Delegations in the Solid Dataspace: a proxy for rights
delegation

Sebastian Schmid?!, Daniel Schraudner! and Andreas Harth®?

"Friedrich-Alexander-Universitit Erlangen-Niirnberg, Nuremberg, Germany

?Fraunhofer Institute for Integrated Circuits IIS, Nuremberg, Germany

Abstract

We focus on the problem how delegations in dataspaces building on Solid are realized. For this, we
propose to use the Rights Delegation Proxy that shall ensure on the one hand privacy by keeping
delegation details hidden, and on the other hand validate delegated actions against defined policies for
legitimacy. We showcase our architecture in a scenario for giving a signature for a loan contract, where
a natural person is delegated signature rights on behalf of an enterprise.

1. Introduction

Agents may act on the hand towards their own goals [1], but may also have to act on behalf of
others, e.g. like a natural person does on behalf of an organization (e.g. as representative or
procurator) or an employee on behalf of their superior (e.g. a given task to fulfill). When rights
are transferred from one party to another, we call this a delegation or power of attorney [2, 3].
With identifiable agents coming to the Web thanks to Solid [4], data sharing and the creation
of organizations and communications are starting to be well defined. At the same time, the
proposed concept of Solid dataspaces (SDS) [5] gains momentum, but here, the aspect of
delegation among agents is still open. Especially for organizations with complex structures and
hierarchies to thrive in dataspaces, organizations need mechanisms to delegate rights.
Delegations refer to agents, e.g. natural persons or legal entities like companies, and can have
complex specifications for defined cases, e.g. in business relations for signing on behalf of a
company up to a defined sum of money. We define the following roles and parts of a delegation:

« Affiliate: an agent that receives transactions

+ Policy: defined rights that may be exercised in transactions towards an affiliate

« Delegate: an agent that acts based on a policy towards an affiliate

« Delegator: an agent that defines a policy for a delegate to act in the delegator’s name

An example of a delegation is a company SME (delegator) that grants its employee Alice
(delegate) the right to sign contracts on its behalf (policy) with BigBank (affiliate). Considering

The 1st Solid Symposium Poster Session, co-located with the 2nd Solid Symposium, May 02 — 03, 2024, Leuven, Belgium
& sebastian.schmid@fau.de (S. Schmid); daniel.schraudner@fau.de (D. Schraudner);
andreas.harth@iis.fraunhofer.de (A. Harth)

@ 0000-0002-5836-3029 (S. Schmid); 0000-0002-2660-676X (D. Schraudner); 0000-0002-0702-510X (A. Harth)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

L == CEUR Workshop Proceedings (CEUR-WS.org)

mailto:sebastian.schmid@fau.de
mailto:daniel.schraudner@fau.de
mailto:andreas.harth@iis.fraunhofer.de
https://orcid.org/0000-0002-5836-3029
https://orcid.org/0000-0002-2660-676X
https://orcid.org/0000-0002-0702-510X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the requirements delegators have for a delegation, a delegation should be (1) private, so an
affiliate shall not necessarily be informed, whether a delegation has happened and who is the
delegate, (2) legitimate, with every taken action by the delegate validated against the delegator’s
policies, and (3) complete, where every initiated action by a potential delegate shall receive a
response.

Approaches exist to bring delegations to the Web, with a public online registry, e.g. the
German Commercial Registry', where companies as delegators publish information on their
delegates, and affiliate look up the information at any time. Closer to dataspaces, an approach
for the International Data Space (IDS) [6] proposed the use of Verifiable Credentials [7], where
the delegator issues Verifiable Credentials for a delegate’s claim to act on behalf of the delegate,
with the evaluation of the claim done by the affiliate via cryptographic proof. In both cases the
delegate’s identity is made known to the affiliate to ensure a legitimate delegation.

