
Clark-Wilson Policies in ACP: Controlling 
Information Flow Between Solid Apps
Ellie Forsyth1, Ross Horne2

1Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
2Computer and Information Science, University of Strathclyde, Glasgow, UK

Abstract
This paper explains how to avoid certain unintended information flows between apps connected to 
the same Solid pod. We draw attention to threats faced if security policies for Solid pods 
omit the identities of clients, resulting in confidential information intended for one app leaking to 
other apps. We also explain good practice usage of ACP for avoiding such insecure configurations 
and draw parallels with the famous Clark-Wilson policy model for enterprise security. We 
propose that trusted apps enforcing security policy models should be developed so that pod 
owners need not be policy experts to operate secure pods.

1. Introduction

The Solid protocol [1, 2] is a draft Web specification that aims to standardise how storage, 
called Pods, interact with apps. A key intention is that personal data processing, as 
governed by GDPR for instance, becomes more transparent. A normal usage pattern for 
Solid is that a user – the owner of a Pod – allows multiple apps to connect to the same 
Pod while also logging in to each app using the same identity. A consequence of this is 
that the same identity of a user is used to access resources stored in a Pod via different 
apps. Importantly, not all apps are run by mutually trusted organisations; indeed, in the 
worst case one app may be compromised, and hence measures must be in place to ensure 
that information does not leak from one app to another.

This paper builds on an observation in related work [3] that security policies, permitted by 
Solid, that administer access control solely based on the identity of the user are not 
secure. In particular, we analyse under what conditions the policy of a Solid Pod can be 
configured such that data remains secure even when multiple applications have access to 
the Pod, as described above. We will analyse the problem in terms of information flows 
that are permitted by policies defined using two draft access control mechanisms: Web 
Access Control (WAC) [4, 5] and Access Control Policy (ACP) [6].

WAC was proposed in the early days of the Solid project, as a vocabulary for access 
control rules specifying when users, and groups, identified using URIs known as WebIDs [7], 
can access a given resource in a Pod. These access permissions are stored within an 
Access Control List (ACL) document which is referred to by a Pod when access to a

Solid Symposium 2024, May 2-3, 2024, Leuven, Belgium. Editors of the proceedings (editors): Beatriz Esteves, 
Jan Hofmann, Sebastian Schmid
$ ellie.forsyth.2020@uni.strath.ac.uk (E. Forsyth); ross.horne@strath.ac.uk (R. Horne)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ellie.forsyth.2020@uni.strath.ac.uk
mailto:ross.horne@strath.ac.uk
https://creativecommons.org/licenses/by/4.0


resource is requested. Beyond Solid, WAC is used by the W3C to specify access control for 
some of their own sites. On the other hand, ACP was introduced more recently to set more 
specific permissions in the Solid project than WAC. In particular, ACP can set the client (the 
Solid app) and issuer (identity provider).

This work explains pitfalls related to designing security policies using WAC and ACP. 
We, (1), explain threat models and attack vectors relevant to security policies for Solid;(2), 
demonstrate key attack vectors that exist in Solid pods that employ WAC using the 
standard implementation as offered by the Community Solid Server for example;(3), 
devise measures to address attack vectors, leveraging ACP, and explain why they are 
appropriate; (4) connect the innovation to established security policies, notably Clark-
Wilson, there access do not only relate objects (data) and subjects (users), but also 
include processes which could be Solid apps. The paper also explains that security apps 
could be developed to ensure that Pods are configured with policies that adhere to security 
policy models.

2. ACP in relation to the Clark-Wilson Security Policy Model

In this section, we explain how a key difference between WAC and ACP can be explained in 
terms of the famous Clark-Wilson security policy model that was designed for managing the 
integrity of data used by enterprise processes [8]. The section then goes on to explain some 
attack vectors that arrise if certain features appearing in ACP that also appear in the Clark-
Wilson security policy model are not used correctly.

