
Knowledge Graph-Enhanced Retrieval Augmented
Generation for E-Commerce
Zihao Xu1, Zhejun Shen2, Qunzhi Zhou2 and Petar Ristoski2

1Rutgers University, New Jersey, USA
2eBay Inc., San Jose, USA

Abstract
Large Language Models (LLMs) have been proven to be highly effective in various language modeling tasks.
However, LLMs still suffer from intrinsic limitations when it comes to capturing factual and up-to-date data. This
is becoming a bigger challenge in organizations that work with proprietary data, which is updated on daily bases,
and cannot be accessed by public LLMs for legal reasons. This often requires re-training proprietary LLMs within
the organization, or fine-tuning public LLMs on specific tasks using internal data, which is time-consuming
and rather costly. To address these challenges, Retrieval Augmented Generation (RAG) approaches have been
introduced, which retrieve relevant knowledge from available data stores, leading to higher accuracy, and easy
reuse of pre-trained public LLMs.

In this work we introduce a Knowledge Graph (KG)-enhanced retrieval augmented generation approach,
tailored specifically for the e-Commerce domain. We use a relationship-rich inventory-based Knowledge Graph
to identify the most relevant knowledge for the given input and task, using entity linking and KG embeddings,
which is then injected in the LLM prompt. We combine the power of LLMs for natural language understanding
and the power of KGs for quick and easy access to proprietary factual knowledge to generate high-quality results,
omitting hallucinations and generic outputs. We evaluate our approach on three e-Commerce tasks, significantly
outperforming baseline LLM models, in both zero-shot and instruction-tuned settings.

Keywords
eCommerce, Knowledge Graph, RAG, LLM

1. Introduction

Large Language Models have demonstrated exceptional capability across a variety of tasks, revolution-
izing how we interact with machine-generated content. However, when dealing with proprietary data,
significant challenges arise, notably due to the dynamic nature of such datasets, domain specificity, and
legal restrictions on data accessibility. The daily updates of proprietary data, coupled with its restricted
access, predispose public LLMs to inaccuracies and hallucinations, limiting their direct applicability in
specialized domains.

To adapt LLMs for such constrained environments, traditional finetuning, including recent advances
in knowledge editing [1], has been considered. However, this process tends to be both time-consuming
and costly due to the proprietary characteristics of the data involved. Alternatively, Retrieval Aug-
mented Generation [2] offers a promising solution by providing LLMs with timely and domain-specific
information, thus enhancing their performance in specialized tasks. This approach not only circumvents
the exhaustive demands of model finetuning but also proves more economical and efficient, particularly
when modifications are confined to the knowledge database rather than the model itself.

Knowledge Graphs (KGs) are particularly suited for this approach due to their ability to organize
structured, complex information about entities and their relationships [3]. They facilitate the integration
of comprehensive knowledge into LLMs effectively.

In this work, we introduce a robust KG-enhanced RAG framework specifically tailored for the e-
commerce domain. We construct a detailed, relationship-rich inventory-based KG and utilize it to
extract pertinent information through entity linking and KG embeddings. This extracted knowledge is
subsequently injected into the LLM prompt to generate precise responses, in several e-commerce tasks.

Our contributions are summarized as follows:

RAGE-KG 2024: Retrieval-Augmented Generation Enabled by Knowledge Graphs, November 11, 2024, Baltimore, Maryland
© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0/deed.en

• We propose a novel KG-enhanced RAG framework that provides LLMs with seamless access to
up-to-date, domain-specific data.

• We validate the effectiveness of our approach through experiments on three e-commerce tasks,
demonstrating its superiority in both zero-shot and instruction-tuned settings.

The rest of this paper is structured as follows. In Section 2, we give an overview of related work. In
Section 3, we introduce our approach for Knowledge Graph-enhanced retrieval augmented generation.
In Section 4, we present an in-depth evaluation of our approach. We conclude with a summary and an
outlook on future work.

2. Related Work

To augment Large Language Model with knowledge graph, there are generally two primary steps:
extracting relevant subgraphs from the knowledge graph according to the query, and subsequently
incorporating this information into the LLM.