To describe data access and sharing in Solid, the most basic way uses access rights for
resources based on Access Control Lists* (ACL) to ensure that specifically stated agents may use
the granted rights. Groups of agents can be described by using vCard groups®, but the hierarchy
stays flat to avoid nesting, while group members need to be shared to check for their membership.
A currently developed approaches for Solid is the Solid Application Interoperability* that uses an
Authorization Agent to manage requests of agents based on ShapeTrees. If an agent’s intention
has to be captured, Open Digital Rights Language’ or Policy Language for Solid’s Metadata-
based Access Control (PLASMA) [8] can be used. Overall, considering privacy issues with
General Data Protection Regulation [9], a delegate’s identity and the delegation are revealed
to an affiliate to set the corresponding ACLs, despite the delegate’s potential interest to stay
hidden.

As we see the SDS approach as promising to realize dataspaces, as Solid builds on Web
standards, is easily adopted, interoperable, and inherently decentralized, we propose to extend
Solid’s architecture on the dataspace application layer, where currently aspects of certification
and policy enforcement are lacking [5]: we propose the Rights Delegation Proxy (RDP) as an
approach for private and legitimate data sharing and delegations, where the overall architecture
shall be compatible with the architecture of the Web and allow automated validation and
execution of actions in a delegation. Our implementation of the RDP is available online °.

2. Example scenario

Consider the following example with the banking institution BigBank and the enterprise
SME, both as legal entities, and Alice, a natural person. The three actors are represented as
authenticated Solid agents and the delegation from SME to Alice is realized using the Rights
Delegation Proxy. The overall flow of messages is shown in Fig. 1.

"https://www.handelsregister.de/
*https://solidproject.org/TR/wac
*https://www.w3.0rg/2006/vcard/ns#Group
*https://solid.github.io/data-interoperability-panel/specification/
’ODRL: https://www.w3.org/TR/odrl-model/
Shttps://github.com/wintechis/delegation-proxy

https://www.handelsregister.de/
https://solidproject.org/TR/wac
https://www.w3.org/2006/vcard/ns#Group
https://solid.github.io/data-interoperability-panel/specification/
https://www.w3.org/TR/odrl-model/
https://github.com/wintechis/delegation-proxy

alice.solidcommunity.net rdp.org smepod.net bankpod.net
(delegate) (RDP) (delegator) (affiliate)
: Authorize proxy - Existing business relation _ >
Define E
@ policy E
EPUT IsignHere?uri=bankpod.net . @ ' '
: @ GET /policies H H
——— '
200 OK | |
GET /signHere =:
(4) 2000k :
<. ---
evaluate,
policy @

PUT /logs/2024-01-01 1
201 Created 1

PUT /signHere (authenticated as smepod.net/profile/card#me) .
>

: 204 No Content 204 No, Content :
o A L o W

Figure 1: The Rights Delegation Proxy receives a request and checks the policies (steps 1-5). After
checking the conditions, the RDP logs and forwards Alice’s request, and returns the response (steps 6-9)

Example: SME has to sign a loan offer from BigBank. To receive the signature, BigBank
prepared a resource https://bankpod.net/signHere. As BigBank expects SME to sign
the contract, BigBank created an ACL signHere.acl with acl:Read and acl:Write rights
exclusively for SME’s WebID https://smepod.net/profile/card#me.

SME defines a policy at https://smepod.net/policies that Alice, authenticated by her
WebID https://alice.solidcommunity.net/profile/card#me, has the right to sign
loan offers from BigBank (1), where pre- and post-condition are given as Shape Expressions
(ShEx) that allow the structural description.

Alice sends an HTTP PUT request to the RDP pointing to
https://bankpod.net/signHere to give the signature (2). The RDP receives Al-
ice’s authenticated request and her WebID. RDP gets (3) the SME’s defined policies, executes a
preflight request (4) and checks (5) the policies against the result of this request whether Alice
has a delegation for https://bankpod.net/signHere, and logs the request (6). As Alice ful-
fills the policy, RDP forwards the request to the specified https://bankpod.net/signHere
(7), but changes the authentication to SME. At BigBank, the request arrives from SME’s We-
bID. As the ACL is set for SME the signature is created (8) and the response forwarded to Alice (9).