2.1. ACP compared to WAC

The primary distinction between policies designed using Access Control Policy (ACP) 
rather than Web Access Control (WAC) is their ability to manage access to resources 
with respect to clients and issuers, not only users or groups of users. To understand 
this see the WAC policy in Fig. 1, which we will see does not fully prevent undesirable 
information flows between apps due to its restricted policy framework, which solely allows 
the specification of agents using acl:agent. This particular authorisation rule indicates that 
an agent identified by a WebID can read and write, to any resource in the namespace 
indicated by acl:default.

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> .
2
3 <#exampleOfWAC>
4 a acl:Authorisation;
5 acl:agent <https://solidweb.me/Ellie-s-Pod/profile/card#me>;
6 acl:default <https://solidweb.me/Ellie-s-Pod/Resource1/>;
7 acl:mode acl:Read, acl:Write.

Figure 1: WAC Policy example. An agent can read and write to a given resource.

In contrast, ACP provides more context information, enabling the precise specification of 
agents through acp:agent, apps via acp:client, and Identity Providers (IDPs) using



acp:issuer, depicted in Figure 2. The rest of the paper explains the security implications of 
these features for Solid.

1 @prefix acl: <http://www.w3.org/ns/auth/acl#> . 
2 @prefix acp: <http://www.w3.org/ns/solid/acp#> .
3
4 <#exampleOfACP_1>
5 a acp:AccessControlResource;
6 acp:resource <https://solidweb.me/Ellie-s-Pod/Resource1/>;
7 acp:accessControl <#ownerAccess1>;
8 acp:memberAccessControl <#ownerAccess1> .
9

10 <#ownerAccess1>
11 a acp:AccessControl;
12 acp:apply [
13
14
15

a acp:Policy;
acp:allow acl:Read, acl:Write; 
acp:allOf [

16
17
18
19

a acp:Matcher;
acp:client <https://solidweb.me/ClientPod/app1/clientid.jsonld>; 
acp:agent <https://solidweb.me/Ellie-s-Pod/profile/card#me>; acp:issuer 
<https://solidweb.me/> ] ].

Figure 2: ACP Policy example restricting resource1 such that the subject can only access the pod via 
app1. A single trusted issuer is also named.

2.2. Clark-Wilson in ACP

The Clark-Wilson model and acp:client in ACP have the common feature that the access 
to information via specified clients—the apps accessing resources within a Pod—can be 
restricted. Within the Clark-Wilson model, a fundamental component sometimes called the 
process (or Transformation Procedure c.f. Clark & Wilson) acts as an intermediary between 
the users and the resources, as do apps in the Solid framework.

In Clark-Wilson access is governed by “permissions” that specify the combinations of 
agent, client and resource for which access is permitted. Thus, in ensuring that only 
authorised clients are granted access, acp:client is aligned with the Clark-Wilson security 
policy model.

Figure 3: Schematic example of an ACP policy aligning with the Clark-Wilson security policy model.

Illustrated in Fig. 3 is a conceptual representation of an example scenario for a Solid



Pod, describing access control mechanisms available to Pod Owners. This framework 
empowers Pod Owners to meticulously tailor access privileges, allocating permissions to 
specific resources through designated applications. Furthermore, Pod Owners can permit 
more limited access to other agents, thereby enabling controlled interaction with designated 
resources through authorised applications. In Fig. 3 a Pod Owner limits access to a 
resource resource1 when app1 is used and likewise for resource2 and app2. In addition, 
they have granted more restricted access to an external agent to access resource2 only 
through app2.

The ACP policy governing resource1 in Fig. 3 was already provided in Fig. 2. That ACP 
policy can be extended with the policy in governing resource2 provided in Fig. 4. This 
ACP policy governs how two agents can access a resource referred to as resource2 in Fig. 
3, as described above. This is a realistic scenario since it may be the case that the owner 
wishes to share more widely information in app2 while having the reassurance that 
information in resources accessed from app1 does not flow to app2.

