
ScaDANN: A Scalable Disk-Based Graph Indexing Method for
ANN
Hyein Gu1, Min-soo Kim1,∗

1Korea Advanced Institute of Science and Technology, Republic of Korea

Abstract
Approximate Nearest Neighbor (ANN) indexing constitutes a fundamental component of modern vector-based databases, facilitating
efficient and accurate information retrieval for applications such as retrieval-augmented generation. However, scaling graph-based
ANN indices to billion-scale datasets poses substantial challenges, including high memory demands and inefficiencies in handling
partitioned graphs. To address these issues, we propose ScaDANN, a scalable disk-based graph indexing method tailored for large-scale
datasets under limited memory conditions. ScaDANN introduces two novel techniques: overlapping block-level insertion and grid
block merge, which enable the efficient construction of unified graph indices while preserving high search performance. Our approach
achieves notable advancements in index construction speed, search accuracy, and memory efficiency, establishing ScaDANN as a robust
and effective solution for scalable ANN indexing in resource-limited environments.

Keywords
Graph, ANN, Nearest neighbor search, Vector search

1. Introduction
Large Language Models (LLMs) have revolutionized natu-
ral language processing by excelling in tasks such as text
generation [1], summarization [2], and question answering
[3]. Their ability to leverage pre-trained knowledge has
facilitated applications across diverse domains, including
healthcare [4], education [5], and customer service [6]. How-
ever, despite their strengths, LLMs face critical limitations,
such as hallucination [7], where they generate plausible but
incorrect outputs, outdated knowledge due to static train-
ing data, and privacy concerns when processing sensitive
information [8].
Retrieval-Augmented Generation (RAG) [9] has been in-

troduced as a promising framework to mitigate these limita-
tions by integrating LLMs with external knowledge retrieval
systems. By leveraging vector databases (VectorDBs) [10],
RAG retrieves relevant and up-to-date information to en-
hance the accuracy and reliability of generated responses.
This framework not only reduces the impact of hallucina-
tion but also addresses privacy concerns by accessing only
the information necessary for a given query.
Approximate Nearest Neighbor (ANN) indexing serves

as a foundational component in RAG systems, enabling
efficient information retrieval from VectorDBs. ANN in-
dexes can be broadly categorized into clustering-based
[11, 12, 13], hash-based [14, 15, 16], and graph-based meth-
ods [17, 18, 19, 20, 21]. Clustering-based methods partition
datasets into smaller clusters, facilitating memory-efficient
index construction but often incurring longer construction
times and reduced search accuracy. Hash-based methods
employ hash functions to compress datasets and reduce di-
mensionality, which accelerates construction and search
processes but at the cost of reduced accuracy due to com-
pression. Graph-based methods, in contrast, represent vec-
tors as nodes and their relationships as edges, connecting
nodes based on proximity [22]. These methods construct
neighbor lists through vector operations between nodes
(as illustrated in Figure 1) and are particularly effective for

Published in the Proceedings of the Workshops of the EDBT/ICDT 2025
Joint Conference (March 25-28, 2025), Barcelona, Spain
∗Corresponding author.
Envelope-Open hyein99@kaist.ac.kr (H. Gu); minsoo.k@kaist.ac.kr (M. Kim)
Orcid 0009-0009-8582-5805 (H. Gu); 0000-0002-5065-0226 (M. Kim)

Copyright © 2025 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

large-scale datasets, offering superior search accuracy and
performance despite higher memory demands during con-
struction.
The need for scalable ANN indexing becomes increas-

ingly apparent as data is segmented into smaller chunks to
meet the input constraints of LLMs. For instance, dividing
a 100 MB document into 4 KB chunks suitable for LLM in-
put results in approximately 25,600 chunks—a 25,600-fold
increase in data chunks relative to the original document
count. This exponential growth in the number of chunks
significantly increases the size of the ANN index, necessi-
tating the development of methods capable of efficiently
handling billion-scale datasets.
Building large-scale ANN indexes, however, poses sig-

nificant challenges [23, 24]. First, the substantial size of
datasets and indexes requires considerable memory re-
sources. Second, achieving competitive search performance
on disk-based systems, which are necessary for handling
such datasets, is particularly challenging. To address these
issues, we propose ScaDANN, a Scalable Disk-based Graph
Indexing Method for ANN, specifically designed to over-
come these limitations.

This study pursues two primary objectives: (1) to enable
the construction of large-scale ANN indexes in memory-
constrained environments and (2) to enhance search per-
formance through the use of merged graph structures that
improve efficiency and accuracy during the search process.
By focusing on these goals, we provide a scalable and effi-
cient solution for constructing and querying ANN indexes
in scenarios where both large-scale datasets and memory
limitations are critical challenges.

This work makes the following key contributions:

• We propose a graph-based ANN method that lever-
ages grid blocks to efficiently construct and scale
billion-scale indexes in memory-constrained envi-
ronments.

• Our approach outperforms existing disk-based meth-
ods, achieving index construction speeds 1.3 to 1.5
times faster and search speeds 1.2 to 1.4 times faster,
while maintaining comparable accuracy.

