
Transforming Time Series into Graphs and Back with HyGraph

Mouna Ammar1,*, Shubhangi Agarwal2, Angela Bonifati3 and Erhard Rahm1

1Leipzig University and ScaDS.AI, Leipzig, Germany
2Lyon 1 University, LIRIS, Lyon, France
3Lyon 1 University, LIRIS and IUF, Lyon, France

Abstract

Existing graph data management systems still provide limited support for evolving and temporal data. In addition, time-series data often
reside outside graph engines, hindering unified analysis. HyGraph is a new hybrid approach to manage and analyze both temporal
graph and time series data in a unified manner. In particular, it supports rich transformations between graph and time-series data. We
discuss two novel operators on HyGraph to illustrate such transformations, a time-series-based graph operator and a graph-based
time-series operator. The first ingests time-series data and produces a new graph (or a subgraph) that captures relationships among time
series based on correlation values. The second operator, in contrast, generates a time series based on the evolution of temporal graph
metrics, such as aggregated edges or changes in node degree. The transformation operators allow the augmentation of derived values to
the hybrid structure for self-enrichment. We also outline open challenges of dynamic transformations within the hybrid model.

Keywords

hygraph, hybrid graph, property graph, temporal graph, time-series, multi-model

1. Introduction

Graphs are a powerful tool for modeling interconnected real-
world data, widely used in domains such as social networks,
knowledge graphs, and urban mobility. Many of these ap-
plications inherently involve temporal dynamics, where
graph elements evolve. For instance, sensor networks con-
tinuously generate time-series data [1, 2], and ride-sharing
platforms track vehicle metrics over time [3, 4]. Existing
graph database systems are often limited in their ability to
natively manage and analyze such evolving temporal data.
By contrast, the representation of time series data falls short
of preserving interaction between the entities. The time se-
ries databases (TSDBs) are designed to efficiently store and
analyze temporal data and are not optimized for capturing
complex graph structures. They primarily focus on sequen-
tial data retrieval and aggregation [5], lacking native support
for graph traversal, multi-hop, or relationship-based analyt-
ics. Further, high-dimensional time series data challenges
traditional mining techniques, motivating graph-based rep-
resentations as a powerful tool for analysis and visualization
[6]. As a result, time-series data in graph applications is of-
ten stored separately, either in side systems or as attributes
in graph databases, leading to inefficient data management.
HyGraph aims at addressing these limitations with a

unified model that seamlessly integrates property graphs
with time-series data. HyGraph directly represents time-
dependent attributes and supports new transformation op-
erators for evolving graph analytics. A broader discussion
of HyGraph’s vision and related work can be found in [7],
where we also outline the motivation behind the approach
and its high-level goals. In contrast, this paper provides a
detailed exploration of the HyGraph data model and trans-
formation operations, like extracting time series from graph

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain
*Corresponding author.
$ ammar@informatik.uni-leipzig.de (M. Ammar);
shubhangi.agarwal@liris.cnrs.fr (S. Agarwal);
angela.bonifati@univ-lyon1.fr (A. Bonifati);
rahm@informatik.uni-leipzig.de (E. Rahm)
� 0009-0005-8959-3643 (M. Ammar); 0009-0004-4405-4833
(S. Agarwal); 0000-0002-9582-869X (A. Bonifati); 0000-0002-2665-1114
(E. Rahm)

Copyright © 2025 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

elements and computing similarity-based transformations.
We start by formally introducing the HyGraph model in

Section 2, followed by its UML and system architecture in
Section 3. We present the two key transformation operators
in Section 4 and illustrate the applicability of our model
through a micro-mobility use case (Section 5). Broader im-
plications and future directions are discussed in Section 6.

2. HyGraph Data Model

Analyzing data that combines graph structures and time
series offers deeper insights than separate analyses. For
instance, in micro-mobility applications, tracking how usage
patterns evolve alongside spatial station layouts can predict
demand and uncover efficient vehicle distribution strategies.
Although there have been efforts to unify graph and time-
series data, they often rely on graph representations for both,
limiting the depth of time series analysis and relegating time
series to a secondary role, primarily representing property
evolution [8, 9]. Such approaches essentially extend the
property graph model rather than creating a truly unified
model. As a result, time-series capabilities are limited in
terms of analysis and querying, and there remains a dearth
of operators and algorithms that fully leverage both data
types in tandem. Although some domain-specific machine
learning models combine those data types [10, 11, 12, 13], a
general-purpose approach is lacking.

Through HyGraph we aim to provide a unified system
that handles the complexities of integrating graph and time
series data, offering flexible functionalities. The core of Hy-
Graph is a novel data model designed with equal emphasis
on graph and time series data, enabling the development of
hybrid operators, algorithms, and data mining techniques
specifically tailored for this combined data structure. This
model, detailed below, lays the foundation for a flexible
approach to analyzing graph and time series data in unison.

Let 𝒦 be the set of property keys, 𝒩 the set of property
values, ℒ the set of labels and 𝒯 the set of timestamps.

Definition 1. Temporal Property Graph (TPG). We refer-
ence the property graph model defined in [14] and extend
it by adding a validity period for each element. A TPG 𝒢
can be represented by a tuple as, 𝒢 = (𝑉𝑝𝑔, 𝐸𝑝𝑔, 𝜌, 𝜑, 𝜆, 𝜂),
where:

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ammar@informatik.uni-leipzig.de
mailto:shubhangi.agarwal@liris.cnrs.fr
mailto:angela.bonifati@univ-lyon1.fr
mailto:rahm@informatik.uni-leipzig.de
https://orcid.org/0009-0005-8959-3643
https://orcid.org/0009-0004-4405-4833
https://orcid.org/0000-0002-9582-869X
https://orcid.org/0000-0002-2665-1114
https://creativecommons.org/licenses/by/4.0/deed.en

• 𝑉𝑝𝑔 and 𝐸𝑝𝑔 : Sets of vertices and edges respectively.