1 <#exampleOfACP_2>
2 a acp:AccessControlResource;
3 acp:resource <https://solidweb.me/Ellie-s-Pod/Resource2/>;
4 acp:accessControl <#ownerAccess2>, <#externalAgent>;
5 acp:memberAccessControl <#ownerAccess2>, <#externalAgent>.
6
7 <#ownerAccess2>
8 a acp:AccessControl;
9 acp:apply [

a acp:Policy;
acp:allow acl:Read, acl:Write; 
acp:allOf [

10 
11 
12 
13 
14 
15 
16

a acp:Matcher;
acp:client <https://solidweb.me/ClientPod/app2/clientid.jsonld>; 
acp:agent <https://solidweb.me/Ellie-s-Pod/profile/card#me>; acp:issuer 
<https://solidweb.me/> ] ].

17
18 <#externalAgent>
19 a acp:AccessControl;
20 acp:apply [
21
22
23

a acp:Policy; 
acp:allow acl:Read; 
acp:allOf [

24
25
26
27

a acp:Matcher;
acp:client <https://solidweb.me/ClientPod/app2/clientid.jsonld>; 
acp:agent <https://solidweb.me/EF-Pod/profile/card#me>;
acp:issuer <https://solidweb.me/> ] ].

Figure 4: ACP Policies with acp:client preventing an unwanted information flow between app2 
and app1 from Fig. 2.

The policy in Fig. 3 inspired by Clark-Wilson we have just shown can be implemented in 
ACP, but is not supported by WAC. While ACP gives us a vocabulary for defining 
policies, its secure usage is contingent upon the proper configuration of ACP policies, 
particularly with respect to acp:client directives, as we elaborate on next.



2.3. Attack vectors when acp:client is omitted

We explain an attack vector enabled when WAC is used or an ACP policy is configured 
insecurely. This proves that policies must stipulate acp:client unless data is sanitised.

Suppose a user intends for two resources to be exclusively accessed by two different apps, as 
depicted in Figure 3. Failure to specify that a client (app) should exclusively access 
resource X results in permitting both apps access to X. The steps that a compromised 
client may take to access resources not intended for them are illustrated by the message 
sequence chart (MSC) depicted in Figure 5. The MSC not only clearly displays the 
attack vector but also the interactions a user can have with their Pod. We assume,(1), 
that an honest app has created a resource. An app compromised by the attacker then 
requests access to a resource within a user’s Pod via an honest IdP, (2). The IdP, 
subsequently, issues an access token named a DPoP token and, (3), this is sent back to the 
requesting app. The app can now spend this DPoP token to access the user’s Pod 
resource, (4); where the request is checked by the authorisation server for the pod. The 
authorisation server will verify the app by checking the resource ACP policy, but, (5), 
since the policy does not state the client (app), access is granted to the app. Therefore,(6), 
a compromised app is accessing a confidential resource within a Pod.

Compromised App (attacker) IdP & User Authorisation Server

(1) honest client writes resource X for user
(2) Requests access from user

(3) DPoP token issued

(4) Spends DPoP token to access resource X

(5) policy for X names user but not client

(6) access granted to resource X

Figure 5: An attack vector valid when the client is not named in the policy.

Using acp:client the attack vector in Figure 5 is preventable. Since the ACP policy is 
able to state within the permissions which app can access a given resource within a Pod, 
the attack vector would be blocked by the authorisation server at step (5). The use of 
acp:client in policies is of course contingent upon client IDs being associated with Solid 
applications. Consequently, apps with dynamic client IDs may only be entrusted with 
sanitised data that may flow freely between apps.



2.4. Technicalities of client identity

The effective use of acp:client is, of course, contingent upon the existence of a usable client 
ID to specify within an ACP policy. Many Solid apps currently generate their client IDs using 
Dynamic Client Registration (DCR), a protocol where an app is registered with the 
authorisation server by sending an HTTP POST request to the client registration endpoint 
[9]. Subsequently, the authorisation server assigns a opaque random client ID for the given 
session. The use of DCR in many apps poses challenge for setting appropriate ACP policies, 
as the client ID is generated after the security policy has been established. Consequently, 
the acp:client predicate cannot reference a client ID generated using DCR. Therefore, we 
recommend that apps are converted from using DCR client ID to a usable, stable one. The 
process for doing this varies from app to app.