• We demonstrate that our method enables the con-
struction of single indexes up to 10 times larger than
those of existing approaches within the same mem-
ory constraints.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:hyein99@kaist.ac.kr
mailto:minsoo.k@kaist.ac.kr
https://orcid.org/0009-0009-8582-5805
https://orcid.org/0000-0002-5065-0226
https://creativecommons.org/licenses/by/4.0/deed.en

These contributions mark a significant advancement in
ANN indexing, particularly in terms of efficiency and scala-
bility for large-scale, memory-constrained applications.

2. Preliminaries

2.1. ANN search
Nearest Neighbor (NN) search identifies the data point(s) in
a dataset closest to a given query point based on a defined
distance metric, such as Euclidean distance or cosine similar-
ity. While exact NN search computes the distance between
the query and every data point to determine the nearest
neighbor, this approach becomes computationally infeasible
for large datasets. ANN search addresses this challenge by
finding points that are approximately close to the true near-
est neighbors, significantly reducing computational costs.
Although ANN sacrifices some accuracy, it delivers faster
query response times, which is particularly advantageous
in high-dimensional and large-scale datasets.

Definition 1 (ANN). Given a dataset 𝐷 = {𝑥1, 𝑥2, … , 𝑥𝑛}
and a query point 𝑞, the task of nearest neighbor search
(whether exact or approximate) is to find the point 𝑥𝑁𝑁 ∈ 𝐷
such that the distance 𝑑(𝑞, 𝑥𝑁𝑁) is minimized, where 𝑑(⋅, ⋅)
represents a distance metric. In the case of ANN search, the
algorithm guarantees that the returned point 𝑥∗ satisfies:

𝑑(𝑞, 𝑥∗) ≤ (1 + 𝜖) ⋅ 𝑑(𝑞, 𝑥𝑁𝑁),

where 𝜖 is a small approximation factor, and 𝑥𝑁𝑁 is the exact
nearest neighbor of the query point 𝑞.

To evaluate ANN algorithms, two primary metrics are
used: Recall and Queries Per Second (QPS). Recall quan-
tifies the effectiveness of an algorithm in retrieving true
nearest neighbors, defined as the ratio of true nearest neigh-
bors retrieved to the total number of true nearest neighbors.
Higher recall indicates greater accuracy but may increase
search time. QPS measures the system’s throughput, i.e.,
the number of queries processed per second. Higher QPS
reflects greater efficiency, which is critical for large-scale
and real-time applications.

2.2. Existing graph ANN indexing methods
2.2.1. Vamana graph

Vamana [25] is a widely used graph-based ANN indexing
algorithm and serves as the foundational graph structure in
many recent ANN studies. Its construction is based on two
key techniques: Greedy Search and Robust Pruning.
Greedy Search enables efficient exploration of nearest

neighbors within the graph. Beginning from an initial node,
the algorithm iteratively identifies and prioritizes nodes
closest to the query. It maintains a priority queue of visited
nodes, extracting the nearest unvisited node at each step,
adding its neighbors to the queue, and repeating this process
until all relevant nodes are explored.

𝛼 ⋅ 𝑑(𝑝∗, 𝑝′) ≤ 𝑑(𝑝, 𝑝′) (𝛼 > 1)

Robust Pruning optimizes the graph by removing un-
necessary edges discovered during Greedy Search. This
technique utilizes the Sparse Neighborhood Graph (SNG)
property [26] and applies a distance threshold parameter,
alpha (𝛼), to determine whether an edge should be retained.

Specifically, an edge between nodes 𝑃 and 𝑃 ′ is removed
if the distance between these nodes exceeds the distance be-
tween 𝑃 ′ and a third node 𝑃∗. By retaining longer edges un-
der relaxed conditions, Vamana enhances search efficiency
while maintaining graph connectivity.

2.2.2. DiskANN

DiskANN [25] extends the Vamana graph to a disk-based
environment, making it well-suited for large-scale datasets.
It employs a divide-and-conquer approach, partitioning the
dataset into subgraphs and merging them into a unified
structure.

Figure 1 illustrates the partitioning and merging process
of DiskANN. (1) The dataset is first divided into multiple
overlapping partitions using a clustering technique, with
each node assigned to at least two partitions. (2) Indepen-
dent subgraphs are constructed within each partition. (3)
These subgraphs are then merged by randomly selecting
nodes from the partitioned graphs, followed by merging
and pruning operations. This process updates the neighbor
lists with merged results, ensuring connectivity between
partitions while reducing memory and computational costs.
DiskANN’s partitioning and merging strategy enables scal-
able graph construction but introduces challenges in main-
taining search performance across partitions.

2.2.3. Batch insertion for graph construction

Efficient parallelization is essential for graph construction
in large-scale datasets. Batch insertion, as introduced in Par-
layANN [27], addresses the challenge of concurrently adding
nodes to a graph while ensuring conflict-free operations.
Conflicts are avoided by grouping nodes into independent
batches and processing each batch in isolation, ensuring
that nodes within a batch do not interfere with each other
during insertion.
The batch insertion process occurs in two steps. First,

nodes in a batch are independently connected to their near-
est neighbors within the existing graph. These connections
are established in parallel, as nodes within a batch do not
share dependencies, preventing conflicts during edge cre-
ation. This step ensures that all newly added nodes are
integrated into the graph without disrupting its structure.
Second, reversed edges are added to the graph. A reversed

𝑣!