• 𝜌: 𝐸𝑝𝑔 → 𝑉𝑝𝑔 × 𝑉𝑝𝑔 maps an edge to its source and
target vertices.

• 𝜑 : (𝑉𝑝𝑔∪𝐸𝑝𝑔)×𝒦 → 𝒩 is a property function mapping
each graph element and property key 𝑘 ∈ 𝒦 to a property
value in 𝒩 .

• 𝜆 : (𝑉𝑝𝑔∪𝐸𝑝𝑔) → ℒ associates each graph element with
a unique label from the set of labels ℒ.

• 𝜂 : (𝑉𝑝𝑔 ∪𝐸𝑝𝑔) → 𝒯 ×𝒯 retrieves the start and the end
timestamps between which the graph element is valid.
Let {𝑡start, 𝑡end} ∈ 𝒯 represent the two timestamps, then
𝑡start ≺ 𝑡end, where the symbol ≺ specifies ordering, (𝑡end

is initialized to 𝑚𝑎𝑥(𝒯)).

Definition 2. Time series. A time series 𝑡𝑠 (univari-
ate or multivariate) is an ordered set of tuples 𝑡𝑠 =
{(𝑡1, 𝑦1), (𝑡2, 𝑦2), . . . , (𝑡𝑛, 𝑦𝑛)|𝑛 ∈ N}, with timestamp
𝑡𝑖 ∈ 𝒯 , such that 𝑡𝑖 ≺ 𝑡𝑗 if 𝑖 < 𝑗, and 𝑦𝑖 represents a tuple
of real values 𝑦𝑖 = (𝑣𝑎𝑙𝑖1 , 𝑣𝑎𝑙𝑖2 , . . . , 𝑣𝑎𝑙𝑖𝑘).

Definition 3. Dynamic Subgraph. Let 𝑠 ∈ 𝑆 be a sub-
graph where 𝑆 represents a set of subgraphs. The function
𝜓 : 𝑆×𝒯 → 𝒫(𝑉𝑝𝑔)×𝒫(𝐸𝑝𝑔) maps a subgraph at a time
𝑡 ∈ 𝒯 to a set of constituent vertices and edges from 𝑉𝑝𝑔

and 𝐸𝑝𝑔 , respectively, while 𝒫(·) denotes the power set.

Further, two subgraphs may overlap at any point in time,
𝑡 ∈ 𝒯 . The overlap between two subgraphs {𝑠1, 𝑠2} ∈ 𝑆
can then be captured as the set of vertices and edges common
to both the subgraphs at 𝑡, i.e., 𝛼(𝑠1, 𝑠2, 𝑡) = {(𝜋v(𝑠1, 𝑡) ∩
𝜋v(𝑠2, 𝑡)), (𝜋e(𝑠1, 𝑡) ∩ 𝜋e(𝑠2, 𝑡))}. Here, 𝜋v : 𝑆 × 𝒯 →
𝒫(𝑉𝑝𝑔) and 𝜋e : 𝑆 × 𝒯 → 𝒫(𝐸𝑝𝑔) are projection func-
tions that retrieve the set of constituent vertices and edges,
respectively, for a subgraph at any given time.

We extend the property-graph model to incorporate time-
series data, such that any vertex, edge, or subgraph can hold
time-series properties. Formally, we expand the scope of
sets of property keys and values to include both static and
dynamic, thus embedding time series as a natural property.

Definition 4. Property. The property of a graph element is
represented by a key-value pair, where the key and value be-
long respectively to the set of keys 𝒦 and values 𝒩 , respec-
tively. The map function𝜑 : (𝑉𝑝𝑔∪𝐸𝑝𝑔∪𝑆)×𝒦 → 𝒩 maps
a vertex, edge or a subgraph and a property key to a prop-
erty value in 𝒩 , where 𝒩 = {𝒩Σ∪𝒩TS | 𝒩Σ∩𝒩TS = ∅}.
The set 𝒩Σ is the set of all possible static property values
and the set 𝒩TS contains the dynamic property values, i.e.,
time series. Dynamic properties are further classified into
two categories:

• Regular Properties. These store external data associated
with the object, representing attributes that evolve based
on external updates or observations.

• Meta-Properties. These store internal data derived from
the graph itself, such as the evolution of graph metrics
(e.g., node degree, centrality measures) or aggregated
properties over edges (e.g., traffic volume between nodes).
These meta-properties provide insights into the graph’s
internal structure and dynamic behavior.

Now that we have established the fundamental defini-
tions, we formally introduce the HyGraph model, detail-
ing its structural components and integration of property
graphs and time series data models.

Figure 1: Example HyGraph snapshot of bike-sharing data

Definition 5. HyGraph Model. The HyGraph model is
denoted by a tuple,

𝐻𝐺 = (𝑉,𝐸, 𝑆, 𝑇𝑆, 𝜌, 𝜑, 𝛿, 𝜓, 𝜆, 𝜂)

where, 𝑉 is the set of vertices, 𝐸 the set of edges, 𝑆 the set
of logical subgraphs and 𝑇𝑆 the set of time series.

• 𝑉 : A union set of property graph vertices (𝑉𝑝𝑔) and time
series vertices (𝑉𝑡𝑠), i.e., 𝑉 = 𝑉𝑝𝑔 ∪ 𝑉𝑡𝑠.

