2 Singleton Property Graph Approach
	3.3 RDF-Star-Based Approach
	3.4 PGO Approach
	3.5 PRSC and PREC Approaches
	3.6 Discussion
	3.7 RML as a Flexible Solution

	4 Conclusions

