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Abstract
The recent interest in approaching more language and knowledge processing tasks via the Retrieval-Augmented
Generation (RAG) framework allows for the consideration of evaluation criteria that can lead to a discrepancy in
the way that the set of relevant results is determined for assessing retrieval-based performances. In this work, we
describe and reflect on the consequences of such a discrepancy, and present basic results from experimentation
over a RAG-based benchmark for Question Answering.

1. Introduction

Retrieval-Augmented Generation (RAG) [1] has been increasingly applied to a larger number of language
processing tasks and domains, given its ability to combine explicit knowledge external to a Large
Language Model (LLM) with the implicit knowledge that this LLM contains spreading across its billions
of parameters [2, 3]. Throughout the three stages of its pipeline, a RAG-based system typically aims
to address a problem of Question Answering (QA) nature, where some initial query or question is to
be answered. For this question, RAG allows (i) to first retrieve a set of textual passages such that they
become highly relevant contexts where the answer should be obtained from, and then (ii) to augment a
well-engineered prompt by incorporating the contexts, so that (iii) to input this augmented prompt to a
LLM generator. By the way that these stages work, and given the main involved items in a RAG pass
–question, (retrieved and relevant) context(s), and (generated and correct) answer(s)–, several evaluation
criteria are considered in related works [2]. The most prominent criteria are the question-context
relevance (the paradigmatic Information Retrieval scenario), the context-answer relevance (where
the prompt engineering aspects enter into play, and the so-claimed abilities of the LLM as well as its
drawbacks, prominently hallucinations [4, 5]), and the question-answer correctness [6]. In the interplay
of these criteria, an incompatibility arises when different relevant sets are used, specifically, by aiming
to evaluate the end-to-end performance of a RAG-based method against items which, while correct,
are never presented to the generator so they are irretrievable by it. The rest of this work discusses
this incompatibility in detail and illustrates it with experimental results from a Question Answering
benchmark.

2. The problem of determining the relevant set of contexts

Let 𝒟 denote the universe of all documents under consideration in a retrieval scenario. In our case,
this is an indexed collection of uniquely identified textual passages with respect to which the first RAG
stage, retrieval, obtains a ranking of contexts to use during its second stage, augmentation, to build
the prompt that elicits the last stage, generation. Given a question 𝑞, a retrieval method 𝑚 is used to
score documents from 𝒟 and return a ranking 𝑂𝑢𝑡(𝑞) of the top 𝑘 documents for 𝑞. The question 𝑞
can be, among the most typical cases, a (primitive) query in the traditional sense within Information
Retrieval (IR), a wrapper of a primitive query that accompanies it in an augmented prompt asking
to the generator for ranking with respect to the query, or a question within a Question Answering
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task for which the obtained answers are to be evaluated with some retrieval criteria (e.g. answer
recall, or exact matching, in QA [7]). The ranking 𝑂𝑢𝑡(𝑞) is evaluated with respect to a set of relevant
documents for 𝑞, 𝑅𝑒𝑙(𝑞) ⊆ 𝒟. For short, let us refer to this sets by 𝑂𝑢𝑡 (the retrieved results) and 𝑅𝑒𝑙
(the relevant results), respectively. Two set-based metrics, precision (𝑃 ) and recall (𝑅), are typically
used as fundamental criteria to evaluate a retrieval system. They are defined, in terms of 𝑂𝑢𝑡 and 𝑅𝑒𝑙,
as 𝑃 = |𝑂𝑢𝑡 ∩𝑅𝑒𝑙|/|𝑂𝑢𝑡| and 𝑃 = |𝑂𝑢𝑡 ∩𝑅𝑒𝑙|/|𝑅𝑒𝑙|.

Given the way that the relevant set is usually obtained when building a test collection, a selection of
𝑀 methods ℳ = {𝑚𝑖}𝑀𝑖=1 are used to retrieve a ranking for 𝑞, specifically top 𝑘𝑖 results with each
method 𝑚𝑖. As typically the cut-off 𝑘𝑖 = 𝐾 for all 𝑖, a maximum of 𝑀 *𝐾 documents are pooled for
𝑞 and judged according to some relevance criteria. In the case of binary relevance, this leads to the
set 𝑅𝑒𝑙 defined above, 𝑅𝑒𝑙(𝑞) = {𝑑 ∈ 𝒟 : 𝑑 is relevant to 𝑞} =

⋃︀
𝑖𝑅𝑒𝑙𝑚𝑖,𝑘𝑖(𝑞), where 𝑅𝑒𝑙𝑚𝑖,𝑘𝑖(𝑞) is

the subset of documents in 𝑂𝑢𝑡𝑚𝑖,𝑘𝑖(𝑞) such that they are relevant to 𝑞, and 𝑂𝑢𝑡𝑚𝑖,𝑘𝑖(𝑞) the top 𝑘𝑖
documents for 𝑞 retrieved by 𝑚𝑖 that were put in the pool to build 𝑅𝑒𝑙.

