
Logica-TGD: Transforming Graph Databases Logically
Evgeny Skvortsov1, Yilin Xia2, Bertram Ludäscher2 and Shawn Bowers3

1Google LLC, WA, USA
2University of Illinois Urbana-Champaign, School of Information Sciences, IL, USA
3Gonzaga University, Department of Computer Science, Spokane, WA, USA

Abstract
Graph transformations are a powerful computational model for manipulating complex networks, but handling temporal aspects
and scalability remain significant challenges. We present a novel approach to implementing these transformations using Logica, an
open-source logic programming language and system that operates on parallel databases like DuckDB and BigQuery. Leveraging
the parallelism of these engines, our method enhances performance and accessibility, while also offering a practical way to handle
time-varying graphs. We illustrate Logica’s graph querying and transformation capabilities with several examples, including the
computation of the well-founded solution to the classic “Win-Move” game, a declarative program for pathfinding in a dynamic graph,
and the application of Logica to the collection of all current facts of Wikidata for taxonomic relations analysis. We argue that clear
declarative syntax, built-in visualization and powerful supported engines make Logica a convenient tool for graph transformations.

Keywords
Logic rules, graph queries, graph transformations

1. Introduction
Graph transformations are a powerful and versatile method
for modeling and manipulating complex systems across di-
verse fields, ranging from software engineering [1, 2] and
social network analysis [3] to biology and chemistry [4, 5, 6].
These transformations typically operate by applying rewrite
rules to a graph, altering its structure and properties. While
these transformations are known for their expressiveness
and flexibility, their implementation can often be complex,
especially when dealing with time-varying graphs or requir-
ing scalable solutions. Existing graph database systems of-
ten provide limited support for such evolution mechanisms,
creating a gap between theoretical models and practical
implementations.

Logic programming, on the other hand, provides a declar-
ative approach to problem solving by expressing rules and
relationships rather than explicitly stating control-flow.
Logic-based systems (e.g., Prolog and Answer Set Program-
ming [7]) are well-established in various areas, including
(symbolic) AI and knowledge representation and reason-
ing. More recently, Logica (Logic + Aggregation) [8, 9], an
open-source logic programming language and system, has
emerged, which employs parallel data processing environ-
ments such as DuckDB and BigQuery. Logica combines the
declarative power of logic programming with the scalability
and efficiency of modern databases, offering a promising
new path for tackling graph transformation challenges.

This paper explores the application of Logica to the do-
main of graph transformations, bridging the gap between
these two paradigms. Our approach leverages Logica’s abil-
ity to process large datasets in a parallel and efficient man-
ner, providing a novel means of implementing and execut-
ing graph transformations at scale using logical rules. We
demonstrate that with a graph transformation mindset, logic
programming can provide a natural, powerful, and intuitive
approach for defining transformations, opening new oppor-
tunities within both communities. Crucially, Logica also
enables a practical approach to addressing issues that are

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain
$ evgenys@google.com (E. Skvortsov); yilinx2@illinois.edu (Y. Xia);
ludaesch@illinois.edu (B. Ludäscher); bowers@gonzaga.edu
(S. Bowers)

Copyright © 2025 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

difficult in classical graph transformation approaches, such
as temporal transformations and seamless scalability.

To illustrate the practical nature of our approach, we
introduce several example Logica programs implementing
different types of graph transformations. Specifically, we
show how Logica can be used to define and perform basic
graph transformations including message passing, removing
transitively implied graph edges, and solving (i.e., labeling
or coloring) win-move graphs. We also introduce a novel ap-
proach to time-aware pathfinding (e.g., [10, 11, 12]), directly
addressing the need for principled and tractable mechanisms
to handle evolving graph data, a notoriously difficult prob-
lem in classical graph transformation approaches. These
examples serve both to show the expressiveness of our ap-
proach, and to illustrate its potential benefits.

The rest of this paper is structured as follows: Secion 2
provides an overview of Logica. Section 3 demonstrates how
to express graph transformations in Logica. We conclude in
Section 4 with a discussion of the limitations and potential
avenues for future research.