𝑣"#

𝑣$
𝑣"

𝑣#

𝑣%

𝑣&
𝑣'𝑣(

𝑣""

𝑣) 𝑣*

P1 P2 P3Partition into

(1) Partitioning based on
overlapping clustering

𝑣!

𝑣"#

𝑣"
𝑣$

𝑣#

𝑣%

𝑣&

𝑣'

𝑣! 𝑣"

𝑣$

𝑣&
𝑣(𝑣)

𝑣"#

𝑣*

𝑣"

𝑣#$

𝑣#
𝑣%

𝑣$

𝑣&

𝑣'
𝑣(𝑣)

𝑣##

𝑣* 𝑣+

654321𝑣
𝑣)𝑣&𝑣"𝑣*𝑣#$𝑣#𝑣$

𝑣$𝑣'𝑣)𝑣"𝑣`#
…

𝑣&𝑣"𝑣$𝑣#$
𝑣(𝑣*𝑣+𝑣)𝑣##

(2) Sub-graph construction

(3) Merging

𝑣"# 𝑣#

𝑣%

𝑣(
𝑣""

𝑣' 𝑣*

𝑣)

* Two overlapping clusters
* Each cluster size: 8

Random shuffle and Prune

Neighbor list

Figure 1: DiskANN partitioning and merging process.

Block 0

Block 1

Main memory

𝑣! 𝑣"
𝑣#

𝑣$

𝑣%

𝑣&
𝑣'

𝑣(

Step 1.
Build graph with block 0 and 1

𝑣!

𝑣!"

𝑣%

𝑣'𝑣)
𝑣!!

𝑣(𝑣#

𝑣!

𝑣"#

𝑣"
𝑣#

𝑣$

𝑣%

𝑣&
𝑣'𝑣(

𝑣""

𝑣) 𝑣*

Step 2.
Build graph with block 1 and 2

Step 3.
Build graph with block 2 and 0

Block 1

Block 2

Main memory

Block 2

Block 0

Main memory

𝑣!"

𝑣"
𝑣#

𝑣$
𝑣&

𝑣)
𝑣!!

𝑣*
Final graph

Figure 2: ScaDANN building process with three partitions and corresponding grid blocks at each step. The graph is constructed
by loading two partitions into memory at a time, ensuring efficient graph generation. In the next step, the previously used
partition is overlapped with a new partition to continue the building process.

edge is defined as an edge where the source vertex and
destination vertex are swapped, ensuring bidirectional con-
nectivity between nodes. For example, if an edge connects
node 𝑣𝑖 (source) to node 𝑣𝑗 (destination), the reversed edge
connects 𝑣𝑗 back to 𝑣𝑖. During this step, the neighbors of
each newly added node are updated with reversed edges,
completing the bidirectional connections required for robust
graph-based indexing.
By separating the insertion of neighbors and the addi-

tion of reversed edges into distinct steps, batch insertion
guarantees structural consistency while leveraging paral-
lel processing. This approach is particularly effective in
large-scale datasets, as it minimizes computational over-
head while maintaining the integrity and quality of the
graph. Moreover, the absence of interdependencies between
batches ensures that the graph remains stable throughout
the construction process, enabling efficient and scalable
graph-based ANN indexing.

3. ScaDANN Method

3.1. Grid partitioning
Figure 3 illustrates the structure of Graph ANN using a grid
format, where each node in the graph consists of a base vec-
tor and a neighbor list. Grid partitioning divides large-scale
datasets into grid blocks, with rows representing source ver-
tices and columns representing destination vertices. This
approach organizes datasets into manageable segments, en-
abling memory- and disk-efficient graph construction. For
example, constructing a Vamana graph for a 1-billion-point
dataset with 100 dimensions, requiring 400GB for vector
storage, is infeasible under memory constraints of 256GB

[𝑣!, 𝑣", 𝑣!#][0.71, 1.21, …, 0.92]

[𝑣$, 𝑣%, 𝑣&][1.91, 1.32, …, 0.49]

[𝑣%, 𝑣', 𝑣"][0.01, 1.21, …, 0.43]

Sub
graph 0

Sub
graph 1

Sub
graph 2

destination vertices

so
ur

ce
 v

er
tic

es

𝒑𝟐𝒑𝟏𝒑𝟎

𝒑𝟎

𝒑𝟏

𝒑𝟐
Edges

from p2
to p1

GridBase vector

𝑣&

𝑣!#

𝑣!

𝑣+

𝑣#

𝑣,

𝑣$
𝑣-𝑣%

𝑣!!

𝑣" 𝑣'

𝑣#

𝑣!

𝑣!!

…… …

Neighbor list

Figure 3: Graph ANN with grid format. The grid format repre-
sents the structure of Graph ANN, where each node consists of a
base vector and a neighbor list.

or 512GB. However, grid partitioning ensures scalability
by allowing the dataset to be partitioned into grid blocks,
making it feasible to construct the graph even when the
dataset size exceeds the available memory.
Each grid block captures intra- and inter-partition rela-

tionships. A grid block where the source and destination
partitions are the same forms a subgraph, which follows
the Vamana graph structure. Diagonal blocks represent
subgraphs within individual partitions, while off-diagonal
blocks denote connections between partitions. For example,
the red block (𝑝2, 𝑝1) in Figure 3 corresponds to connections
from partition 𝑝2 (green) to partition 𝑝1 (blue). This struc-
ture improves scalability and ensures conflict-free parallel
processing during node insertion.