Subgraph retrieval frameworks are divided into two types: non-agent-based and agent-based. The
non-agent-based approach follows a set schema, including identifying relevant entities within the
graph, constructing subgraphs, and pruning the results. Entity resolution can be performed using
either rule-based systems or embedding-based representations [4, 5]. Subgraph construction varies
from straightforward techniques such as one-hop graph retrieval to more sophisticated methods like
Prize-Collecting Steiner Tree [6]. On the other hand, agent-based retrieval is characterized by the use
of a decision-making agent, often an LLM, to guide the retrieval process [7, 8, 9]. This agent formulates
a retrieval plan based on the initial query. The graph database then executes this plan and provides
results. The agent evaluates the outcomes and iteratively refines the plan, engaging in multiple rounds
of interaction with the graph database to enhance the retrieval quality.

Incorporating subgraph data into a Large Language Model can be achieved through the use of either
hard or soft prompts. Hard prompts, also known as verbalization, involve translating graph information
into natural language text, which is then appended to the input prompt of the LLM. KAPING [10]
concatenates the subject, relation and object triple and directly appends it to input prompt. GNN-RAG
[11] reasons over subgraph and retrieve the answer entities and incorporates question to answer entity
paths. Given the proficiency of LLMs in interpreting natural language, no further training is required
in this phase, enhancing efficiency. However, recent work [12] shows that plain text may not fully
capture the complex structures of graphs. Soft prompts address this by converting subgraph information
into a latent representation that is consistent with the LLM’s intrinsic framework. The approach of
GraphToken [13] involves freezing the LLM’s parameters and training a Graph Neural Network to
output graph encoding that are compatible with the LLM’s embedding. Graph Neural Prompting[14]
augments this process with cross-modality pooling and a projection mechanism alongside the GNN
encoder. It also introduces a self-supervised entity-linking prediction loss to capture the inter-entity
relations and structural nuances of the graph.

While there are multiple approaches in the literature using RAG, and KG-enhanced RAG solutions,
to the best of our knowledge, our approach is the first approach in the literature to use KG-enhanced
retrieval augmented generation for e-Commerce.

3. Methodology

In this section, we present our approach for Knowledge Graph-enhanced retrieval augmented generation,
which is specifically tailored for e-Commerce applications. The architecture of our approach is shown
in Figure 1. The framework accepts an e-Commerce task 𝑡, described in natural language, and a textual
input 𝑞, which is usually a product title or a search query, on which the task needs to be executed. For
example, in Figure 1 the model is asked to perform “aspect-value pairs extraction and inference” on a
short product title “Apple 6.1 inch A17 pro”. In the next step we perform entity linking on the input 𝑞,

Figure 1: Knowledge Graph-Enhanced Retrieval Augmented Generation Architecture

to identify all KG entities 𝑉𝑞 in the input. Based on the extracted entities 𝑉𝑞 and the given task 𝑡, we
extract relevant context 𝐶 from the KG in natural language format. The context 𝐶 is then concatenated
with the task 𝑡 and input 𝑞 to construct the final prompt for the large language model [15]. Finally, the
LLM generates the output in the requested format, depending on the task 𝑡.

3.1. Inventory-Based Knowledge Graph

A Knowledge Graph is a labeled, directed graph 𝐺 = (𝑉,𝐸), where 𝑉 is a set of vertices, and 𝐸 is a set
of directed edges, where each vertex 𝑣 ∈ 𝑉 is identified by a unique identifier, and each edge 𝑒 ∈ 𝐸 is
labeled with a label from a finite set of edge labels.

In this work we use a relationship-rich product Knowledge Graph, mined from seller provided data,
which captures entities and relationships to model the whole product inventory in eBay Inc. [16]. The
KG is mined from millions of product listings based on co-occurring aspect-value pairs in product
listings, resulting in a directed weighted graph. More precisely, we generate a node in the graph for
each aspect-value pair that occurs in product listings above a user specified threshold. To set the edge
weights, for each co-occurring pair of aspect-value pair in at least one product listing, a normalized
co-occurrence frequency is calculated. The co-occurrence frequency is normalized by the occurrence of
both nodes in each direction, resulting in directed weights.