2. Logica Overview
Logica is a freely available, open-source variant of Datalog
combining the declarative features of expressive rule-based
languages with aggregation. Logica is a descendant of Yeda-
log [13] and inherits several of its features including support
for aggregators, functional predicates, user-defined func-
tions, and complex data types. Logica also supports rules
involving recursion and negation. A key feature of the im-
plementation is that it converts programs into SQL. This
conversion can be configured by the user and rules can be
compiled into: (a) self-contained SQL scripts with fixed re-
cursion depth; or (b) Python-driven pipelines that chain
together SQL queries when deep recursion is needed.

An overview of the Logica system is shown in Figure 1.
Developers can work with Logica from the command line
or via a Jupyter notebook. Programs can import functions
and other rules via a module system. Logica parses and
analyzes program files and produces a collection of SQL
queries in the dialect of the target database engine (cur-
rently SQLite, DuckDB, PostgreSQL, or BigQuery). To help
manage differences among platforms, Logica employs a type
inference engine to create correct SQL for each underlying

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://logica.dev/
https://duckdb.org/
https://cloud.google.com/bigquery
mailto:evgenys@google.com
mailto:yilinx2@illinois.edu
mailto:ludaesch@illinois.edu
mailto:bowers@gonzaga.edu
https://creativecommons.org/licenses/by/4.0


Logica System

SQL
Script

SQLite

Logica Parser

DuckDB

Type Inference Engine

Logica Program Compiler

Rule Compiler Expression Compiler

Logica Pipeline Object (SQL-query iteration) 

Logica Pipeline Driver (Python)
CSV 
File

JSON
File

Parquet
File

Imported
Logica

Modules

Logica
Main

Program

Imported
Logica

Modules

U
se

r’s
 F

ile
 S

ys
te

m

PostgreSQL

BigQuery

External DB Engines

shallow or non-
recursive rules

deep recursion
Embedded DBs

UI 

Qi Qi 

Figure 1: Logica System Architecture (from [9]): Logica supports a module system for importing libraries (top left); users write
programs locally (top left) or from within Jupyter notebooks (top right); programs are parsed, type checked (top middle), and compiled to a
self-contained SQL script (no/limited recursion) or to an iterative plan of pipelined SQL-queries passed to a pipeline driver (bottom middle).
Logica executes and monitors queries as they run on underlying SQL engines, either locally (bottom left) or externally (bottom right).

system. If the set of rules to be evaluated is non-recursive
(or if the user has indicated via a directive that a fixed-depth,
non-iterative recursion is sufficient), a self-contained SQL
script is generated that can be directly executed. For pro-
grams requiring deep recursion, Logica generates a pipeline
script that iteratively executes the generated SQL queries
stage-by-stage until a fixpoint or a user-defined termination
condition is reached.

For long-running queries, users can monitor rule execu-
tion in the Logica UI: predicate results are rendered as they
are being evaluated, so the user knows which (iterated) re-
lations are still running. This information can also be saved
and used for logging and profiling program execution.

3. Transforming Graphs with Logica
In Logica, as in Prolog and Answer-Set Programming,
graphs can be naturally represented: Nodes are denoted
using unique identifiers and edges are represented as facts
about the nodes. Graphs can be represented as predicates
with two or more positional arguments. For example, a sim-
ple directed graph can be represented as a binary relation
E(source,target), where source and target are nodes con-
nected by a directed edge. Additional graph data, e.g., node
or edge attributes, can be expressed using separate predi-
cates or extra positional (in Logica also named) arguments.
For instance, a graph whose edges are assigned colors can
be represented using a ternary predicate and facts of the
form E(source,target,color).