For simplicity, let us assume that (1) the method used during the retrieval phase of a RAG system 𝑆
is 𝑚′ ∈ ℳ, and let us also assume that (2) the top 𝐾 ′ results ranked by 𝑚′ is such that 𝐾 ′ < 𝐾 . This
is a common situation since for test collections it is often the case that 𝐾 = 100 or 𝐾 = 1, 000 while
𝐾 ′ is way smaller, in the order of tens (e.g. a recently devised benchmark [8] uses 𝐾 ′ = 3, 5, 10 and 20).
From (1) and (2), it follows that (3) 𝑅𝑒𝑙′ = 𝑅𝑒𝑙𝑚′,𝐾′(𝑞) ⊊ 𝑅𝑒𝑙. The 𝐾 ′ contexts in 𝑅𝑒𝑙′ are then used
to augment the prompt in the second RAG stage.

When the prompt is finally input to the LLM in the third RAG stage, generation, the LLM, unlike
any of the methods in ℳ such as 𝑚′, does not consider 𝒟 as the universe to retrieve from, but 𝑅𝑒𝑙′,
the set of contexts that it has seen or is aware of for 𝑞. The rest of the documents in 𝑅𝑒𝑙 that are
not seen during generation, this is, 𝑅𝑒𝑙 −𝑅𝑒𝑙′, cannot be retrieved by LLM.1 Hence, for any context
𝑑 ∈ 𝑅𝑒𝑙−𝑅𝑒𝑙′, 𝑑 /∈ 𝑂𝑢𝑡𝐿𝐿𝑀 (𝑞), with 𝑂𝑢𝑡𝐿𝐿𝑀 (𝑞) –𝑂𝑢𝑡𝐿𝐿𝑀 , for short– the set of results returned by
the LLM in its generated answer. And because of (4) 𝑂𝑢𝑡𝐿𝐿𝑀 ⊆ 𝑅𝑒𝑙′, then from it and (3) it follows
that (5) 𝑂𝑢𝑡𝐿𝐿𝑀 ⊆ 𝑅𝑒𝑙, and from this, (6) 𝑂𝑢𝑡𝐿𝐿𝑀 ∩ 𝑅𝑒𝑙′ = 𝑂𝑢𝑡𝐿𝐿𝑀 ∩ 𝑅𝑒𝑙. This means that the
measurement of the performance of 𝑆 (the LLM performance as a re-ranker of the augmented contexts
𝑅𝑒𝑙′) in terms of precision does not change if measured with respect to the original relevant set 𝑅𝑒𝑙,
𝑃 (𝑆) = |𝑂𝑢𝑡𝐿𝐿𝑀 ∩𝑅𝑒𝑙′|/|𝑂𝑢𝑡𝐿𝐿𝑀 | = |𝑂𝑢𝑡𝐿𝐿𝑀 ∩𝑅𝑒𝑙|/|𝑂𝑢𝑡𝐿𝐿𝑀 |. However, recall measurement
does change since the denominator in its expression changes from 𝑅𝑒𝑙 to its proper subset 𝑅𝑒𝑙′.

This discrepancy in the criterion over the relevant set of contexts has a direct effect in the entire
evaluation, since the use of 𝑅𝑒𝑙 instead of 𝑅𝑒𝑙′ for recall-oriented measures involves to divide by a
larger size of relevant set and hence leads to observing an underperforming system. Recent literature
aimed to establish a benchmark [8] for vanilla instances of the RAG framework, for example, in a
paradigmatic task like QA, presents an evaluation within the 𝑅𝑒𝑙-based criterion that we criticize in
our work. In the next section, we describe its methodology and demonstrate the discrepancy by the
means of experimental results with this benchmark.

3. Experimental results over ALCE benchmark

The ALCE benchmark [8] studies RAG performance over three QA datasets. One of them, QAMPARI [9],
requires to answer each question with one or more entities –in most cases, with multiple entities–
from a knowledge graph (KG) of reference. When asked via the augmented prompt to answer the
instance question, the surface form –with which each of the entities appear in one or more of the
retrieved contexts provided during augmentation– is to be found in the generated answer as an exactly
delimited substring. This evaluation metric is referred to as exact matching (EM) [7], and essentially
corresponds to a recall-oriented measurement where all the known relevant entities are contrasted
with those actually present, i.e. retrieved by the LLM as a re-ranker, in the generated answer.