We use RDF2vec [17] to generate embedding vectors for all entities and relations. More precisely,
we perform biased walks on the weighted graph to flatten the graph in sequences that can later be
embedded using any language model. This approach is able to capture the neighborhood of each entity
in a single vector, which then can be used for similarity calculation or context inference.

3.2. KG Context Extraction

To be able to extract relevant context 𝐶 for the given task 𝑡, we first identify all KG entities in the input
𝑞. To do so, we use a proprietary entity linking pipeline [18]. Entity linking identifies textual mentions
of named entities in the input, and aligns them to their corresponding entities in the KG. It resolves the
lexical ambiguity of textual mentions and determines their concrete meaning. The output of the entity
linking pipeline is a set of extracted entities for the given input 𝑞, 𝑉𝑞 = {𝑣1, 𝑣2, ..., 𝑣𝑛}. Once the KG
entities are extracted, we can easily access all related information, including information about each
entity, as well as their surrounding neighborhood structure and neighboring entities.

In the context 𝐶 we first add all identified entities 𝐸𝑞 using their normalized label in natural language.

Figure 2: Extracting neighboring entities from the KG.

For example, in Figure 1, we identified “Brand: Apple, Screen Size: 6.1 inch, Chipset: A17 Pro". Further-
more, we are able to attach two different types of context, (i) neighboring entities, and (ii) semantically
similar entities.

3.2.1. Extracting Neighboring Entities from KG

To identify relevant context for the given task 𝑡, we explore the direct neighbours of the extracted
set of entities 𝑉𝑡. To do so, for each entity 𝑣𝑡 ∈ 𝑉𝑡, we retrieve the direct neighbouring entities
𝑈𝑡, including the edge weights, both incoming and outgoing, resulting in a set of triples 𝑈𝑡 =
{(𝑢1, 𝑒𝑣𝑢1, 𝑒𝑢𝑣1), (𝑢1, 𝑒𝑣𝑢2, 𝑒𝑢𝑣2), ...(𝑢𝑛, 𝑒𝑣𝑢𝑛, 𝑒𝑢𝑣𝑛)}, where 𝑢𝑛 is the neighbouring entity, 𝑒𝑣𝑢𝑛 is the
outgoing edge weight, and 𝑒𝑢𝑣𝑛 is the incoming edge weight. Once all the neighboring entities are
extracted, we iterate over the complete list of entities 𝑈 and aggregate the edge weights, for both
outgoing and incoming edges, the outgoing score for each neighbouring entity 𝑢 is calculated as
𝑤𝑢𝑜 =

∑︀𝑛
𝑖=1 𝑒𝑣𝑢𝑖/|𝑈 |, and the incoming score is calculated as 𝑤𝑢𝑖𝑛 =

∑︀𝑛
𝑖=1 𝑒𝑢𝑣𝑖/|𝑈 |. Then the final

score for each entity 𝑢 is calculated as 𝑤𝑢 = (𝑤𝑢𝑜 + 𝑤𝑢𝑖𝑛)/2. All the entities are sorted descending by
their score, and the top-K entities are selected.1 Then for each neighboring entity we generate a factual
knowledge in natural language. Figure 2 shows the extraction of neighbouring entities for the previous
example input. In the first step we extract the neighbouring subgraph, which is then aggregated and
only the top-K entities are returned as the final context. Then for each neighboring entity we generate
a fact, e.g., "Brand Apple produces cellphones with iOS operating system".2 From the example we can
see that the most relevant knowledge is surfacing to the top, e.g., given the input we can infer that the
model is “iPhone 15 Pro”, with operating system “iOS”, with “hexa-core” CPU, and multiple options for
the colors and storage capacity.

1K depends on the context window used in the LLM.
2Note that the KG is divided by category, which allows us to construct rules for improved verbalizing of the triples, e.g., in
this case the category “cellphones” is used.

Figure 3: Extracting semantically similar entities using KG embeddings.