3. Rights Delegation Proxy

We present an overview of the interactions between the Solid agents and the Rights Delegation
Proxy during the delegation process. Fig. 2 and 3 show illustrative data used during the
delegation with respect to the example scenario in Sec. 2:

1. The delegator defines a policy that states the delegate’s rights of transactions towards

"https://shex.io/

https://shex.io/

<LoanContractShape>
@prefix acl: <https://www.w3.org/ns/auth/acl#> . https://smepod.net ICLOSED{ P
@prefix alice: <https://alice.solidcommunity.net/profile/card#> . ex:forCustomer [sme:me];
@prefix ex: <https://example.org/vocab#> . https://smepod.net/policies rdf':wpe [ex:LoanConirac(i }
@prefix sme: <https://smepod.net/profile/card#> . @:
@prefix bank: <https:/bankpod.net/> . <> a ex:Policy ; <LoanC. SignedShapes
httosibankood.net ex:forAgent alice:me ; ex:forRessource bank:signHere; oanContractSignedShape: B
ps:llbankpod.nef Nlogs ex:preCondition <LoanContractShape> ; CLOSE_?(Cust i
ex:postCondition <LoanContractSignedShape> . —ir f;f‘_(or eu[sesr[':;igg:i;:ili_
https:/ibankpod.net/signHere.acl ex:'s?gned Jtrue] } '
<> a acl:Authorization ; GET
acl:accessTo <./signHere> ; https://smepod.net/policies @
acl:agent sme:me ; @
acl:mode acl:Write . . byt PuT
GET /signHere [signHere?uri=http net https://alice.solidcommunity.net/
(authenticated as sme:me) <> rdfitype ex:LoanContract ; profile/card#me

lere

i - ex:forCustomer sme:me; ki
ex:signed true .
@ Evaluate policies
<> rdf:type ex:LoanContract ; 200 OK
ex:forCustomer sme:me .

rdp.org

Figure 2: Alice sends a PUT request to the RDP. The RDP retrieves and checks the policies before
proceeding (steps 1-5).

the affiliate. We discern pre-conditions and post-conditions that are evaluated, where
pre-conditions define how a resource has to look like before the delegate may access it,
and post-conditions define how a resource has to look like after the delegate accessed it.

2. The delegate makes an HTTP request to the RDP, where the accessed path is equal to the
resource at the affiliate and the query contains the host of the affiliate’s URL

3. The RDP receives the request, checks that the delegate’s WeblD is authenticated, and
extracts the affiliate’s URI as well as the path to the web resource. The RDP looks up
suiting policies at the delegator depending on the WebID or web resource.

4. The RDP does a "preflight GET request” to the requested resource.

5. The RDP evaluates if the delegate’s request is valid concerning the policies. Therefore
the preflight response is checked against the pre-condition. To check a post-condition,
the RDP evaluates if the message body, which contains the to-be-expected resource state,
adheres to the post-condition. If a condition does not hold, the RDP responds with 403
Forbidden.

6. After checking the request, the RDP logs the result as well as time, content, accessed
resource, and requesting WebID at a location defined by the delegator.

7. The RDP authenticates as delegator to forward the checked request to the resource as
specified by the delegate in the query string.

8. The affiliate responds to the RDP, and the RDP logs the response.

9. The RDP sends the affiliate’s response to the delegate and concludes the flow of messages
for the initiated request.

4. Requirements for roles in delegation

Finally, we analyse the requirements for the roles of affiliate, delegator, and delegate to take part
in the RDP system. Note that we do not make assupmtions in our system on how a delegate
is informed about the delegation coming from a delegator, or how the range of rights shall be
defined between affiliate and delegator.

@prefix acl: <https://www.w3.org/ns/auth/acl#> . https://smepod.net
@prefix alice: <https://alice.solidcommunity.net/profile/card#> .