3.2. Overlapping block-level insertion
The overlapping block-level insertion method incrementally
constructs the graph by processing data in grid block units.
This method employs overlapping blocks, where a block
from the previous step is reused in the next step, allowing
two blocks to be processed simultaneously. As detailed in
Algorithm 1, the process begins with the construction of
the graph for the first partition (𝐵1 = 0). In this step(line 3),
specifically generates the subgraph for the first partition, en-
suring that the intra-partition edges are established within
the initial grid block.

In subsequent steps, pairs of overlapping blocks are pro-
cessed to extend the graph. For each step, the data corre-
sponding to the current blocks is loaded into memory to
construct the graph (lines 9–11). Particularly, line 11 in-
volves filling four grid blocks by constructing the subgraphs
for two partitions and establishing connections between
them. This ensures that intra- and inter-partition edges
are created simultaneously, improving efficiency and main-
taining the global structure of the graph. Once the graph
is constructed, the earlier block is offloaded from memory
(lines 12–15), and the next block is loaded (lines 5–10).

By reusing overlapping blocks during the insertion pro-
cess, ScaDANN integrates graph construction and merging
into a single operation, eliminating the need for a separate,
computationally expensive merging step. This approach en-
sures that inter-block connections are captured as the graph
is built, thereby avoiding the creation of disjoint subgraphs.
Additionally, the overlapping mechanism significantly re-
duces I/O overhead by combining insertion and merging,
which are traditionally distinct steps.

Figure 2 illustrates the construction process. Initially,

Algorithm 1: ScaDANN Construction
Input: block size 𝑃 and dataset 𝐷
Output: Graph
/* Initialize first block and interval */

1 first block number 𝐵1 = 0, second block number
𝐵2 = 1, block interval 𝑖𝑡𝑣 = 1, neighbor list
𝑁𝐵𝑅𝑖 = ∅;

/* Read dataset for the first block */
2 𝐷1 = ReadDataset(𝐵1);
3 𝑁𝐵𝑅1 = vamana(𝐵1, 𝑁𝐵𝑅1);
4 while 𝑖𝑡𝑣 < 𝑃 do
5 𝐵2 ≡ (𝐵1 + 𝑖𝑡𝑣) (mod 𝑃);

/* Increase interval size */
6 if 𝐵1 = 𝐵2 then
7 𝑖𝑡𝑣 = 𝑖𝑡𝑣 ∗ 2;
8 continue

/* Read the second dataset and graph */
9 𝐷2 = ReadDataset(𝐵2);

10 𝑁𝐵𝑅2 = ReadGraph(𝐵2);
11 𝑁𝐵𝑅1, 𝑁𝐵𝑅2 =

vamana((𝐷1, 𝐷2), (𝑁𝐵𝑅1, 𝑁𝐵𝑅2));
12 WriteGraph(𝑁𝐵𝑅1, 𝐵1);
13 𝐷1 = 𝐷2;
14 𝑁𝐵𝑅1 = 𝑁𝐵𝑅2;
15 𝐵1 = 𝐵2;
16 WriteGraph(𝑁𝐵𝑅1, 𝐵1);

blocks 0 and 1 are loaded into memory, and edges between
the two blocks are created. In the second step, block 0 is
offloaded, block 1 is retained, and block 2 is loaded. The
graph is extended based on connections between blocks 1
and 2. Finally, in the third step, block 1 is offloaded, block
2 is retained, and block 0 is reloaded to extend the graph
further by connecting blocks 2 and 0. This iterative pro-
cess efficiently captures all relevant connections between
blocks, enabling the construction of a unified graph while
minimizing memory usage and I/O costs.

3.3. Grid block merge
The grid block merge process establishes connections be-
tween two blocks loaded into memory and ensures bidirec-
tional connectivity through reverse edges. Reverse edges,
where the source and destination vertices are swapped,
maintain symmetric inter-block connections, ensuring con-
sistent and efficient search performance.

In conventional methods, merging requires all data to be
loaded into memory to calculate distances between nodes.
ScaDANN overcomes this limitation by storing distance in-
formation directly within the neighbor list of each node.
This pre-stored distance means that block 1 retains the
neighbor list formed in step 1. For example, after step 1, 𝑣5
in block 1 (green) has already stored 𝑣3 and 𝑣2 from block
0 (yellow) as its neighbors. This allows distance compar-
isons between existing and new neighbors without reload-
ing offloaded data, reducing memory usage and improving
scalability.
Figure 4 illustrates the merging process during step 2

in Figure 2, where blocks 1 and 2 are loaded into memory
while block 0 remains stored on disk. When updating the
neighbor list of 𝑣5, the algorithm uses pre-stored distance
data from step 1 to compare block 0 neighbors with block 2
neighbors, avoiding redundant distance calculations. As a
result, 𝑣5’s neighbors are updated to 𝑣11, 𝑣3, and 𝑣2.