• 𝐸: Similar to 𝑉 , it is defined as a union set of property
graph and time series edges, i.e., 𝐸 = 𝐸𝑝𝑔 ∪ 𝐸𝑡𝑠.

• The function 𝛿 : (𝑉𝑡𝑠 ∪ 𝐸𝑡𝑠) → 𝑇𝑆, maps a time-series
vertex and edge to a multi-variate time series in 𝑇𝑆.

All the mapping functions are adapted to include both prop-
erty graph and time series graph objects.

• 𝜌 : 𝐸 → 𝑉 ×𝑉 maps edges to source and target vertices.

• 𝜑 : (𝑉 ∪𝐸∪𝑆)×𝒦 → 𝒩 . The map function is modified
to include a subgraph, which is treated as a logical graph
object and can have associated properties.

• The subgraph mapping function is adapted to allow a sub-
graph to have edges and vertices of both types, property
graph, and time series, as, 𝜓 : 𝑆 × 𝑇 → 𝒫(𝑉)× 𝒫(𝐸).

• The label function 𝜆 : (𝑉 ∪ 𝐸 ∪ 𝑆) → 𝒫(ℒ) associates
an entity with labels from the set of labels ℒ.

• Finally, the function 𝜂 : (𝑉 ∪𝐸 ∪𝑆) → 𝒯 ×𝒯 retrieves
the start and the end timestamps between which a graph
element is valid.

This new extension ensures that time series are treated as
structured entities that can be queried, connected to other
time series, and analyzed within a TPG framework.

Figure 1 shows an example HyGraph created from a snap-
shot of a bike-sharing system (NYC "CitiBike" [15]). In this
representation, stations are modeled as property graph ver-
tices (𝑉𝑝𝑔), while trips between stations are represented as
property graph edges (𝐸𝑝𝑔). The edges, shown in green
in Figure 1, encode the trips connecting two station nodes.
The AvailBikeSim edge set is derived to represent the sim-
ilarity in bike availability patterns between station nodes.
An AvailBikeSim edge is generated when the computed time

series similarity between the corresponding dynamic proper-
ties (𝑛𝑢𝑚_𝑏𝑖𝑘𝑒𝑠_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 and 𝑛𝑢𝑚_𝑒𝑏𝑖𝑘𝑒𝑠_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒)
of two stations meets or exceeds a predefined threshold.
The stored values represents the evolution of the similarity
score (e.g., 0.67, 0.79), computed using a time series simi-
larity method [16] (e.g., Pearson correlation). The edges of
this edge set are modeled as time series edges (𝐸𝑡𝑠) and are
depicted in blue color in Figure 1. Each Station node has:

1. An id, e.g., 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐴;

2. A validity interval, e.g., 𝜂(𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐴) = ⟨2000,∞⟩;

3. Static properties, e.g., 𝜑(𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐴, 𝑛𝑎𝑚𝑒) = Christ Hos-
pital, 𝜑(𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐴, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) = 2 and;

4. Dynamic properties (time-series), the time series proper-
ties are represented as an object with a list of times-
tamps and associated data values for the variable at
each timestamp. For instance, for 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐴 the dy-
namic attribute 𝑛𝑢𝑚_𝑏𝑖𝑘𝑒𝑠_𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 has a variable
𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠 = [“21 : 00”, “22 : 00”] which stores a
list of timestamps, and the associated 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 name
𝑏𝑖𝑘𝑒_𝑎𝑣𝑎𝑖𝑙 holds 𝑑𝑎𝑡𝑎 = [[1], [2]]. Note that this is a
regular dynamic property as its value change due to
external factors, like a trip being undertaken.

Each edge in Trips consists of:

1. A label, e.g., 2 ;

2. A validity interval, e.g., 𝜂(2) = ⟨2001, 2025⟩;

3. Dynamic properties (regular), e.g., 𝑚𝑒𝑚𝑏𝑒𝑟_𝑟𝑖𝑑𝑒𝑠,
𝑐𝑎𝑠𝑢𝑎𝑙_𝑟𝑖𝑑𝑒𝑠, etc.

Each time series edge AvailBikeSim consists of:

1. A label, e.g., 8 ;

2. A validity interval, e.g., 𝜂(8) = ⟨2010, 2025⟩;

3. Dynamic attribute represented as an object with a list of
timestamps and associated data values for the variable
at each timestamp. For instance, edge 8 represents
similarity score evolution between StationB and StationC
through a list of timestamps [“2010”, “2011”], and the
associated 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 name is 𝑏𝑖𝑘𝑒_𝑎𝑣_𝑠𝑖𝑚, which holds
data [[0.67], [0.70]].

Figure 1 also shows two non-overlapping subgraphs, Sub-
graph #1 and Subgraph #2, depicting partial views of the net-
work at time 𝑡1. Subgraph #1 includes StationA and StationE,
and connecting edges, and Subgraph #2 features 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐵,
𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶 and 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐷, and connecting edges.

Since the subgraphs can evolve with time and are dy-
namic, Figure 1 only depicts a snapshot at 𝑡1. The logical
subgraphs aggregate vertices that share the same Avail-
BikeSim patterns. For instance, StationB will continue to be
a part of Subgraph #2 till it has a high similarity score, but
as soon as the score decreases it can be placed out or moved
to another subgraph.