3.2.2. Extracting Semantically Similar Entities from KG

In many e-commerce tasks, such as query expansion or rewriting, it is crucial to identify semantically
similar entities to the entities in the input. To do so, we use the previously built KG embeddings to
calculate cosine similarity between the extracted set of entities 𝑉𝑡 and the remaining entities in the
KG. For each extracted entity 𝑣𝑡 we identify the top-M semantically similar entities from the graph
𝑈𝑠 = {𝑢1, 𝑢2, ..., 𝑢𝑚}.3 Then for each entity we verbalize the set of similar entities and generate the
final context. For example, Figure 3 shows that for the previously extracted “Brand: Apple” we generate
the following context “Brand Apple is similar to: Samsung, Google and LG”. This context is appended
to the previously extracted context 𝐶 .

3.3. LLM Prompting

The standard use of LLMs for most of the tasks, is through prompting [15]. In our approach, we
concatenate the input task 𝑡, the textual input 𝑞 and the KG context 𝐶 , which could be a combination
of the previously described context retrieval approaches, to form the final prompt 𝑃 . The final prompt
𝑃 is then provided as an input to the LLM 𝐿. Such prompts can be used with most of the open source
models, such as Llama4 and Mistral5, or paid APIs, such as ChatGPT6.

3The number of entities depends on the LLM context window size.
4https://huggingface.co/meta-llama
5https://docs.mistral.ai/getting-started/models/
6https://openai.com/chatgpt/

https://huggingface.co/meta-llama
https://docs.mistral.ai/getting-started/models/
https://openai.com/chatgpt/

Table 1
Aspect-value pairs extraction and inference results.

Model Precision Recall F-Score
0-shot LLM 33.48% 8.37% 12.59%
0-shot KG-RAG LLM 57.59% 31.47% 39.49%
Tuned LLM 70.80% 62.65% 65.48%
Tuned KG-RAG LLM 72.55% 64.73% 67.53%

4. Experiments

We evaluate our approach on three e-commerce applications: (i) aspect-value pairs extraction and
inference from product titles, (ii) product title generation, and (iii) query reformulation. On all three
tasks, we compare 4 different settings: (i) zero-shot LLM generation, (ii) zero-shot KG-RAG generation,
(iii) instruction-tuned LLM generation, and (iv) instruction-tuned KG-RAG generation. As a base LLM
we are using Meta-Llama-3-8B-Instruct.7 To train the models in a instruction-tune setting, we use
low-rank adaptation (LoRA) [19].

4.1. Aspect-Value Pairs Extraction and Inference from Product Titles

When listing new products on most of the e-commerce platforms, besides title and description, the
sellers are asked to provide product specifics in the format of aspect-value pairs. While having detailed
product specifics is crucial for surfacing an item to the buyers, and having positive transaction metrics,
requesting the sellers to fill out product specifics is the most common reason for the sellers to abandon
the listing flow. Primarily there are three main reasons: (i) sellers are not familiar with all the product
specifics they are asked to fill out (e.g. model numbers), (ii) the product specifics are redundant to what
the seller has already provided in the product title or description, and (iii) the product specifics are
obvious and could be inferred from the product title or description (e.g. if the seller already specified
they are selling “iPhone”, the brand of the product can be easily inferred to “Apple”). To ease the listing
process, most e-commerce platforms assist the sellers to fill out the product specifics, using aspect-value
extraction and inference, using different NLP and LLM-based solutions.

To evaluate our proposed approach, we annotated a random set of 10,000 listings from eBay Inc.
inventory, using an independent labeling agency. For each listing, the human judges were shown
the title, image and full description of the listings, then they were instructed to extract and infer all
aspect-value pairs. The aspect-value pairs with inter-rater agreement of at least 60% of the annotators
were considered as ground-truth. The final input for the task is the seller provided listing title, and the
expected output is a list of aspect-value pairs.