Graph transformations can be implemented by defining
new predicates that depend on the original graph: e.g., given
a graph with edges E, a new graph E2 extending E by adding
new edges between nodes that are separated by two “hops”
can be derived as follows.1

1 E2(x, z) :- E(x, y), E(y, z);
2 E2(x, y) :- E(x, y);

This simple example demonstrates an important aspect of
defining graph transformations with logic rules. In native
graph transformation languages users define how the graph
changes, and edges not involved in the change remain. How-
ever, when defining graph transformations logically, we

1In Logica, variables are lowercase, predicates are uppercase, “∼” is
used for negation, and semicolons denote the end of rules.

must include rules to preserve edges not involved in the
transformation (line 2).

3.1. Message Passing
Our first example involves the simple passing of a message
along the directed edges of a graph, as described in [14].

1 M0(0); # start node
2 # Rule 1: Message initialization.
3 M(x) :- M=nil, M0(x);
4 # Rule 2: Message passing.
5 M(y) :- M(x), E(x, y);
6 # Rule 3: Message retention.
7 M(x) :- M(x), ~E(x, y);

Fact M0(0) states that initially the message is at node 0.
Rule 1 initializes the message relation M. It states that node
x has a message M if it was specified as the initial node
in M0(x). Condition M=nil makes the rule fire (trigger)
only at the start of the recursive iteration. The message
propagates from node x to its neighbors y through the Rule
2. Finally, Rule 3 requires the message of a node x to be
retained if x has no outgoing edges.

3.2. Computing Distances in a Graph
Logica has native support for aggregation. Predicate level
aggregation is computed over the specified values of the
fields of the defined predicate. The following Logica pro-
gram computes the minimum distance D(x) of a node x
from a given Start node.

1 # Rule 1: Distance from the Start node is 0.
2 D(Start()) Min= 0;
3 # Rule 2: Triangle inequality.
4 D(y) Min= D(x) + 1 :- E(x,y);

Start() is used as a functional predicate: All Logica
relations have an additional “special attribute” (named
logica_value) to store and access a relation’s functional
value, i.e., its value when used syntactically as a function.
Here, Start() simply returns (a predefined) starting value.
Rule 1 assigns the distance 0 to the starting node, where
D(x) is also a functional predicate that returns the (mini-
mum) distance of a node x. Rule 2 computes the distance to
a node y as at most one more than the distance to its prede-



cessor x. The Min= aggregation operator specifies that the
minimum distance will be taken among all possible paths.

3.3. Solving Win-Move Games
Win-Move is a two-player combinatorial game played on
a finite directed graph (representing a board) where nodes
represent positions and edges represent moves [15, 16]. Af-
ter choosing a starting position (node), the two players take
turns moving a game pebble along the edges of the graph.
A player who cannot move loses the game. We propose to
compute the solution to Win-Move games in a new way,
inspired by graph transformations. A concise formulation
of the game is given by the logic rule:

Win(x) :- Move(x,y), ~Win(y).

A solution to the game can be computed using the 3-
valued well-founded semantics [17]. The moves of the game
are given by the predicate Move. A game starting at node x
is objectively won if there exists a (winning) move to some
y that is lost. Then, no matter how an opponent (Player II)
moves from y (assuming there is an outgoing move to begin
with), Player I can always force a win after the opponent
has moved. The well-founded model assigns Win(x) the
value true, false, and undefined if and only if x is objectively
won, lost, and drawn, respectively. In contrast, the 2-valued
stable model semantics does not compute the desired game
solution: There can be 0, 1, or more stable models, none of
which may agree with the correct, well-founded solution.
Similarly, in Logica, the above rule cannot be used as-is.

Looking at the problem through a graph-transformation
lens, however, we can define a new predicate W(x,y), indi-
cating that the move from x to y is a winning move. Com-
putation of W, from a graph transformation perspective,
amounts to selecting a collection of winning moves. In
Logica this can be specified with a single rule:

1 W(x,y) :- Move(x,y), (Move(y,z1) => W(z1,z2));

The rule says: A move from x to y is winning iff for every
opponent move from y to some z1 there exists a move from
z1 to z2 for Player I that is again winning! The logical
implication Move(y,z1) => W(z1,z2) is a shorthand for
the nested negation ~(Move(y,z1), ~W(z1,z2)).