3. HyGraph Architecture

We aim to seamlessly integrate time series and graph compo-
nents in a single system that allows combined querying and
transformations over these components. At the moment,
theHyGraph system is being developed as a Python package

Timeser ies

+ oid

+ timestamps

+ data

+ metadata

+variables

aggregate_timeseries()

sum(), mean(), min(),
max(), count()

get_value_at_timestamp()

get_timestamp_at_value()

last_value(), first_value()

subset_timeseries()

compute_similarity()

HyGraphQuerying

+hygraph

+ node_matches

+ edge_matches

+ pattern

+ conditions

+ return_elements

+ groupings

+ aggregations

+ ordering

+ limit_count

+ subquery_results

TSNode

+ series

get_type()

PGNode

get_type()

MetadataTimeser ies

+ ownerID

+ attributes

update_metadata()

StaticProper ty

+ key

+ value

get_value()

set_value()

DynamicProper ty

+ key

+ series

get_time_series()

set_value()

apply_aggregation()

get_timestamp()

get_first_value()

get_last_value

0..*

0..*

TSEdge

+ series

get_type()

PGEdge

get_type()

Subgraph

+ start_time

+ end_time

get_type()

apply_filter()

Node

+ membership

+ start_time

+ end_time

get_membership()

get_neighbors()

Edge

+ membership

+ source

+ target

+ start_time

+ end_time

get_membership()

HyGraph

+ graph

+ time_series

+ subgraphs

+ query

add/get/delete_tsnode/tsedge

add/get/delete_subgraph

add/get/delete_timeseries

get_node/edge_by_static_property

get_node/edge_by_dynamic_property

get_subgraph_by_temporal_property

find_path()

get_node_degree_over_time()

add/get/delete_pgnode/pgedge

0..*
0..*

0..*
0..*

0..*

0..*

1..*

0..1

0..*

GraphElement

+ oid

+ label

+ static_properties

+ dynamic_properties

update_graph_element()

get/add_property_type()

get/add_static_property()

get/add_dynamic_property()

1..*

1

Figure 2: HyGraph UML conceptual diagram

with everything handled in memory, using NetworkX [17]
and Xarray [18] for graph and time series in-memory stor-
age. While scalability to larger storage engines is desirable,
the current focus is on proof-of-concept, emphasizing a
uniform data storage and querying model. We discuss the
conceptual architecture of the HyGraph model through
a UML diagram, followed by its system architecture with
some core functionalities.

3.1. UML Architecture

In Figure 2, a UML diagram describes the HyGraph system
representation in a conceptual aspect. It illustrates the main
classes and their relationships. We capture HyGraph as
a set of interrelated classes reflecting property-graph and
time-series functionalities. At the root, an abstract class
GraphElement defines fundamental attributes (such as id,
and label). Three main classes inherit from GraphElement:
Node, Edge, and Subgraph. Each of the classes plays core
structural roles. Within this architecture, the classNode is in-
herited by classes PGNode (representing standard property-
graph nodes) and TSNode (representing time-series nodes),
while the class Edge is similarly inherited by classes PGEdge
and TSEdge.

The Timeseries class defines a multivariate time series by
maintaining five attributes, id, data to capture the value of
multi-variate time series at different points in time, variables
holds information about each dimension of the multivariate
time series, timestamps to hold an ordered list of timestamps
for all recorded entries in data and the fifth attribute is the
metadata. The metadata attribute, which is an instance of a
separate class MetadataTimeseries, is optional and facilitates
additional descriptive attributes.

A top-level HyGraph class aggregates all these compo-
nents, ensuring that property-graph elements (PGNode,

PGEdge) and time-series elements (TSNode, TSEdge) coexist
in one coherent framework. Node and Edge and Subgraph
have two attributes start_time and end_time as timestamps,
to represent their time validity. TSNode and TSEdge classes
hold in addition an instance of the Timeseries class as at-
tributes to store the time series. The classes StaticProp-
erty and DynamicProperty represent the two types of prop-
erties. Specifically, an object of class GraphElement can
hold none or multiple property instances. The variables
static_properties and dynamic_properties in class GraphEle-
ment, respectively represent instances of classes StaticProp-
erty and DynamicProperty in Figure 2. The class StaticProp-
erty captures properties with static values (represented by
𝒩Σ). It simply stores the key and its corresponding value
as attributes. While the class DynamicProperty corresponds
to a property whose values evolve (represented by 𝒩TS).
Thus, in addition to the key, it references an ID of the re-
lated time series instance. The GraphElement class manages
these properties, exposing the logic to read, insert, delete,
or modify them.

The dynamic nature of subgraphs is captured via the at-
tribute membership in Node and Edge, implemented as an
instance of the Timeseries class. Concretely, an object of
either class can accumulate multiple membership updates
over time - one per subgraph change.As a result, every in-
clusion or exclusion is appended to membership, effectively
reflecting how the subgraph’s composition evolves. By tying
membership changes to a time-series structure, we maintain
a complete history of when a node or edge was valid in each
subgraph. This allows subgraphs to evolve as entities join,
leave, and transform with updates to the HyGraph object.

The HyGraphQuerying class provides a hybrid pattern-
matching mechanism, allowing users to define queries
that simultaneously reference graph and time-series pat-
terns. The class supports key concepts like node- or edge-
based matching, groupings, and aggregations, reminiscent
of Cypher-style clauses.

3.2. System Architecture and Functionalities

Figure 3 shows a high-level architecture of the HyGraph
system, illustrating interactions between different layers. It
stores and processes both graph and time-series elements
in memory.