@prefix ex: <https://example.org/vocab#> . https://smepod.net/policies

@prefix sme: <https://smepod.net/profile/card#> . ol N
refix bank: <https:/bankpod.net/> . <> a ex:Policy ; <LoanContractShape>

@p pe=htle D ex:forAgent alice:me ; ex:forRessource bank:signHere; P

https://bankpod.net ex:preCondition <LoanContractShape> ;

ex:postCondition <LoanContractSignedShape> . }[LoanContractSignedShape>

https://bankpod.net/signHere.acl
PUT https://smepod.net/logs/2024-01-01
<> a acl:Authorization ;
acl:accessTo <./signHere> ; <> rdf:type ex:Log ;
acl:agent sme:me ; ex:forAgent alice:me ;
@ PUT /signHere

acl:mode acl:Write . -) ex:forRessource bank:signHere . https://alice.solidcommunity.net/
(authenticated as sme:me) profile/card#me

’ Jlogs

<> rdf:type ex:LoanContract ;
ignHere ¢ ex:forCustomer sme:me;
ex:signed true . ..
Evaluate policies
<> rdf:type ex:LoanContract ; P >,
ex:forCustomer sme:me; Q 204 No Content
ex:signed true . 204 No Content rdp.org @

Figure 3: The policies are met, so the RDP forwards Alice’s request as SME. After the affiliate applied
the request (marked in blue), the RDP sends the response to Alice (steps 6-9).

Affiliate As the affiliate is aware of the existing business relation, the affiliate knows the
delegator’s identity and thus the WebID. With the WeblID, the affiliacte can define an appropriate
ACL including permissions for the Web resource on on Solid Storage that shall be accesses by
the delegator.

Delegator As the delegator is aware of the business relation with the affiliate, too, the
delegator knows the location where the affiliate stores the shared Web resource and ideally
the rights that are granted by the affiliate. To define a delegation, the delegator has to know
the delegate’s Web ID and define policies that associate the delegate with the affiliate, e.g. via
explicitly stating the Web resource as permitted for the delegate. The rights granted by the
policy may include all or a subset of the delegator’s rights with respect to the affiliate - of course
rights that go further than the one’s granted by the affiliate will not have an effect, if the affiliate
did not grant them. To realize the actions, the delegator has to use and authorize an RDP, e.g.
hosted as its own service or by a provider, and configure the RDP with the locations on where
to find policies and store logs, e.g. the delegator’s own Soldi storage.

Delegate As recipient of the delegator’s policy, the delegate ideally (but not necessarily)
knows which rights are granted by the delegator. Again, if the delegate would try to use rights
that go further than the one’s defined in the policy, the RDP would refuse to perform the action.
To realize the delegation and act on behalf of the delegator, the delegate has to know how and
where to act, that is the delegate needs to know the affiliate’s Web resource, e.g. via the URI,
and the URI of the RDP to realize the action authorized as delegator, so that the action can be
executed at the affiliate.

5. Conclusion

We propose the RDP as a medium between the agents delegator, delegate, and affiliate. As
all delegated actions go through the RDP, which authenticates as the delegator, the RDP is a

component with high responsibility. As a consequence, we shift the power over actions to the
delegator by having exclusive control over policies, while shifting responsibility away from the
affiliate, who has to know only the delegator. The delegate powers are limited to exist only in the
defined policies, so the RDP solves the privacy problem straightforwardly: with authentication
as delegator (like a Solid App), there is no difference of the action’s origins towards an affiliate,
while the delegate’s identity is obfuscated.

As of now, the RDP is a centralized component that manages all incoming delegated requests,
which poses a bottleneck and single point of failure [10]. Handling a single request, however, is
independent of other occurring requests such that multiple instances of an RDP may be run in
parallel. Here, a load balancer may distribute incoming requests to several RDP instances.

Policy implementation is subject to the applied use case, but we see huge potential for complex,
custom policies for large organizations to be possible: to evaluate the pre- and post-conditions
e.g. ShEx can define the expected structural data of resource, or SPARQL? ASK queries can be
used instead. If the conditions in the query are met (as with shapes), the delegate request is
forwarded. Extension to use more complex workflows are also possible, e.g. to use Business
Process Model and Notation (BPMN) to be close to processes in organizations, e.g. contracts
may only be signed after an accountant agreed, or ontologies like WiLD [11] to represent and
monitor workflows similarly.