The position values can now be derived from the winning
moves W. The source and target nodes x and y of a winning
move are won and lost positions, respectively. Positions
that are neither won nor lost are drawn:

1 Won(x), Lost(y) :- W(x,y);
2 Drawn(x) :- Position(x), ~Won(x), ~Lost(x);

Here, the unary predicate position is defined as the union
of the domain and range of the Move relation:

1 Position(x) :- x in [a,b], Move(a,b);

3.4. Finding Paths in Evolving Graphs
Graphs that change over time [10, 11, 12] can be naturally
modeled and computed over in Logica, where time can repre-
sented using extra positional arguments, named arguments,
or as functional values. As a simple example, assume a
graph that changes over time is represented by the relation

E(x,y,t0,t1) stating that there exists an edge from node
x to y added to the graph between time moments t0 and
t1. For simplicity we assume that time starts at moment 0,
edges are transitioned instantly, and the start node is given
as Start(). The following Logica program computes the
earliest possible arrival time for each node.

1 # Rule 1: Starting condition.
2 Arrival(Start()) Min= 0;
3 # Rule 2: Traversal of an edge when edge exists.
4 Arrival(y) Min= Greatest(Arrival(x),t0) :-
5 E(x,y,t0,t1), Arrival(x) <= t1;

Rule 1 sets the arrival time of the start node to 0 (the
assumed initial time). Rule 2 considers edge transitions: if
we arrive at the source x of an edge before the edge expires
(given by t1) then the arrival time of the edge’s target y
is set to the larger (latest) of x’s arrival time and the time
t0 that the edge was added to the graph. Once the arrival
times are computed, additional rules can be easily added
to select specific (time aware) paths of the graph. Figure 2
gives an example of path finding over an evolving graph.
An initial graph (with nodes A, B, etc., and colored blue) is
given with edges labeled by their start and end times. The
start node A is shown in green. The computed arrival times
are displayed as additional nodes (in yellow). The graph
in Figure 2 was created within Logica as further described
below in Section 3.6.

3.5. Transitive Reduction of DAGs
The transitive reduction [18] of a directed graph is a graph
with the fewest possible edges that has the same reacha-
bility as the original graph. For directed acyclic graphs
(DAGs), the transitive reduction coincides with finding the
(unique) minimum equivalent subgraph, i.e., a proper sub-
graph with the fewest possible edges needed to maintain the
same reachability relation as the original graph. While find-
ing a minimum equivalent subgraph for (arbitrary) graphs
with cycles is NP-complete, for DAGs, the problem can be
solved in PTIME. The following Logica program computes
the transitive reduction TR(x,y) of a DAG given by the
edge relation E(x,y). The program first computes the tran-
sitive closure and then uses the transitive closure to remove
redundant edges.

1 # Rule 1: Transitive closure base case.
2 TC(x,y) distinct:- E(x,y);
3 # Rule 2: Transitive closure inductive step.
4 TC(x,y) distinct:- TC(x,z), TC(z,y);
5 # Rule 3: Transitive reduction.
6 TR(x,y) :- E(x,y), ~(E(x,z), TC(z,y));

Rules 1 and 2 compute the transitive closure. Rule 3
identifies edges E(x,y) in the original graph that cannot
be bypassed by going to some other node and taking a
transitive path from there. These edges are the essential
edges needed to maintain reachability and make up the
edges of the resulting transitive reduction graph TR.