(𝑣! , 387)(𝑣"		, 236) (𝑣#		, 473)(𝑣$$, 219) (𝑣! , 387)(𝑣" , 236)(𝑣$$, 219)

Stored on disk
(not loaded in main memory)

𝑣!

𝑣"#

𝑣"
𝑣$

𝑣#

𝑣%

𝑣&
𝑣'𝑣(

𝑣""

𝑣) 𝑣*

Neighbor list (Neighbor ID, Distance)
Max degree:3

Block 1

Block 2

Main memory

Block 0

Disk

𝑣$𝑣& 𝑣$$ 𝑣*

𝑣!

𝑣$𝑣&𝑣$$

Added neighbors Updated neighbor list

Figure 4: Grid block merge process with distance information.

The merging process follows the Vamana graph construc-
tion method, incorporating a greedy search to identify can-
didate neighbors and a robust pruning step to refine the
neighbor list. Inter-block edges are established by adding
neighbors from the second block to the neighbor list of
the first block. The reverse edges are then added, ensuring
bidirectional connectivity, where nodes in the first block
are also linked as neighbors of nodes in the second block.
This comprehensive approach ensures a robust and efficient
merging process.

3.4. Complexity
Table 1 compares the time and space complexities of Vamana,
DiskANN, and ScaDANN in the index-building process, fo-
cusing on scalability and efficiency. The space complexity
considers storage requirements, including neighbor lists.

Vamana constructs a single large-scale graph, resulting in
a time complexity of 𝑂(𝑆1.16) and a space complexity of 𝑂(𝑆 ⋅
𝑅). Since it does not partition the dataset, the entire graph
must fit in memory, making it less scalable for large-scale
data. Both DiskANN and ScaDANN partition the dataset to
construct subgraphs. Partitioning reduces memory usage
and enables disk-based processing. The time complexity
is inversely proportional to the number of partitions, as
increasing 𝑃 allows for more localized graph construction,
reducing the computational cost.
In DiskANN, each node is assigned to multiple overlap-

ping partitions (typically 𝐾 = 2), as shown in Figure 1.
Since DiskANN performs clustering to determine partitions,
the build time complexity includes the clustering time (
𝐶). In contrast, ScaDANN utilizes dynamic partitioning,
where the data structure size is determined based on the
dataset size. This process does not require separate cluster-
ing and is treated as an internal computational step, which
is why it is not included in the time complexity. Unlike
DiskANN, which incurs overhead due to overlapping par-
titions, ScaDANN eliminates these redundancies, stream-
lining subgraph construction and merging. This results in
a computationally efficient process that scales well with
increasing dataset size.

Methods Build Time Space
Vamana 𝑂(𝑆1.16) 𝑂(𝑆 ⋅ 𝑅)
DiskANN 𝑂(𝐾 1.16 ⋅ 𝑃−0.84 ⋅ 𝑆1.16 + 𝐶) 𝑂(𝑆 ⋅ 𝑅 ⋅ 𝐾 ⋅ 𝑃−1)
ScaDANN 𝑂(𝑃−0.84 ⋅ 𝑆1.16) 𝑂(𝑆 ⋅ 𝑅 ⋅ 𝑃−1)

Table 1
Comparison of time and space complexities for Vamana,
DiskANN, and ScaDANN, where 𝑆 is the dataset size, 𝑅 is the
maximum degree of the graph, 𝐾 is the number of overlapping
partitions per node, 𝑃 is the number of partitions, and 𝐶 is the
clustering time.

4. Experiments

4.1. Experimental setup
The experiments were conducted to evaluate the perfor-
mance of ScaDANN under controlled conditions. The hard-
ware environment included two Gold 6326 16-core proces-
sors and 1.9 TB of main memory, while the software en-
vironment was based on Ubuntu 20.04.6 LTS. To simulate
memory-constrained scenarios, the available memory was
deliberately restricted to 256 GB during the experiments.
Under these constraints, both Vamana and ParlayANN en-
countered Out of Memory (OOM) errors, making them un-
suitable for comparison. As a result, our evaluation focused
on comparing ScaDANN with DiskANN, a state-of-the-art
disk-based ANN indexing method.
Table 2 provides a summary of the datasets used in the

experiments, including their data types and dimensions.
The datasets used were BIGANN, Microsoft SPACEV, Yan-
dex DEEP, and Yandex Text-to-Image, each posing unique
challenges for ANN indexing. BIGANN consists of 1 bil-
lion 128-dimensional SIFT descriptors from a large-scale
image dataset, serving as a benchmark for high-dimensional
similarity search. Microsoft SPACEV includes 1 billion 100-
dimensional document and query vectors reflecting real-
world web search scenarios. Yandex DEEP comprises 1
billion 96-dimensional image descriptors designed to eval-
uate deep learning-based image representations. Yandex
Text-to-Image contains 1 billion multi-modal embeddings,
where image embeddings serve as the database and text
embeddings form the query set, representing a cross-modal
retrieval task with distinct distributions for database and
query vectors.

Dataset Data type Dimensions
BigANN uint8 128

Microsoft SPACEV int8 100
Yandex DEEP float32 96

Yandex Text-to-Image float32 200

Table 2
Summary of datasets used in the experiments.