Acknowledgments

This work is partially funded by the German Federal Ministry of Education and Research via
the MANDAT project (FKZ 16DTM107A).

*https://www.w3.org/TR/sparql11-overview/

https://www.w3.org/TR/sparql11-overview/

References

(1]
(2]

[10]

[11]

S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed., Prentice Hall
Press, USA, 2009.

M. M. Hughes, Remedying financial abuse by agents under a power of attorney for finances,
Marquette Elder’s Advisor 2 (2012) 39. URL: https://api.semanticscholar.org/CorpusID:
37730572.

W. C. Schmidt, Supported decision-making proxy decision-making : A legal perspective,
2015. URL: https://api.semanticscholar.org/CorpusID:53399327.

S. Capadisli, T. Berners-Lee, R. Verborgh, K. Kjernsmo, Solid Protocol, 2021. URL: https:
//solidproject.org/TR/protocol.

S. Meckler, R. Dorsch, D. Henselmann, A. Harth, The Web and Linked Data as a Solid
Foundation for Dataspaces, in: Companion Proceedings of the ACM Web Conference
2023, WWW ’23 Companion, Association for Computing Machinery, New York, NY, USA,
2023, p. 1440-1446. URL: https://doi.org/10.1145/3543873.3587616. doi:10 . 1145/3543873..
3587616.

S. Steinbuss, et al., IDS Reference Architecture Model 4. Technical Report, 2024. URL: https://
github.com/International-Data-Spaces- Association/IDS-RAM_4_0?tab=readme-ov-file.
H. Meyer zum Felde, M. Kollenstart, T. Bellebaum, S. Dalmolen, G. Brost, Extending
actor models in data spaces, in: Companion Proceedings of the ACM Web Conference
2023, WWW ’23 Companion, Association for Computing Machinery, New York, NY, USA,
2023, p. 1447-1451. URL: https://doi.org/10.1145/3543873.3587645. doi: 10 . 1145/3543873..
3587645.

B. Esteves, H. Pandit, Using patterns to manage governance of solid apps, in: Proceedings
of the 14th Workshop on Ontology Design and Patterns (WOP 2023) co-located with the
22nd International Semantic Web Conference (ISWC 2023), CEUR, 2023, p. 43-55. URL:
https://ceur-ws.org/Vol-3636/paper5.pdf.

Parliament and Council of the European Union, Regulation (EU) 2016/679 on the protection
of natural persons with regard to the processing of personal data and on the free movement
of such data, and repealing directive 95/46/ec (General Data Protection Regulation), 2016.
https://eur-lex.europa.eu/eli/reg/2016/679/0j.

R. de Lemos, et al., Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 1-32.

T. Kéfer, A. Harth, Specifying, monitoring, and executing workflows in linked data
environments, in: D. Vrandec¢i¢, K. Bontcheva, M. C. Suarez-Figueroa, V. Presutti, I. Celino,
M. Sabou, L.-A. Kaffee, E. Simperl (Eds.), The Semantic Web — ISWC 2018, Springer
International Publishing, Cham, 2018, pp. 424-440.

https://api.semanticscholar.org/CorpusID:37730572
https://api.semanticscholar.org/CorpusID:37730572
https://api.semanticscholar.org/CorpusID:53399327
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://doi.org/10.1145/3543873.3587616
http://dx.doi.org/10.1145/3543873.3587616
http://dx.doi.org/10.1145/3543873.3587616
https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0?tab=readme-ov-file
https://github.com/International-Data-Spaces-Association/IDS-RAM_4_0?tab=readme-ov-file
https://doi.org/10.1145/3543873.3587645
http://dx.doi.org/10.1145/3543873.3587645
http://dx.doi.org/10.1145/3543873.3587645
https://ceur-ws.org/Vol-3636/paper5.pdf
https://eur-lex.europa.eu/eli/reg/2016/679/oj

	1 Introduction
	2 Example scenario
	3 Rights Delegation Proxy
	4 Requirements for roles in delegation
	5 Conclusion