3.6. Rendering Graphs with Logica
One of the benefits of Logica is the convenience of render-
ing graphs directly from predicate definitions. With just a
few lines of Logica code and a minimal Python wrapper, it
is possible to generate visually appealing and informative



Figure 2: Visualizing the solution of pathfinding in a dynamic graph. The time of existence is shown as labels on edges; the
earliest possible time of arrival is shown via yellow nodes. Section 3.6 shows how such visualizations can be created in Logica.

graph representations that highlight case-specific attributes.
For example, consider the transitive reduction computed
in the previous section. Instead of exporting the TR and
E predicates and configuring their rendering in a separate
graphing library, Logica makes it possible to define a predi-
cate that directly specifies the visual attributes of the graph.
The following relations define graph visualization proper-
ties in Logica highlighting the edges in both the original
graph and its transitive reduction:

1 R(x, y,
2 arrows:"to" ,
3 color?Max= "rgba (40, 40, 40, 0.5)",
4 dashes?Min= true,
5 width?Max= 2,
6 physics?Max= false,
7 smooth?Max= false)distinct:- E(x, y);
8 R(x, y,
9 arrows:"to" ,

10 color?Max= "rgba (90, 30, 30, 1.0)",
11 dashes?Min= false,
12 width?Max= 4,
13 physics?Max= true,
14 smooth?Max= true)distinct:- TR(x, y);

The R(x,y,. . . ) relation defines the edges of the graph
and their visual properties. The first rule draws the origi-
nal edges from E(x, y) in a light gray, dashed style with
a thin line. The second rule draws the transitive reduc-
tion edges from TR(x, y) in bold red, solid lines. The
distinct keyword triggers aggregation, so that each edge
occurs only once and values of attributes such as color,
dashes, etc., are chosen based on whether this edge be-
longs to the transitive reduction. The visual attributes, e.g.,
arrows, color, dashes, width, physics, and smooth,
are directly embedded within the Logica rules. The question
mark in “color? Max=” indicates that the color can have

different values from different rules. The Max= indicates
that if there are multiple rules that apply to the same edge,
the maximum value will be used. The actual rendering is
then handled with a Python function call:

1 # from logica.common import graph
2 graph.SimpleGraph(
3 R, extra_edges_columns=[
4 "arrows" ,"physics" ,"dashes" ,"smooth" ],
5 edge_color_column="color" ,
6 edge_width_column="width" )

This code leverages Logica’s graph module. The
SimpleGraph function takes the R predicate, speci-
fies which columns in R represent edge attributes (us-
ing extra_edges_columns, edge_color_column, and
edge_width_column), and provides overall graph options.
The resulting visualization is shown in Figure 3 (where
the transitive reduction graph is overlaid over the original
graph). The tight integration between logical definitions
and graph rendering makes Logica a powerful tool for ana-
lyzing and understanding complex relationships in graph
data. The ability to define graph properties directly in Log-
ica, rather than relying on external tools, can significantly
streamline the data exploration and visualization process.

3.7. Graph Condensation
Graph condensation [19] is a technique for simplifying a
graph by collapsing strongly connected components (SCCs)
into single nodes. This can be useful for visualizing the
overall structure of a graph and for performing analyses
that are less sensitive to the details within SCCs. In the
condensed graph, each node represents an SCC, and an
edge exists between two nodes if there is an edge in the
original graph between nodes in the corresponding SCCs.



Figure 3: Visualizing a transitive reduction with Logica: Original edges are displayed with dashed lines, while edges present
in the transitive reduction are highlighted with solid lines. This visualization, generated directly from Logica predicates, shows
how the transitive reduction simplifies the graph while preserving reachability.

The following Logica program computes the condensa-
tion of a graph given by edges defined by the E(x,y) rela-
tion, and where all nodes are defined by a Node(x) predi-
cate. We assume that transitive closure is already computed
as in Subsection 3.5.

1 # Minimal node ID of the component
2 # ..is used as the component ID.
3 CC(x) Min= x :- Node(x);
4 CC(x) Min= y :- TC(x,y), TC(y,x);
5 # Compute condensation graph edges.
6 ECC(CC(x),CC(y)) distinct:-
7 E(x,y), CC(x)!=CC(y);

Once the condensation is computed, it can be easily ren-
dered using Logica’s graph visualization capabilities. To
enhance readability, we use the following naming conven-
tions: nodes in the original graph are named directly with
their IDs (e.g., “1”, “2”, “3”), while the condensed compo-
nents are prefixed with “c-” (e.g., “c-1”, “c-2”). The predicate
definitions for rendering both the original and condensed
graphs simultaneously are as follows:

1 NodeName(x) = ToString(ToInt64(x));
2 CompName(x) = "c-"++ ToString(ToInt64(x));
3

4 # Edges of the original graph.
5 Render(NodeName(a), NodeName(b),
6 physics:true,arrows:"to" ,
7 dashes:false,smooth:true,
8 color:"#33e"):- E(a, b);
9 # Edges of the condensation.