For both, zero-shot and instruction-tuned models, we use only the title as input, and we task the
models to extract and infer all the aspect-value pairs. For the zero-shot models we use the whole
dataset as test dataset, while for the instruction-tuned models we use 80%-20% train-test split. For
the KG-RAG LLM models, to generate the context we use the “KG neigboring entities” context, as
explained in Section 3.2. To evaluate the performance of the models, we use Precision, Recall and
F-Score. The results are shown in Table 1. From the results we can observe that the zero-shot KG-RAG
LLM approach significantly outperforms the zero-shot LLM model. After instruction-tuning the models,
the performance difference is shrinking, however the tuned KG-RAG LLM still significantly outperforms
the tuned LLM model without KG context. It is apparent that the KG context we are extracting is highly
relevant for the input products, and we are able to extract and infer higher number of aspect-value
pairs (recall), with higher precision, compared to the baseline LLM models.

7https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

Table 2
Product title generation results.

Model BLEU Jaccard
0-shot LLM 50.30% 23.54%
0-shot KG-RAG LLM 56.05% 27.39%
Tuned LLM 58.82% 29.39%
Tuned KG-RAG LLM 64.45% 32.99%

4.2. Product Title Generation

When listing new products, sellers are requested to add a title that summarizes the most important
specifics of the product. On the eBay platform, sellers usually start the listing flow by issuing a search
query which allows them to browse the existing inventory for potential matches, which will allow them
to copy an existing product, instead of generating a new product from scratch. In the cases where the
sellers don’t find a match, they need to proceed to the next step where they have to provide a full title,
description and item specifics. Given that they already provided a search query, we are trying to assist
them with the title generation, i.e., we use the short search query to generate a buyer-attractive title
that contains the most relevant information. For example, given the search query “124300” (which is a
wristwatch reference number), ideally we would like to generate a title like “Rolex Oyster Perpetual
124300 Black Dial 41mm Stainless Steel”.

To evaluate the models, we generate a dataset from the eBay inventory, i.e., we randomly sample
5,000 listing titles, for which we extract the initial seller search query and the final listing title. We
make sure that all the tokens from the search query are present in the final title, and that the initial
search query is less than 5 tokens, and the final title is larger than 5 tokens. The final input for the task
is the initial short seller provided title, and the output is the final listing title.

For both, zero-shot and instruction-tuned models, we use the search query as input, and we task the
models to generate the final title. For the zero-shot models we use the whole dataset as test dataset,
while for the instruction-tuned models we use 80%-20% train-test split. For the KG-RAG LLM models,
to generate the context we use the “KG neigboring entities” context, as explained in Section 3.2.

To evaluate the performance of the models, we use evaluation metrics commonly used in generation
and translation tasks, i.e., BLEU score and Jaccard score. The results are shown in Table 2. The zero-shot
KG-RAG model significantly outperforms the zero-shot LLM model, on both metrics, and the tuned
KG-RAG model significantly outperforms the tuned LLM model. As in the previous task, the added KG
context provides relevant information to the LLM to construct richer title, which is more attractive to
the buyers.

4.3. Query Reformulation

The main task of an e-commerce search engine is to semantically match the user query to the product
inventory and retrieve the most relevant items that match the user’s intent. This task is not trivial
as often there can be a mismatch between the user’s intent and the product inventory for various
reasons. To bridge the semantic gap between the user’s intent and the available product inventory query
rewriting approaches are used. Such approaches use a combination of token dropping, replacement
and expansion. In this work, we focus on token replacement for query reformulation, which has been
proven to be of great importance for low-inventory recovery, as well as recommendation. For example,
if the user is searching for “Nike sneakers” and we cannot retrieve enough items from the inventory,
instead of showing empty result page to the user, we can rewrite the query in a way that we still show
relevant results to the user, such as “Adidas sneakers” or “Puma sneakers”. In this case the reformulation
was done by pivoting the brand entity, but it can be done on different types of entities, or multiple
entities at the same time.

We evaluate the models on a 10,000 random sample used in [20]. The datasets is compiled from
user search logs from eBay. The datasets consist of source and target user query pairs. To identify

Table 3
Query reformulation results.

Model Recall@5
0-shot LLM 4.64%
0-shot KG-RAG LLM 39.16%
Tuned LLM 50.17%
Tuned KG-RAG LLM 63.31%

such query pairs, we track user sessions in which a user first issued a query, the source query, which
retrieved less than 100 results, and the user didn’t click on any item, then within the same session the
user reformulated the query, the target query, and then clicked and/or purchased some of the resulting
products. For each of the source-target query pairs we identify the entity type on which the replacement
took place using our entity resolution approach.