We leverage two specialized processors: NetworkX as
the graph processor, for structural operations (e.g., shortest
paths, subgraph extraction, etc.) and; Xarray as the time-
series processor, suitable for multivariate data storage and
computations. We extend the pre-defined object models pro-
vided by these libraries to implement our custom-defined
classes (described in Section 3.1). An object-mapping strat-
egy then bridges these customized classes with the under-
lying library objects, enabling both data persistence and
data retrieval. High-level algorithms such as hybrid pat-
tern matching or graph similarity, are developed on top of
this system, to enable analyses of the hybrid data. In the
implementation of the HyGraph system, we adopt a mod-
ular architecture with six principal modules, orchestrated
by the main HyGraph module. The GraphOperator module
handles all graph-centric logic, in addition to integrating
graph and time series operations, ensuring that HyGraph
supports standalone property graph or time series features.
This module implements the classes GraphElement, Node,
Edge, Subgraph, StaticProperty, and DynamicProperty. In par-
allel, the TimeseriesOperator module manages time series

Figure 3: HyGraph System Architecture

functionalities, implementing classes like Timeseries and
MetadataTimeseries for storing and manipulating temporal
data. To facilitate the import and export of data, the sys-
tem is equipped with the HyGraphFileLoader module, which
aids in streamlining ETL (Extract–Transform–Load) tasks.
In our system, we also define a module GraphConstruct.
This module facilitates (re-)construction of a graph purely
from a correlation between time series. This enables trans-
formations that spawn graph structures based on temporal
similarity. The module HyGraphQuery is defined to combine
all types of querying within HyGraph. At the moment it
already includes the HybridPatternMatching class, and will
also include as a future work other classes like Subgraph-
Matching to enable searching for patterns corresponding
to a whole subgraph. All these modules interoperate un-
der the central HyGraph module, which coordinates their
interactions and maintains the global system state.

The HyGraph system’s functions are intuitively grouped
into three principal interfaces, as shown in Table 1. The
interface ModelToHyGraph gathers data from an external
model (graph-only or time-series–only) and ingests it into
HyGraph. Here, GraphOperator handles graph injection,
adding nodes, edges, and their properties. In parallel, Time-
seriesOperator manages time-series injection, creating or
updating dynamic properties and elements. This interface
also includes the Graph similarity generation function as
part of GraphConstruct module, which will be explained
later in Section 4.2. Note that Model refers to graph or
time-series data models.GraphConstruct can also generate
another The second interface, HyGraphToHyGraph, com-
prises the core operations and algorithms that transform
one HyGraph into another, such as hybrid pattern match-
ing, dynamic subgraph creation, and HyGraph clustering.
HyGraph instance from the existing one. Finally, the third in-
terface, HyGraphToModel focuses on extracting or exporting
data back into an external format or distinct model. Graph-
Operator can provide standalone graph operators such as get
the neighbors, and shortest path, while TimeseriesOperator
handles isolated time-series operations such as correlation
and feature extraction.

4. HyGraph Transformation

Operators

Data transformations may convert one representation into
another or produce a new instance in the same representa-
tion (augmented, summarized, or updated). These transfor-
mations can be static (one-off) or dynamic (continuously
adapting as data changes). Within HyGraph, we distinguish
two primary types of transformations. The first transfor-
mation type is from time series to graph. It involves ana-
lyzing correlations and other temporal relationships among

Table 1

HyGraph modules and associated functionalities provided for different interfaces

Modules

Interfaces

ModelToHyGraph HyGraphToHyGraph HyGraphToModel

GraphOperator Graph injection Subgraph creation, Clustering Standalone graph operators

TimeseriesOperator Time series injection – Standalone Time series operators

HyGraphQuery – Hybrid pattern matching Data extraction and retrieval

GraphConstruct Graph similarity generation Graph similarity generation -

time series to generate new graph entities (nodes, edges,
or subgraphs) that reflect these relationships. The second
transformation type transforms a graph into a time series.
By examining evolving graph metrics (like node in-degree
or edge traffic), construction of new time series that capture
these structural changes over time. Moreover, HyGraph
supports the continuous execution of these transformations.
If the graph is updated, the transformed time series can be
updated simultaneously, and vice versa.

In the following subsections, we illustrate two transfor-
mations: (i) a time-series–based similarity graph operator
(Section 4.1), and (ii) an extraction operator to extract time
series from evolving graph metrics (Section 4.2). These
examples demonstrate the support for flexible and bidirec-
tional transformations that unify structural and temporal
data in a coherent ecosystem of HyGraph.

4.1. Time series based Graph Similarity

Several existing methods already construct graphs from
time-series data for tasks like clustering or anomaly de-
tection [19, 20, 21, 22]. They typically compute pairwise
similarities or distances among time series and generate a
static graph whose edges represent these similarities. In
contrast, HyGraph provides a similar time series similarity-
to-graph mechanism and also integrates the newly created
HyGraph within the unified hybrid system. This implies
that the resulting HyGraph can also maintain static and
dynamic properties on edges, and be used for further pro-
cessing by hybrid operators, like pattern matching.

We define our time series-based graph similarity opera-
tor formally as a function𝐺𝑟𝑎𝑝ℎ𝑆𝑖𝑚(𝑇𝑆,𝑚𝑒𝑡ℎ𝑜𝑑𝑠, 𝜃) →
𝐻 ′ where 𝑇𝑆 is a set of time series, 𝑚𝑒𝑡ℎ𝑜𝑑𝑠 is a set of
similarity strategies (correlation, shape similarity, etc.) and
𝜃 ∈ [0, 1] is a similarity threshold. The output 𝐻 ′ is a
new HyGraph instance generated by analyzing time series
nodes. Specifically, let {𝑣1, 𝑣𝑛} ⊆ 𝑉ts represent time se-
ries nodes, then for each edge, represented as a vertex pair
(𝑣𝑖, 𝑣𝑗), we compute the similarity score of their time series
as 𝑆𝑖𝑚𝑡𝑠(𝑣𝑖, 𝑣𝑗). If 𝑆𝑖𝑚𝑡𝑠(𝑣𝑖, 𝑣𝑗) ≥ 𝜃, an edge is created.
The similarity score is stored as the static or dynamic edge
property. If the user only requests a single, fixed value, a
PGEdge is created with a static property. However, if the
evolution of similarity over time is of interest, it is more
strategic to store it as a time series in an instance of TSEdge.