4.2. Results and Analysis
4.2.1. Billion-scale index building in limited memory

Figure 5 presents the results of indexing at a billion-scale
under a 256GB memory constraint. The top graph in Fig-
ure 5 illustrates the index building time across different
datasets. ScaDANN significantly reduced the index-building
time compared to DiskANN across all datasets. For example,
in the BIGANN dataset, ScaDANN completed the indexing
task in 10.7 hours, compared to 16.5 hours for DiskANN,
achieving approximately a 35% reduction in build time. This
efficiency improvement can be attributed to ScaDANN’s op-
timized data partitioning and overlapping block techniques,
which minimize disk I/O and improve memory access pat-
terns.
The bottom graph in Figure 5 shows the memory usage

during the index construction process. Both DiskANN and
ScaDANN employed dynamic partitioning, which adjusts
the number of partitions based on available memory capac-
ity and efficiently divides the data. Since the graph size and
memory usage vary depending on the degree of the neighbor
list, dynamic partitioning enables optimized partitioning by
adapting to these variations. Notably, ScaDANN required a

higher number of partitions than DiskANN. This is because
ScaDANN stores additional distance information within the
graph, which increases memory consumption per block. As
a result, ScaDANN divides the data into more partitions
than DiskANN to accommodate the additional memory us-
age. For instance, for the BIGANN dataset, ScaDANN used
around 200GB of memory for indexing, while DiskANN re-
mained under the 256GB limit, but required fewer partitions
to store its graph.
We conducted a detailed comparison of the index build-

ing process with DiskANN, as illustrated in Figure 6. In
the subgraph construction phase, our method completed
approximately twice as fast as DiskANN, with the BIGANN
dataset showing a significant speedup. However, the sub-
graph merging phase took longer in our approach. This is
due to the finer-grained distance comparisons performed
during the merging process, which operates at the level of
grid blocks. Unlike DiskANN, which uses a more straight-
forward merging process, ScaDANN’s overlapping block
approach requires additional computations during the merg-
ing phase to ensure accurate distance calculations between
partitioned blocks.
In terms of I/O costs, our method demonstrated greater

efficiency. This improvement can be attributed to the use
of overlapping block techniques, which optimize data load-
ing between memory and disk. Specifically, ScaDANN’s
approach minimizes unnecessary disk reads and efficiently
manages memory, leading to a faster construction process
despite the increased memory overhead. This is evident
in the I/O time breakdown in Figure 6, where ScaDANN
exhibits a more balanced distribution of time between sub-
graph building, partitioning, and merging, compared to
DiskANN, which spends a significant portion of time in I/O
operations.

16.5
18.8

16.3

10.7
14.6

11.3

0
5

10
15
20

(a) BIGANN-1B (b) MSSPACEV-1B (c) DEEP-1B

B
ui

ld
in

g
tim

e
(h

ou
rs

)

DiskANN ScaDANN(ours)

199
160

239248 241

187

0

100

200

300

(a) BIGANN-1B (b) MSSPACEV-1B (c) DEEP-1B

M
em

or
y

us
ag

e
(G

B
)

256GB
Limit

5 8 5 8 13 16

Figure 5: Billion-scale index building experiment results, includ-
ing building time and memory usage, conducted under a 256GB
memory constraint. The memory usage values indicate the num-
ber of partitions dynamically determined during the indexing
process.

0

3

373

886

208

72

16

27

0 200 400 600 800 1000

ScaDANN
(ours)

DiskANN

Building Time (min) – BIGANN 1B

Partitioning Sub-graph building Merging I/O

Figure 6: Time taken for each step in the building process, cate-
gorized into partitioning, subgraph building, merging, and I/O
time for comparison.

1.E+02

1.E+03

1.E+04

1.E+05

70 80 90 100

Q
ue

rie
s p

er
 se

co
nd

Recall@10

DiskANN ScaDANN(ours)

1.E+02

1.E+03

1.E+04

1.E+05

80 90 100

Q
ue

rie
s p

er
 se

co
nd

Recall@10

1.E+02

1.E+03

1.E+04

1.E+05

70 80 90 100

Q
ue

rie
s p

er
 se

co
nd

Recall@10

(a) BIGANN-1B (b) MSSPACEV-1B (c) DEEP-1B

Figure 7: Disk-based search performance. The graph compares Recall@10 (x-axis) and QPS (y-axis), where higher placement
indicates lower latency at a given recall level. A method positioned higher in the graph achieves faster query processing while
maintaining similar accuracy.

4.2.2. Disk-based search performance

Figure 7 presents the comparison of the search performance
based on disks between ScaDANN and DiskANN. The ex-
periments were carried out using the disk search method
for evaluation. Our proposed ScaDANN method demon-
strated better search performance than DiskANN for most
datasets in terms of QPS, especially for the BIGANN-1B
dataset. As shown in the graph, ScaDANN achieved a higher
QPS while maintaining competitive recall rates. For ex-
ample, ScaDANN processed queries at a faster rate than
DiskANN for BIGANN and MSSPACEV-1B, achieving a sig-
nificant speedup while still maintaining similar or slightly
better recall at top-10 results. However, for the DEEP-1B
dataset, ScaDANN showed a slight performance drop when
Recall@10 exceeded 95. This discrepancy can be attributed
to the disk search method used, which is specifically opti-
mized for DiskANN.