For both, zero-shot and instruction-tuned models, we use the source query and the entity type on
which we want to perform the replacement as input, and we task the models to generate 5 rewrites,
conditioned on the entity type. For the zero-shot models we use the whole dataset as test dataset, while
for the instruction-tuned models we use 80%-20% train-test split. For the KG-RAG LLM models, to
generate the context we use the “semantically similar entities” context, as explained in Section 3.2.

To evaluate the model performance, we use Recall@5, i.e., we compare if any of the top-5 rewrites
generated by the model are exact match with the target query in the ground truth data. The results are
shown in Table 3.

The zero-shot KG-RAG model significantly outperforms the zero-shot LLM model, with a rather big
margin. The tuned KG-RAG model also significantly outperforms the tuned LLM model. The results
show that the KG context is providing highly-relevant information about the similarities between the
entities to the LLM, which is able to correctly identify the entity in the input and replace it with the
most similar and relevant entity from the KG context.

5. Conclusion

In this work, we have presented a robust, knowledge-graph enhanced Retrieval-Augmented Generation
framework for application in the e-Commerce domain. This framework is designed to be task-agnostic.
We conducted evaluations on three high-priority e-Commerce tasks. By injecting the up-to-date and
plain-text knowledge directly to the prompt, zero-shot KG-enhanced RAG significantly outperforms
the 0-shot LLM. The results are even comparable with those of fine-tuned models. This shows that
combining the LLM capabilities for natural language understanding and the KG capabilities for easy
access to up-to-date factual data generates high-quality results.

Moving forward, we plan to further evaluate this framework across additional e-Commerce tasks,
such as recommendation, smart filtering, and AI shopping agents. Another future direction of work is
to expand the approach to different languages.

References

[1] S. Wang, Y. Zhu, H. Liu, Z. Zheng, C. Chen, et al., Knowledge editing for large language models: A
survey, arXiv preprint arXiv:2310.16218 (2023).

[2] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, Retrieval-augmented
generation for large language models: A survey, arXiv preprint arXiv:2312.10997 (2023).

[3] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. D. Melo, C. Gutierrez, S. Kirrane, J. E. L. Gayo,
R. Navigli, S. Neumaier, et al., Knowledge graphs, ACM Computing Surveys (CSUR) 54 (2021)
1–37.

[4] K. Soman, P. W. Rose, J. H. Morris, R. E. Akbas, B. Smith, B. Peetoom, C. Villouta-Reyes, G. Cerono,
Y. Shi, A. Rizk-Jackson, S. Israni, C. A. Nelson, S. Huang, S. E. Baranzini, Biomedical knowledge
graph-optimized prompt generation for large language models, 2024. URL: https://arxiv.org/abs/
2311.17330. arXiv:2311.17330.

[5] Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, X. Wang, Z. Li, Retrieval-augmented
generation with knowledge graphs for customer service question answering, ArXiv abs/2404.17723
(2024). URL: https://api.semanticscholar.org/CorpusID:269449459.

[6] X. He, Y. Tian, Y. Sun, N. V. Chawla, T. Laurent, Y. LeCun, X. Bresson, B. Hooi, G-retriever:
Retrieval-augmented generation for textual graph understanding and question answering, arXiv
preprint arXiv:2402.07630 (2024).

[7] L. LUO, Y.-F. Li, R. Haf, S. Pan, Reasoning on graphs: Faithful and interpretable large language
model reasoning, in: The Twelfth International Conference on Learning Representations, 2024.
URL: https://openreview.net/forum?id=ZGNWW7xZ6Q.

[8] J. Jiang, K. Zhou, W. X. Zhao, Y. Song, C. Zhu, H. Zhu, J.-R. Wen, Kg-agent: An efficient autonomous
agent framework for complex reasoning over knowledge graph, ArXiv abs/2402.11163 (2024). URL:
https://api.semanticscholar.org/CorpusID:267751414.