10 Render(CompName(x), CompName(y),
11 physics:true,arrows:"to" ,
12 dashes:false,smooth:true,
13 color:"#33e"):- ECC(x, y);
14 # Mapping from the graph to
15 # the condensation.
16 Render(NodeName(ToInt64(a)), CompName(CC(a)),
17 physics:false,arrows:"to" ,
18 dashes:true,smooth:false,
19 color:"#888");

The NodeName and CompName functions convert node and
component IDs to strings with appropriate prefixes. The
Render predicate then defines the appearance of the graph:

• Edges in the original graph (defined by E) are rendered
as solid blue lines.

• Edges between components (defined by ECC) are also
rendered as solid blue lines.

• Dashed gray lines connect each original node to its cor-
responding component. The physics is disabled between
nodes and their condensation components to help with
readability.

Figure 4 shows the result of using the above Logica code
and the appropriate Python wrapper as described in Subsec-
tion 3.6 to view the original and corresponding condensed
graph. By combining the power of Logica for defining graph
structures and relationships with its seamless graph render-
ing capabilities, it is possible to gain valuable insights into
complex systems through clear and concise visualizations.

3.8. Inferring a Taxonomic Tree
Another application of Logica lies in its ability to infer
relationships from large datasets and represent them as
graphs. Consider the problem of constructing a simplified
taxonomic tree for a set of species, showing their evolu-
tionary relationships leading back to common ancestors.
Logica can perform this task on massive amounts of data.
Here, we aim to build a taxonomic tree for Homo sapiens
(humans), Crocodylidae (crocodiles), Tyrannosaurus (T-Rex),
and Columbidae (pigeons). The input is a knowledge graph
of triples T(𝑎,𝑏,𝑐) and a functional predicate L(𝑎)= ℓ
that maps objects 𝑎 to human readable labels ℓ. We de-
fine SuperTaxon(item,parent) as the result of the query
T(item,"P171",parent), which states that parent is a direct
supertaxon of item, and TaxonLabel(𝑥) = L(𝑥) to give la-
bels restricted to taxons. The following Logica program
builds the taxonomic tree.

1 # Use unbounded depth (-1) to find ancestors.
2 @Recursive(E, -1, stop: FoundCommonAncestor);
3 E(x, item,
4 TaxonLabel(x), TaxonLabel(item)) distinct:-
5 SuperTaxon(item,x),
6 ItemOfInterest(item) | E(item);



Figure 4: Graph Condensation visualized with Logica. This figure displays both the original graph and its condensed
representation. Solid blue lines represent edges within the original graph and between condensed components. Dashed gray
lines connect each node to its corresponding condensed component, illustrating how strongly connected components are
collapsed into single nodes. This condensation simplifies the graph while preserving high-level connectivity information.

Figure 5: Inferred Taxonomic Tree for humans, crocodiles, T-Rex, and pigeons, generated by a Logica program from a large
Wikidata dump. Edges represent evolutionary relationships, leading from an ancestral species to descendant species. This
demonstrates that Logica can operate on very large, real-world knowledge graphs.

7 NumRoots() += 1 :- E(x,y), ~E(z,x);
8 # Stop when common ancestor is found.
9 FoundCommonAncestor() :- NumRoots() = 1;

Figure 5 shows an example output from running the pro-
gram, where the GraphViz2 library is used to render the
resulting tree. The input for the example consisted of the set
of statements obtained by a dump of Wikidata, which con-
tained 806M facts defined over 89M objects. When stored us-
ing DuckDB, the entire input is 13GB in size. The full recur-
sive search was run on a Google Cloud c2d-standard-32
instance in under 7 seconds via DuckDB with no custom
index setup. The majority of the execution time was spent
selecting the taxonomy edges from all possible relations in
Wikidata. Note that the number of taxons returned by the
original program is large. The result shown in Figure 5 is
only a sample of the obtained taxonomic tree (where the
sampling is also performed by Logica; not shown above).