4.3. Ablation study
4.3.1. Impact of partition size on index construction

Figure 8 illustrates the effects of varying the number of parti-
tions on the BIGANN 100M dataset. Increasing the number
of partitions led to a significant increase in building time,
with approximately a 70% increase per step. However, RAM
usage decreased by around 40% per step, demonstrating the
trade-off between memory efficiency and construction time.

Despite the changes in partition numbers, there were no
significant differences observed in QPS relative to Recall@10
across the tested configurations. This indicates that increas-
ing the partition number primarily affects the construction
phase without adversely impacting search performance.

4.3.2. In-memory graph construction experiments

The in-memory graph construction experiments on
BIGANN-100M and Yandex Text-to-Image-100M compare
ParlayANN, ScaDANN, and DiskANN in terms of indexing
time and query performance. Since ParlayANN encounters
out-of-memory (OOM) issues at the billion-scale, the ex-
periments were conducted on 100 million data points with-
out partitioning for ScaDANN and DiskANN. ScaDANN
achieves indexing speeds comparable to or faster than
ParlayANN by storing distances within the graph, reduc-
ing redundant computations. Both methods also benefit
from batch insertion, leading to faster construction than
DiskANN. ScaDANN not only achieves a faster build time
but also maintains strong search performance, striking a
balance between efficient indexing and high query through-
put.

33 42
86

 -

 50

 100

4 8 16
Partition number

Build time (min)

56
31

18

 -
 20
 40
 60

4 8 16
Partition number

RAM usage (GB)

1.E+04

1.E+05

1.E+06

70 80 90 100

Q
ue

rie
s p

er
 se

co
nd

Recall@10

QPS / Recall@10

Figure 8: Experimental results of BIGANN 100M index building
with varying numbers of partitions.

1.E+03

1.E+04

1.E+05

1.E+06

80 85 90 95 100

Q
ue

rie
s p

er
 se

co
nd

Recall@10

ParlayANN (40)
ScaDANN (42)
DiskANN (55)

QPS / Recall@10

(a) BIGANN-100M

1.E+03

1.E+04

1.E+05

70 75 80 85 90 95 100

Q
ue

rie
s p

er
 se

co
nd

Recall@10

ParlayANN (50)
ScaDANN (42)
DiskANN (82)

(b) YANDEX Text-to-image-100M

Figure 9: In-memory experimental results of BIGANN 100M and
Yandex Text-to-Image 100M. The numbers in parentheses next to
each method indicate the index building time in minutes.

5. Conclusion
This study proposed ScaDANN, a scalable disk-based graph
indexing method designed for billion-scale ANN datasets
in memory-constrained environments. By introducing
overlapping block-level insertion and grid block merge,
ScaDANN effectively mitigates the high memory demands
and inefficiencies of existing methods. These techniques
enable seamless integration of blocks and efficient merging
of partitioned graphs while minimizing I/O overhead and
leveraging stored distance information.
Experimental results demonstrated that ScaDANN

achieves up to 1.5× faster index construction and 1.4× higher
query throughput compared toDiskANN,whilemaintaining
competitive accuracy across diverse datasets. Furthermore,
ScaDANN supports the construction of single indexes 10
times larger than existing approaches within the same mem-
ory constraints, making it a robust solution for large-scale
ANN indexing. This work establishes ScaDANN as an effi-
cient and scalable approach, with significant potential for
real-world applications requiring high-performance ANN
indexing.

References
[1] W. Yu, C. Zhu, Z. Li, Z. Hu, Q. Wang, H. Ji, M. Jiang, A

survey of knowledge-enhanced text generation, ACM
Computing Surveys 54 (11s) (2022) 1–38.

[2] H. Jin, Y. Zhang, D. Meng, J. Wang, J. Tan, A com-
prehensive survey on process-oriented automatic text
summarization with exploration of llm-based methods,
arXiv preprint arXiv:2403.02901 (2024).

[3] Y. Zhuang, Y. Yu, K.Wang, H. Sun, C. Zhang, Toolqa: A
dataset for llm question answering with external tools,
Advances in Neural Information Processing Systems
36 (2023) 50117–50143.

[4] M. Cascella, J. Montomoli, V. Bellini, E. Bignami, Eval-
uating the feasibility of chatgpt in healthcare: an anal-
ysis of multiple clinical and research scenarios, Journal
of medical systems 47 (1) (2023) 33.

[5] M. S. Orenstrakh, O. Karnalim, C. A. Suarez, M. Liut,
Detecting llm-generated text in computing education:
Comparative study for chatgpt cases, in: 2024 IEEE
48th Annual Computers, Software, and Applications
Conference (COMPSAC), IEEE, 2024, pp. 121–126.

[6] K. Pandya, M. Holia, Automating customer service us-
ing langchain: Building custom open-source gpt chat-
bot for organizations, arXiv preprint arXiv:2310.05421
(2023).

[7] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang,
Q. Chen, W. Peng, X. Feng, B. Qin, et al., A survey on
hallucination in large languagemodels: Principles, tax-
onomy, challenges, and open questions, ACM Trans-
actions on Information Systems (2023).