The objective of the operator is to either create a HyGraph
from scratch when only time-series data is provided, or to
further analyze time series in the existing HyGraph instance
by applying graph operators to time series. In HyGraph ter-
minology, this is a ModelToHyGraph transformation, where
one or more time series (either ingested from an external
source or extracted from the current HyGraph) are analyzed
to produce a HyGraph reflecting their interrelationships.

4.2. From Graph Topology to Time series

Prior approaches have examined how graph metrics evolve,
by either implementing algorithms that always catch new
changes in the graph structure and update the results of the
graph operator [23] or by creating time series to analyze
patterns [24, 25]. However, most solutions stop after gener-
ating standalone time series data and do not further link it
with the graph. In HyGraph, we can generate time series
by analyzing the evolution of graph topology and option-
ally, embed them back into the HyGraph, either as dynamic
property of existing graph elements or as dedicated element
(as instances of TSNode or TSEdge). This allows transforma-
tion of the HyGraph through augmentation of the derived
data and enables further transformation operations. We
define the extraction operator as:

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑇𝑆(𝐻,ℱ ,𝑚𝑒𝑡𝑟𝑖𝑐, 𝜏, 𝑓𝑟𝑒𝑞) → {𝑡𝑠1, ..., 𝑡𝑠𝑚}∪𝐻 ′

where,
• 𝐻 is a HyGraph instance,

• ℱ is a filter (or set of filters) that specifies which ver-
tices/edges or subgraphs to evaluate (e.g., node filter based
on labels),

• 𝑚𝑒𝑡𝑟𝑖𝑐 specifies the graph property over which the time
series is to be generated, e.g., degree centrality, clustering
coefficient, etc.

• 𝜏 = [𝑡start, 𝑡end) specifies a time range, {𝑡start, 𝑡end} ∈ 𝒯 ,

• 𝑓𝑟𝑒𝑞 indicates sampling frequency (e.g., daily, weekly).

We enumerate discrete time steps at 𝑓𝑟𝑒𝑞 in the time range
𝜏 , as {𝑡1, 𝑡2, . . .}. At each time step 𝑡𝑖, we take a snap-
shot of the HyGraph instance. The value for 𝑚𝑒𝑡𝑟𝑖𝑐 is then
computed for each snapshot and assembled into a time se-
ries. The time series thus generated reflects the evolution of
𝑚𝑒𝑡𝑟𝑖𝑐 across the selected nodes/edges over discrete time
intervals. The time series can be processed for further anal-
ysis, or injected back into the HyGraph instance as dynamic
properties of the graph elements, to produce an updated
instance, or can simply be returned as a set of time series.

5. Use case: Micro-mobility

Micro-mobility has emerged as a cornerstone of sustain-
able urban transportation. Yet, one of its persistent opera-
tional hurdles is rebalancing, ensuring that vehicles such
as bicycles or e-bikes are appropriately distributed across
docking stations to meet fluctuating demand. Studies fo-
cusing on bike-sharing systems emphasize that neglected
rebalancing can lead to chronic station shortages or over-
flows, hindering overall service reliability and increasing
user dissatisfaction [26, 27, 28].

To address the rebalancing challenge, we propose a multi-
step pipeline that leverages HyGraph’s transformation oper-
ators, GraphSim and ExtractTS (described in Section 4). Our
core objective is to determine, for each station, which other
station(s) serve as ideal rebalancing partners, i.e., whenever
one station experiences a surplus, the other experiences a
deficit, while simultaneously accounting for neighbor con-
nectivity and distance. We base our analysis on the dataset
provided by [15]. It unifies graph and time-series data by
representing a bike station as a vertex with a static property
representing the parking capacity of the station and dy-
namic properties like the number of available bikes; while
each edge represents trips between two stations, a time-
series property tracking daily active trips, member rides vs.
casual rides, and total trips.

Using the ExtractTS operator, we first extract two dy-
namic properties for each station node:

1. For a station 𝑣 at time 𝑡, the imbalance is defined as
the difference between the number of trips that end at
station 𝑣 (i.e. bikes arriving) until time 𝑡, and the number
of rides starting from station 𝑣 (i.e. bikes departing) until
time 𝑡. The imbalance value is for a station is captured
at different timestamps and is stored as a time series
property, 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑡𝑠.

2. For a station 𝑣, we also compute its connectivity score
to quantify how strongly it is connected to its neighbors.
The connectivity score for 𝑣 is defined as the ratio of
weighted sum of edges and the degree of 𝑣 at any time 𝑡.
Similar to imbalance of a station, the connectivity score
is also stored as a dynamic property, 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑠,
of the vertex.

In the next step, a similarity graph is constructed us-
ing the module GraphConstruct, where nodes represent
stations and edges represent the similarity of their time
series property 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑡𝑠. To capture the complemen-
tary behavior of two stations, i.e., pairing a surplus station
with a deficit station, we compute a negative correlation be-
tween 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑣, 𝑡) for station 𝑣 and 𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝑢, 𝑡)
for station 𝑢. The function will augment the HyGraph in-
stance with new TSNode objects, created to represent the
𝑖𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒_𝑡𝑠 of each station and new PGEdge objects rep-
resenting the similarity between the newly created TSNode
objects. The negative correlation between the imbalance
time series of two stations 𝑢 and 𝑣, 𝑛𝑒𝑔imb(𝑢, 𝑣) quantifies
how complementary the two stations are.