By expressing the problem in Logica, we leverage its abil-
ity to efficiently perform (recursive) query processing (e.g.,
through its compilation to DuckDB). In this case, Logica is
used to quickly navigate the complex relationships within
a large taxonomic database and generate output that can
then be displayed visually through its Python integration
(here, using the GraphViz library).

2https://graphviz.org/

4. Conclusion
We have presented a novel approach to implementing graph
transformations using Logica, a free and open-source logic
programming language designed for parallel databases.
While Logica is typically used for data processing and anal-
ysis, we have shown that it can also effectively be used for
graph transformations. By leveraging Logica’s ability to pro-
cess large datasets in a parallel and efficient manner, graph
transformations can be performed efficiently. By showcas-
ing several examples, including the Win-Move problem,
dynamic path finding, transitive reduction, graph conden-
sation, and graph querying, we demonstrated that graph
transformation problems can be expressed in an intuitive
and efficient manner. The examples show how describing
graph transformations using logic rules can lead to con-
cise declarative specifications that also improve readability.
For example, our approach models time-varying graphs in
a principled manner, an issue that can be challenging in
classical graph transformation languages.

In future work, we plan to explore more complex graph
transformation patterns, including rewritings that may re-
quire solving NP-hard problems. We also plan to bench-
mark our approach against other graph transformation tools,
which would be valuable for demonstrating Logica’s perfor-
mance advantages on real-world datasets.

We hope that Logica, with its ability to leverage underly-
ing SQL engines, can make graph transformations a more
widely accessible and practical approach for managing com-
plex and dynamic data.

https://graphviz.org/


References
[1] F. de la Parra, T. Dean, Survey of graph rewriting

applied to model transformations, in: International
Conference on Model-Driven Engineering and Soft-
ware Development, 2014, pp. 431–441.

[2] T. Kräuter, A. Rutle, H. König, Y. Lamo, Formalization
and Analysis of BPMN Using Graph Transformation
Systems, in: International Conference on Graph Trans-
formation, 2023, p. 204–222.

[3] M. Fernández, H. Kirchner, B. Pinaud, J. Vallet, La-
belled Graph Rewriting Meets Social Networks, in:
International Workshop on Rewriting Logic and Its
Applications, volume 9942 of LNCS, Springer, 2016, pp.
1–25.

[4] F. Rosselló, G. Valiente, Graph Transformation in
Molecular Biology, Springer, 2005, pp. 116–133.

[5] M. Nagl, Graph rewriting systems and their applica-
tion in biology, in: Mathematical Models in Medicine,
Springer, 1976, pp. 135–156.

[6] F. Rosselló, G. Valiente, Chemical Graphs, Chemi-
cal Reaction Graphs, and Chemical Graph Transfor-
mation, Electronic Notes in Theoretical Computer
Science 127 (2005) 157–166. Proceedings of the Inter-
national Workshop on Graph-Based Tools.

[7] M. Gelfond, Answer Sets, in: F. van Harmelen, V. Lif-
schitz, B. W. Porter (Eds.), Handbook of Knowledge
Representation, volume 3 of Foundations of Artificial
Intelligence, Elsevier, 2008, pp. 285–316.

[8] E. S. Skvortsov, Y. Xia, B. Ludäscher, Logica: Declara-
tive Data Science for Mere Mortals, in: International
Conference on Extending Database Technology, 2024,
pp. 842–845.

[9] E. S. Skvortsov, Y. Xia, S. Bowers, B. Ludäscher, The
Logica System: Elevating SQL Databases to Declara-
tive Data Science Engines, in: International Workshop
on the Resurgence of Datalog in Academia and In-
dustry (Datalog-2.0), volume 3801 of CEUR Workshop
Proceedings, 2024, pp. 69–73.