[8] Y. Yao, J. Duan, K. Xu, Y. Cai, Z. Sun, Y. Zhang, A survey
on large language model (llm) security and privacy:
The good, the bad, and the ugly, High-Confidence
Computing (2024) 100211.

[9] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin,
N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rock-
täschel, et al., Retrieval-augmented generation for
knowledge-intensive nlp tasks, Advances in Neural
Information Processing Systems 33 (2020) 9459–9474.

[10] J. J. Pan, J. Wang, G. Li, Survey of vector database
management systems, The VLDB Journal 33 (5) (2024)
1591–1615.

[11] Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li,
M. Yang, J. Wang, Spann: Highly-efficient billion-scale
approximate nearest neighborhood search, Advances
in Neural Information Processing Systems 34 (2021)
5199–5212.

[12] J. V. Munoz, M. A. Gonçalves, Z. Dias, R. d. S. Torres,
Hierarchical clustering-based graphs for large scale
approximate nearest neighbor search, Pattern Recog-
nition 96 (2019) 106970.

[13] S. Yu, J. Engels, Y. Huang, J. Shun, Pecann: Parallel ef-
ficient clustering with graph-based approximate near-
est neighbor search, arXiv preprint arXiv:2312.03940
(2023).

[14] H. Jegou, M. Douze, C. Schmid, Product quantization
for nearest neighbor search, IEEE transactions on pat-
tern analysis and machine intelligence 33 (1) (2010)

117–128.
[15] Y. Kalantidis, Y. Avrithis, Locally optimized product

quantization for approximate nearest neighbor search,
in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2014, pp. 2321–2328.

[16] A. Babenko, V. Lempitsky, The inverted multi-index,
IEEE transactions on pattern analysis and machine
intelligence 37 (6) (2014) 1247–1260.

[17] W. Dong, C. Moses, K. Li, Efficient k-nearest neighbor
graph construction for generic similarity measures, in:
Proceedings of the 20th international conference on
World wide web, 2011, pp. 577–586.

[18] C. Fu, C. Xiang, C. Wang, D. Cai, Fast approximate
nearest neighbor searchwith the navigating spreading-
out graph, arXiv preprint arXiv:1707.00143 (2017).

[19] Y. Malkov, A. Ponomarenko, A. Logvinov, V. Krylov,
Approximate nearest neighbor algorithm based on
navigable small world graphs, Information Systems 45
(2014) 61–68.

[20] Y. A. Malkov, D. A. Yashunin, Efficient and robust ap-
proximate nearest neighbor search using hierarchical
navigable small world graphs, IEEE transactions on
pattern analysis and machine intelligence 42 (4) (2018)
824–836.

[21] J. Chen, H.-r. Fang, Y. Saad, Fast approximate knn
graph construction for high dimensional data via re-
cursive lanczos bisection., Journal of Machine Learn-
ing Research 10 (9) (2009).

[22] M. Wang, X. Xu, Q. Yue, Y. Wang, A comprehensive
survey and experimental comparison of graph-based
approximate nearest neighbor search, arXiv preprint
arXiv:2101.12631 (2021).

[23] K. Echihabi, K. Zoumpatianos, T. Palpanas, New trends
in high-d vector similarity search: al-driven, progres-
sive, and distributed, Proceedings of the VLDB Endow-
ment 14 (12) (2021) 3198–3201.

[24] H. V. Simhadri, G. Williams, M. Aumüller, M. Douze,
A. Babenko, D. Baranchuk, Q. Chen, L. Hosseini,
R. Krishnaswamny, G. Srinivasa, et al., Results of
the neurips’21 challenge on billion-scale approximate
nearest neighbor search, in: NeurIPS 2021 Compe-
titions and Demonstrations Track, PMLR, 2022, pp.
177–189.

[25] S. Jayaram Subramanya, F. Devvrit, H. V. Simhadri,
R. Krishnawamy, R. Kadekodi, Diskann: Fast accurate
billion-point nearest neighbor search on a single node,
Advances in Neural Information Processing Systems
32 (2019).

[26] S. Arya, D. M. Mount, Approximate nearest neigh-
bor queries in fixed dimensions., in: SODA, Vol. 93,
Citeseer, 1993, pp. 271–280.

[27] M. D. Manohar, Z. Shen, G. Blelloch, L. Dhulipala,
Y. Gu, H. V. Simhadri, Y. Sun, Parlayann: Scalable
and deterministic parallel graph-based approximate
nearest neighbor search algorithms, in: Proceedings
of the 29th ACM SIGPLAN Annual Symposium on
Principles and Practice of Parallel Programming, 2024,
pp. 270–285.

	1 Introduction
	2 Preliminaries
	2.1 ANN search
	2.2 Existing graph ANN indexing methods
	2.2.1 Vamana graph
	2.2.2 DiskANN
	2.2.3 Batch insertion for graph construction

	3 ScaDANN Method
	3.1 Grid partitioning
	3.2 Overlapping block-level insertion
	3.3 Grid block merge
	3.4 Complexity

	4 Experiments
	4.1 Experimental setup
	4.2 Results and Analysis
	4.2.1 Billion-scale index building in limited memory
	4.2.2 Disk-based search performance

	4.3 Ablation study
	4.3.1 Impact of partition size on index construction
	4.3.2 In-memory graph construction experiments

	5 Conclusion