It may be possible to have a security policy model where DCR clients can access 
certain data. However, it should be known that such data should be sanitised in the 
sense that it is fit for consumption by any app in the ecosystem that a user connecting to 
the pod may use. As we have seen previously in this paper, information without a policy 
that identifies clients, may flow freely through the system. This potentially means that 
private personal data should not be handled by such apps, or there is a risk of 
violating regulation such as GDPR due to exposure to data breaches involving a single 
compromised app in the ecosystem. Since personal data is a primary use-case for Solid, 
one must ask carefully the question of what counts as sanitised data.

3. Beyond Clark-Wilson: attacks when acp:issuer omitted

Having explained the importance of acp:client, we now explain another attack vector made 
possible by omitting acp:issuer from ACP policies. By specifying authorised Identity 
Providers (IdPs), the acp:issuer predicate restricts authentication and access privileges solely 
to designated IdPs trusted by the pod. Without stipulating acp:issuer threat actors could 
exploit any compromised IdPs listed in a WebID to issue fraudulent tokens, thereby gaining 
unauthorised access to Pod resources without the knowledge or consent of the owner of 
the WebID.

Consider the MSC diagram in Figure 6. In this attack vector, a user does not need to 
request access nor does an honest client (app). The user has however listed a compromised IdP 
in their WebID that would not be acceptable for accessing the pod. Here we see that a 
compromised IdP can simply generate a DPoP token themselves and spend it to access a 
resource within the Pod, without contact the user of app listed in the ACP policy. Once 
again, the authorisation server checks the ACP policy and, assuming the issuer (IDP) has 
not been stated within the policy beforehand, access is given to the resource.

To block this attack vector, the predicate acp:issuer can be added into the policy to 
prevent this attack vector from occurring with an arbitrary IdP. This way a pod can list 
explicitly which IdPs it trusts sufficiently to serve as a root of trust, for access to the 
pod. That is, the IdP is trusted not to exploit it position and also to put in place adequate 
measures to avoid becoming compromised, e.g., through cyber attacks on the IdP itself. 
Note that issuers were not part of the Clark-Wilson security policy model.



User
Agent

Compromised IDP (attacker)
Issuer

Checks ACP policy
Authorisation Server

Self-signs token for agent and client

Spends token to access resource

Checks WebID and sees compromised issuer

gives access to resource

Figure 6: Attack vector if compromised issuer listed in WebID of user and authorisation server 
does not restrict to trusted issuers. Vector allows attacker to access resources intended for a given 
user and client.

4. Towards trusted security policy apps & Conclusion

We have seen, given the attack vectors in Figures 5 and 6, that using ACP is in itself not 
sufficient to ensure that the policy set for a Pod is guaranteeing reasonable confidentiality 
and integrity properties. Pod owners really need to set a policy that adheres to an 
appropriate security policy model, and that requires expertise that almost certainly the pod 
owner will not possess and quite possibly nor will most app developers. As a way to 
address this challenge, we develop a prototype security app as a proof of concept for a 
special highly-trusted app that sets a security policy on behalf of the pod owner.1 The 
security app must have the privileges to control the policy, by setting a policy with the 
access mode acl:Control for any part of the pod that the app is intended to manage and 
by naming explicitly the security app using acp:client. Indeed, it makes sense that when the 
pod is created the security app that is permitted to manage the policy of the pod is 
coupled with the pod by setting an appropriate policy. An organisation hosting such a 
security app must therefore be trusted above all other apps used – perhaps the pod 
provider that is anyway entrusted to properly manage the data in the pod, or an 
organisation trusted for its security practices.