[10] D. Kempe, J. Kleinberg, A. Kumar, Connectivity and
inference problems for temporal networks, J. Comput.
Syst. Sci. 64 (2002) 820–842.

[11] F. Rosselló, G. Valiente, Graph Transformation in
Molecular Biology, Springer, 2005, pp. 116–133. URL:
https://doi.org/10.1007/978-3-540-31847-7_7.

[12] A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche,
Finding Temporal Paths Under Waiting Time Con-
straints, Algorithmica 83 (2021) 2754–2802.

[13] B. Chin, D. von Dincklage, V. Ercegovac, P. Hawkins,
M. Miller, et al., Yedalog: Exploring knowledge at
scale, Summit on Advances in Programming Lan-
guages (2015).

[14] B. König, Graph Transformation Meets Logic, GReTA -
Graph Transformation Theory and Applications Sym-
posium, 2020.

[15] C. A. Smith, Graphs and composite games, Journal of
Combinatorial Theory 1 (1966) 51–81.

[16] J. Flum, M. Kubierschky, B. Ludäscher, Total and Par-
tial Well-Founded Datalog Coincide, in: Intl. Conf. on
Database Theory (ICDT), LNCS 1186, Springer, 1997,
pp. 113–124.

[17] A. Van Gelder, K. A. Ross, J. S. Schlipf, The Well-
founded Semantics for General Logic Programs, Jour-
nal of the ACM 38 (1991) 619–649.

[18] A. V. Aho, M. R. Garey, J. D. Ullman, The Transitive

Reduction of a Directed Graph, SIAM Journal on Com-
puting 1 (1972) 131–137.

[19] R. Tarjan, Depth-First Search and Linear Graph Algo-
rithms, SIAM Journal on Computing 1 (1972) 146–160.

https://doi.org/10.5220/0004731504310441
https://doi.org/10.5220/0004731504310441
https://doi.org/10.1007/978-3-031-36709-0_11
https://doi.org/10.1007/978-3-031-36709-0_11
https://doi.org/10.1007/978-3-031-36709-0_11
https://doi.org/10.1007/978-3-319-44802-2_1
https://doi.org/10.1007/978-3-319-44802-2_1
https://doi.org/10.1007/978-3-540-31847-7_7
https://doi.org/10.1007/978-3-540-31847-7_7
https://www.sciencedirect.com/science/article/pii/S157106610500112X
https://www.sciencedirect.com/science/article/pii/S157106610500112X
https://www.sciencedirect.com/science/article/pii/S157106610500112X
https://doi.org/10.1016/S1574-6526(07)03007-6
https://doi.org/10.48786/edbt.2024.84
https://doi.org/10.48786/edbt.2024.84
https://ceur-ws.org/Vol-3801/short5.pdf
https://ceur-ws.org/Vol-3801/short5.pdf
https://ceur-ws.org/Vol-3801/short5.pdf
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1006/jcss.2002.1829
https://doi.org/10.1007/978-3-540-31847-7_7
https://doi.org/10.1007/978-3-540-31847-7_7
https://doi.org/10.1007/978-3-540-31847-7_7
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-021-00831-w
https://www.irif.fr/~greta/event/nov20th2020-knig/
https://doi.org/10.1007/3-540-62222-5_40
https://doi.org/10.1007/3-540-62222-5_40
https://doi.org/10.1137/0201008
https://doi.org/10.1137/0201008
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010

	1 Introduction
	2 Logica Overview
	3 Transforming Graphs with Logica
	3.1 Message Passing
	3.2 Computing Distances in a Graph
	3.3 Solving Win-Move Games
	3.4 Finding Paths in Evolving Graphs
	3.5 Transitive Reduction of DAGs
	3.6 Rendering Graphs with Logica
	3.7 Graph Condensation
	3.8 Inferring a Taxonomic Tree

	4 Conclusion