[9] J. Jiang, K. Zhou, Z. Dong, K. Ye, X. Zhao, J.-R. Wen, StructGPT: A general framework for large
language model to reason over structured data, in: H. Bouamor, J. Pino, K. Bali (Eds.), Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing, Association for
Computational Linguistics, Singapore, 2023, pp. 9237–9251. URL: https://aclanthology.org/2023.
emnlp-main.574. doi:10.18653/v1/2023.emnlp-main.574.

[10] J. Baek, A. F. Aji, A. Saffari, Knowledge-augmented language model prompting for zero-shot
knowledge graph question answering, in: ACL 2023 Workshop on Matching Entities, 2023.

[11] C. Mavromatis, G. Karypis, Gnn-rag: Graph neural retrieval for large language model reasoning,
ArXiv abs/2405.20139 (2024). URL: https://api.semanticscholar.org/CorpusID:270123131.

[12] B. Fatemi, J. Halcrow, B. Perozzi, Talk like a graph: Encoding graphs for large language models, in:
The Twelfth International Conference on Learning Representations, 2024. URL: https://openreview.
net/forum?id=IuXR1CCrSi.

[13] B. Perozzi, B. Fatemi, D. Zelle, A. Tsitsulin, M. Kazemi, R. Al-Rfou, J. Halcrow, Let your graph
do the talking: Encoding structured data for llms, 2024. URL: https://arxiv.org/abs/2402.05862.
arXiv:2402.05862.

[14] Y. Tian, H. Song, Z. Wang, H. Wang, Z. Hu, F. Wang, N. V. Chawla, P. Xu, Graph neural prompting
with large language models, in: AAAI 2024, 2024. URL: https://www.amazon.science/publications/
graph-neural-prompting-with-large-language-models.

[15] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, G. Neubig, Pre-train, prompt, and predict: A systematic
survey of prompting methods in natural language processing, ACM Computing Surveys 55 (2023)
1–35.

[16] P. Ristoski, S. Kandasamy, A. Matiushkin, S. Kamath, Q. Zhou, Wisdom of the sellers: Mining
seller data for ecommerce knowledge graph generation, in: European Semantic Web Conference,
Springer, 2023, pp. 195–199.

[17] P. Ristoski, H. Paulheim, Rdf2vec: Rdf graph embeddings for data mining, in: International
Semantic Web Conference, Springer, 2016, pp. 498–514.

[18] Q. Zhou, Z. Wu, J. Degenhardt, E. Hart, P. Ristoski, A. Mandal, J. Netzloff, A. Mandalam,
Leveraging knowledge graph and deepner to improve uom handling in search., in: ISWC
(Posters/Demos/Industry), 2021.

[19] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, Lora: Low-rank
adaptation of large language models, arXiv preprint arXiv:2106.09685 (2021).

[20] S. Farzana, Q. Zhou, P. Ristoski, Knowledge graph-enhanced neural query rewriting, in: Companion
Proceedings of the ACM Web Conference 2023, 2023, pp. 911–919.

https://arxiv.org/abs/2311.17330
https://arxiv.org/abs/2311.17330
http://arxiv.org/abs/2311.17330
https://api.semanticscholar.org/CorpusID:269449459
https://openreview.net/forum?id=ZGNWW7xZ6Q
https://api.semanticscholar.org/CorpusID:267751414
https://aclanthology.org/2023.emnlp-main.574
https://aclanthology.org/2023.emnlp-main.574
http://dx.doi.org/10.18653/v1/2023.emnlp-main.574
https://api.semanticscholar.org/CorpusID:270123131
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://arxiv.org/abs/2402.05862
http://arxiv.org/abs/2402.05862
https://www.amazon.science/publications/graph-neural-prompting-with-large-language-models
https://www.amazon.science/publications/graph-neural-prompting-with-large-language-models

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Inventory-Based Knowledge Graph
	3.2 KG Context Extraction
	3.2.1 Extracting Neighboring Entities from KG
	3.2.2 Extracting Semantically Similar Entities from KG

	3.3 LLM Prompting

	4 Experiments
	4.1 Aspect-Value Pairs Extraction and Inference from Product Titles
	4.2 Product Title Generation
	4.3 Query Reformulation

	5 Conclusion