Vulnerabilities discussed in Section 2 resulting from the absence of acp:client in ACP 
policies are critical since they may result in confidential personal data leaking to 
compromised apps. This paper also points out that this is a problem as old as enterprise 
computer security by drawing parallels with the Clark-Wilson security policy model. For a 
more recent example of a security policy model where more than the user is taken into 
account, observe that the Android security policy model is sensitive to the user, platform,

1The app is provided in a repository: https://github.com/eforsyth1/SecureSolidApp

https://github.com/eforsyth1/SecureSolidApp


and developer as well as the app when determining whether access is permitted [10]. 
Rich policies are inevitable when many organisations are responsible for a decentralised 
ecosystem. In the case of Solid, we, in addition, pointed out in Section 3, that the IdP has 
disproportionate power to access resources, if compromised. Hence we recommend that 
policies protect further resources by stipulating which IdPs are trusted, rather than leaving 
the user to decide.

A key challenge is that pod owners do not have the relevant expertise to manually 
set and check their own policies. Priority future work that this paper exposes is the 
need to agree on a precisely defined security policy model for Solid. A security policy 
model goes beyond simply using ACP in the sense that it should enforce correct usage of 
ACP to adhere to confidentiality or integrity goals. An example of such a goal is to avoid 
unintended information flows between apps controlled by different organisations, as 
discussed in this work in a particular instance. Drawing inspiration from Clark-Wilson is 
just a starting point towards this aim.

Acknowledgements This article is partially funded by the COST (European Coopera-
tion in Science and Technology) Action on Distributed Knowledge Graphs (CA19134).

References

[1] A. Sambra, et al., Solid: A platform for decentralized social applications based on
linked data, 2016. MIT CSAIL & Qatar Computing Research Institute.

[2] S. Capadisli, T. Berners-Lee, R. Verborgh, K. Kjernsmo, Solid protocol, 2023. URL:
https://solidproject.org/ED/protocol.

[3] C. Esposito, R. Horne, L. Robaldo, B. Buelens, E. Goesaert, Assessing the Solid
protocol in relation to security and privacy obligations, Information 14 (2023) 411.

[4] O. Sacco, A. Passant, S. Decker, An access control framework for the web of data, in:
IEEE 10th International Conference on Trust, Security and Privacy in Computing and
Communications, 2011, pp. 456–463. doi:10.1109/TrustCom.2011.59.

[5] S. Capadisli, T. Berners-Lee, Web Access Control, 2022. URL: https://solidproject. org/
TR/wac.

[6] M. Bosquet, Access control policy (ACP), 2022. URL: https://solid.github.io/
authorization-panel/acp-specification/.

[7] S. Tramp, H. Story, A. Sambra, P. Frischmuth, M. Martin, S. Auer, Extending the
WebID protocol with access delegation, in: Proceedings of the Third International
Workshop on Consuming Linked Data (COLD2012), CEUR-WS. org, 2012.

[8] D. D. Clark, D. R. Wilson, A comparison of commercial and military computer
security policies, in: IEEE Symposium on Security and Privacy, 1987, pp. 184–184.
doi:10.1109/SP.1987.10001.

[9] J. Richer, M. Jones, J. Bradley, M. Machulak, P. Hunt, Oauth 2.0 dynamic client
registration protocol, 2015. URL: https://datatracker.ietf.org/doc/html/rfc7591.

[10] R. Mayrhofer, J. V. Stoep, C. Brubaker, N. Kralevich, The Android platform
security model, ACM Trans. Priv. Secur. 24 (2021). doi:10.1145/3448609.

https://solidproject.org/ED/protocol
http://dx.doi.org/10.1109/TrustCom.2011.59
https://solidproject.org/TR/wac
https://solidproject.org/TR/wac
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/authorization-panel/acp-specification/
http://dx.doi.org/10.1109/SP.1987.10001
https://datatracker.ietf.org/doc/html/rfc7591
http://dx.doi.org/10.1145/3448609

	1 Introduction
	2 ACP in relation to the Clark-Wilson Security Policy Model
	2.1 ACP compared to WAC
	2.2 Clark-Wilson in ACP
	2.3 Attack vectors when acp:client is omitted
	2.4 Technicalities of client identity

	3 Beyond Clark-Wilson: attacks when acp:issuer omitted
	4 Towards trusted security policy apps & Conclusion