After building the similarity graph, for every edge con-
necting stations 𝑢 and 𝑣, we compute a composite score
that will represent the weight of the edge. This weight is a
combination of the following: a similarity score based on a
distance decay function [29], the distance between the two
stations, the negative correlation score 𝑛𝑒𝑔imb(𝑢, 𝑣) and the
average value of 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑡𝑠 between the two stations.
This composite score reflects both the temporal complemen-
tarity of imbalance and the practical factors of connectivity
and distance. Once the similarity graph is fully augmented,
we apply a maximum weighted matching algorithm [30] to
select a set of non-overlapping edges and return the set of
station pairs (𝑢, 𝑣) that maximize the total composite score.

For each matched pair, the average imbalance difference
is computed to suggest the direction and the number of
bikes that should be transferred from one station to another.

6. Future Research

HyGraph represents an initial step toward integrating prop-
erty graphs with time-series, addressing key challenges in
maintaining and querying dynamic data. By unifying these
two paradigms, HyGraph enables seamless temporal graph
transformations, but its implementation also presents sev-
eral complexities.

However, one major challenge lies in efficiently updat-
ing and querying time-series data associated with graph
nodes and edges. Indexing strategies in traditional graph
databases are not inherently designed to accommodate time-
series data efficiently, leading to potential scalability bottle-
necks. A new system that integrates indexing techniques
tailored for both graph structures and time-series storage,
would ensure efficient querying and seamless data evolution.
Maintaining indexing structures that accommodate both
topological changes in the graph and temporal variations
in time-series data requires novel optimization techniques.

Additionally, the lack of a standardized query language
for seamlessly integrating time-series operations with graph
traversal necessitates the design of new operators and query
execution strategies. Existing graph query languages do not
natively support analytic operations commonly found in
time-series databases, such as temporal aggregations, win-
dowed computations, and similarity searches based on se-
quence patterns or shape-based matching. Future research
could explore the development of a unified query language
that incorporates time-aware traversal semantics and trans-
formation operators to enable efficient interaction between
graph topology and temporal dynamics.

The fast-evolving nature of time-series data necessitates
low-latency updates and retrieval, making it essential to
scale HyGraph for real-time applications. Addressing this
challenge requires investigating efficient data streaming
architectures, like designing caching mechanisms for fre-
quently queried data and hybrid storage layouts optimized
for high-throughput ingestion and query concurrency.

7. Conclusion

This paper introduced the UML and sytem architecture of
HyGraph [7], illustrating a unified approach for integrat-
ing property graphs and time-series data. We introduced
two novel transformation operators: (i) a time-series-based
graph operator, which derives graphs based on correlations
among time series, and (ii) a graph-based time-series opera-
tor, which extracts time-series representations from evolv-
ing graph metrics.

Our micro-mobility case study further demonstrated the
practical applicability of HyGraph and the transformation
operators for augmented analysis in real-world settings. By
establishing a foundation for hybrid graph-time-series an-
alytics, HyGraph paves the way for plethora of research
opportunities in graph data management, temporal reason-
ing, and dynamic query processing.

Despite its advantages, several challenges remain and
future research should explore scalable indexing and query
optimization techniques for hybrid queries.

References

[1] S. Bhandari, N. Bergmann, R. Jurdak, B. Kusy, Time
series data analysis of wireless sensor network mea-

surements of temperature, Sensors 17 (2017) 1221.
[2] R. Krishnamurthi, A. Kumar, D. Gopinathan, A. Nay-

yar, B. Qureshi, An overview of iot sensor data pro-
cessing, fusion, and analysis techniques, Sensors 20
(2020) 6076.

[3] H. Zhang, J. Chen, W. Li, X. Song, R. Shibasaki, Mobile
phone gps data in urban ride-sharing: An assessment
method for emission reduction potential, Applied
Energy 269 (2020) 115038.

[4] L. Belkessa, M. Ameli, M. Ramezani, M. Zargayouna,
Multi-channel spatio-temporal graph convolutional
networks for accurate micromobility demand predic-
tion integrating public transport data, in: Proceedings
of the 2nd ACM SIGSPATIAL Workshop on Sustain-
able Urban Mobility, 2024, pp. 5–13.

[5] A. Bader, O. Kopp, M. Falkenthal, Survey and com-
parison of open source time series databases, in:
Datenbanksysteme für Business, Technologie und Web
(BTW 2017) - Workshopband, Gesellschaft für Infor-
matik e.V., Bonn, 2017, pp. 249–268.

[6] K. Mishra, S. Basu, U. Maulik, Graft: A graph based
time series data mining framework, Eng. Appl. Artif.
Intell. 110 (2022).

[7] M. Ammar, C. Rost, R. Tommasini, S. Agarwal, A. Boni-
fati, P. Selmer, E. Kharmlamov, E. Rahm, Towards hy-
brid graphs: Unifying property graphs and time series,
28th International Conference on Extending Database
Technology (2025).

[8] E. Bollen, R. Hendrix, B. Kuijpers, Managing data of
sensor-equipped transportation networks using graph
databases, Geoscientific Instrumentation, Methods
and Data Systems Discussions 2024 (2024) 1–30. URL:
https://gi.copernicus.org/preprints/gi-2024-3/. doi:10.
5194/gi-2024-3.

[9] B. Steer, F. Cuadrado, R. Clegg, Raphtory: Stream-
ing analysis of distributed temporal graphs, Future
Generation Computer Systems 102 (2020) 453–464.

[10] J. Chen, X. Wang, X. Xu, Gc-lstm: Graph convolution
embedded lstm for dynamic network link prediction,
Applied Intelligence (2022) 1–16.