Within the family of QA problems, ALCE assesses the instantiation of attributed QA or self-supported
QA [10, 5], a task that seeks to answer a question and complement it with evidence cited from the

1Unless due to some hallucination that generates in the answer a (n identifier of a) context that has not seen in the prompt.



contexts that augment the prompt, in order to support the correctness of said answer. This citation of
the passages supporting the answer is evaluated with the basic set-oriented metrics of 𝑃 and 𝑅. It often
happens that when augmenting the prompt with only the top 𝐾 ′ = 5 or 10 of the retrieved contexts,
the RAG-based system is not providing the generator with a set of available contexts among which
all the relevant entities can be supported, but instead only a subset. As we analyze it in the previous
section, evaluating the recall-based measurements with respect to 𝑅𝑒𝑙 (the set of relevant contexts for
the first RAG stage) can be misguiding in reporting the true performance when taking into account only
those contexts available at generation time. There are then two aspects of the performance that are
evaluated by a recall-based metric: answer recall and citation recall, i.e., two criteria possibly affected
by the discrepancy previously analyzed. For the latter metric, the phenomenon happens with 𝑅𝑒𝑙𝐶 ,
the set of relevant contexts for the query at retrieval stage, and 𝑅𝑒𝑙′𝐶 , its subset when restricting it to
only the contexts used during augmentation. For the former, answer recall, an analogous situation is
led to by the set of known correct answers, 𝑅𝑒𝑙𝐴, and the subset 𝑅𝑒𝑙′𝐴 induced by said set of relevant
contexts available during augmentation where correct answers appear.2

We experiment with a setup for a naive RAG framework based on the setting used by ALCE [8].
In a similar fashion as done previously for other tasks [3, 11], our experiments assess parameter
configurations in all the three stages, including, for example, the retrieval method and cut-off, the order
of passages from retrieval into augmentation and the number of shot examples, and the generator
model. The parameters, and the values experimented with for each of them, are all very similar to the
ones used in ALCE –in some cases identical, as it is the case for retrieval and generation parameters–.
A major distinction is in our prompt, that is longer than its ALCE counterpart and accounts for more
instructions, to better and more politely specify the expected answer. The main request in the prompt
for both the benchmark and our experiments is to answer the question and refer to the passages that
support such a response. In this way, our work is an approximation to reproduce part of the experiments
developed in the benchmark. We work with a selection of 60 questions from QAMPARI dataset, 20
from each of the three question groups (simple, intersection, and complex, all based on hopping criteria
over the KG of reference), selected to make all the possible parameter configurations meaningful. In
particular, we ensure that there is a relevant answer occurring in the top 3 (and so in the top 5 and 10)
retrieved passages for each method for each question.

Table 1 reports our experimental results for configurations where the first RAG stage is performed
by a dense retriever and the prompt does two-shot learning with provided examples. The LLMs used
in these configurations are GPT-3.5 (gpt-3.5-turbo-0125) [12] and GPT-4 [13]. As we described in the
previous section, the performance in terms of precision is not affected by the involved factors, except
for a possible larger degree of non-determinism in an LLM that here is not required. Instead, for
recall-based measurements of answer and citation, we can observe that our obtained results when
considering, as in ALCE, 𝑅𝑒𝑙 as the denominator of 𝑅 are in the magnitude of the values reported in
ALCE. In the alternative evaluation w.r.t. 𝑅𝑒𝑙′ –bottom half of Table 1–, where the performance of
the LLM generation is assessed only with respect to the contexts that were available at prompting, the
performances are substantially higher and, as we argue, report a more principled assessment of the
respective RAG configuration.

4. Conclusion

This paper has reflected on the aspect of determining appropriately the set of relevant contexts with
which to evaluate the performance of a RAG system. Our observations call for considering its deter-
mination in terms of the subset of retrieved contexts that is available during augmentation such that
the evaluation does not arrive to claim an underperforming method, while also uses a more principled
criterion.

2This is a simplification of the less likely, general case, where a context is deemed relevant by a first-pass retrieval method, i.e.
retrieved in ranking 𝑂𝑢𝑡(𝑞), yet it does not support any relevant answer for 𝑞.



Table 1
Experimental results for RAG configurations with GPT-3.5 and GPT-4 as the generators, over our set of 60 selected
QAMPARI instances. In all these experiments, retrieval is dense, and the prompt includes two examples. In each
block by LLM, the best performance on a metric is shown in bold.

QAMPARI instances: 60 questions. Relevance set: 𝑅𝑒𝑙.

LLM
Retrieval

cutoff
Passage

order
Answer
Recall

Citation
Precision

Citation
Recall

GPT-3.5

5
By ranking 0.1046 0.7056 0.1563

Random 0.0993 0.6403 0.1227

10
By ranking 0.1043 0.7303 0.1655

Random 0.0883 0.6315 0.1145

GPT-4

5
By ranking 0.1563 0.6842 0.2031

Random 0.1364 0.6833 0.1677

10
By ranking 0.1817 0.6404 0.2156

Random 0.1786 0.7039 0.2111

QAMPARI instances: 60 questions. Relevance set: 𝑅𝑒𝑙′.

LLM
Retrieval

cutoff
Passage

order
Answer
Recall

Citation
Precision

Citation
Recall

GPT-3.5

5
By ranking 0.4596 0.7056 0.5425

Random 0.4018 0.6403 0.4956

10
By ranking 0.4085 0.7303 0.4706

Random 0.3393 0.6315 0.3795

GPT-4

5
By ranking 0.624 0.6842 0.6714

Random 0.5937 0.6833 0.6753

10
By ranking 0.5931 0.6404 0.6115

Random 0.5806 0.7039 0.6264
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