[11] S. Bloemheuvel, J. van den Hoogen, D. Jozinović,
A. Michelini, M. Atzmueller, Graph neural networks
for multivariate time series regression with applica-
tion to seismic data, International Journal of Data
Science and Analytics 16 (2023) 317–332.

[12] S. Gocheva-Ilieva, H. Kulina, A. Yordanova, Stacking
machine learning models using factor analysis to pre-
dict the output laser power, in: 2022 International Con-
ference on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME), IEEE, 2022.

[13] Z. Wang, H. Ren, R. Lu, L. Huang, Stacking based
lightgbm-catboost-randomforest algorithm and its ap-
plication in big data modeling, in: 2022 4th Inter-
national Conference on Data-driven Optimization of
Complex Systems (DOCS), IEEE, 2022, pp. 1–6.

[14] R. Angles, The property graph database model, in:
D. Olteanu, B. Poblete (Eds.), Proceedings of the 12th
Alberto Mendelzon International Workshop on Foun-
dations of Data Management, Cali, Colombia, May
21-25, 2018, volume 2100 of CEUR Workshop Proceed-
ings, CEUR-WS.org, 2018.

[15] Lyft Bikes & Scooters, C. Urbainsky, New york city
bike sharing network: Time-series enhanced nodes
and edges dataset, 2024. URL: https://doi.org/10.5281/
zenodo.13846868. doi:10.5281/zenodo.13846868,

accessed: 2024-09-27.
[16] A. Kianimajd, M. G. Ruano, P. Carvalho, J. Henriques,

T. Rocha, S. Paredes, A. E. Ruano, Comparison of
different methods of measuring similarity in physio-
logic time series, IFAC-PapersOnLine 50 (2017) 11005–
11010.

[17] NetworkX, Networkx: Network analysis in python,
2024. URL: https://networkx.org/.

[18] Xarray, Xarray: Dealing with multidimensional ar-
rays in python, 2024. URL: https://docs.xarray.dev/en/
stable.

[19] D. Tiano, A. Bonifati, R. Ng, Featts: Feature-based
time series clustering, in: G. Li, Z. Li, S. Idreos, D. Sri-
vastava (Eds.), SIGMOD ’21: International Conference
on Management of Data, Virtual Event, China, June
20-25, 2021, ACM, 2021, pp. 2784–2788.

[20] P. Li, S. F. Boubrahimi, S. M. Hamdi, Graph-based
clustering for time series data, in: 2021 IEEE Interna-
tional Conference on Big Data (Big Data), IEEE, 2021,
pp. 4464–4467.

[21] L. N. Ferreira, L. Zhao, Time series clustering via com-
munity detection in networks, Information Sciences
326 (2016) 227–242.

[22] K. F. Eteffa, S. Ansong, C. Li, M. Sheng, Y. Zhang,
C. Xing, An experimental study of time series based
patient similarity with graphs, in: Web Information
Systems and Applications: 17th International Con-
ference, WISA 2020, Guangzhou, China, September
23–25, 2020, Proceedings 17, Springer, 2020.

[23] D. Eppstein, Z. Galil, G. F. Italiano, Dynamic graph
algorithms, Algorithms and theory of computation
handbook 1 (1999) 9–1.

[24] C. Aggarwal, K. Subbian, Evolutionary network anal-
ysis: A survey, ACM Computing Surveys (CSUR) 47
(2014) 1–36.

[25] C. Rost, K. Gomez, P. Christen, E. Rahm, Evolu-
tion of degree metrics in large temporal graphs, in:
Datenbanksysteme für Business, Technologie und Web
(BTW 2023), volume P-331 of LNI, Gesellschaft für In-
formatik e.V., 2023, pp. 485–507. URL: https://doi.org/
10.18420/BTW2023-23. doi:10.18420/BTW2023-23.

[26] K. Wang, X. Yan, Z. Zhu, X. M. Chen, Understanding
bike-sharing usage patterns of members and casual
users: A case study in new york city, Travel Behaviour
and Society 36 (2024) 100793.

[27] Y.-T. Hsu, L. Kang, Y.-H. Wu, User behavior of bikeshar-
ing systems under demand–supply imbalance, Trans-
portation Research Record 2587 (2016) 117–124.

[28] F. Chiariotti, C. Pielli, A. Zanella, M. Zorzi, A dynamic
approach to rebalancing bike-sharing systems, Sensors
18 (2018) 512.

[29] M. Halas, P. Klapka, Spatial influence of regional cen-
tres of slovakia: analysis based on the distance-decay
function, Rendiconti Lincei 26 (2015) 169–185.

[30] B. Wu, L. Li, Solving maximum weighted matching
on large graphs with deep reinforcement learning, In-
formation Sciences 614 (2022) 400–415.

https://gi.copernicus.org/preprints/gi-2024-3/
http://dx.doi.org/10.5194/gi-2024-3
http://dx.doi.org/10.5194/gi-2024-3
https://doi.org/10.5281/zenodo.13846868
https://doi.org/10.5281/zenodo.13846868
http://dx.doi.org/10.5281/zenodo.13846868
https://networkx.org/
https://docs.xarray.dev/en/stable
https://docs.xarray.dev/en/stable
https://doi.org/10.18420/BTW2023-23
https://doi.org/10.18420/BTW2023-23
http://dx.doi.org/10.18420/BTW2023-23

	1 Introduction
	2 HyGraph Data Model
	3 HyGraph Architecture
	3.1 UML Architecture
	3.2 System Architecture and Functionalities

	4 HyGraph Transformation Operators
	4.1 Time series based Graph Similarity
	4.2 From Graph Topology to Time series

	5 Use case: Micro-mobility
	6 Future Research
	7 Conclusion

