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Abstract
Our planet’s resources are finite. Despite significant advancements in fields such as engineering, environmental
considerations often lag behind. To address this gap, early education on sustainable practices is crucial. This article
advocates for using accessible and scalable technology, such as conversational generative artificial intelligence
(GenAI), to enhance university students’ understanding of planetary boundaries. On pairing 10 engineering
students with an initial prototype of a GenAI chatbot equipped with relevant knowledge, our findings suggest
that even with limited initial understanding, students gained new insights, and developed further curiosity about
planetary boundaries and their future careers. Building on these implications, we developed a multi-layered
prompt architecture employing mixed-initiative interactions to proactively guide students’ exploration. The
efficacy of our approach was evaluated through an A/B test comparing first and second prototypes with 40
engineering students globally. Results demonstrated improvements in chatbot usability and technology acceptance.
We propose further development of this technology, including a structured, domain-specific curriculum, supported
by university initiatives, to foster sustainable thinking among future engineers.
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1. Introduction

While climate change dominates the headlines [1], there are actually nine planetary boundaries that are
critical to maintaining Earth’s stability [2]. These boundaries include climate change, biosphere integrity,
land-system change, freshwater use, biochemical flows, ocean acidification, atmospheric aerosol loading,
stratospheric ozone depletion, and novel entities. Alarmingly, by 2023, Earth has already crossed six
of these boundaries (See Figure 1). Crossing these thresholds risks triggering irreversible and abrupt
environmental changes, underscoring the urgent need for comprehensive sustainability efforts [3].

The nine planetary boundaries represent critical thresholds within which humanity can safely
operate to maintain Earth’s stability. Planetary boundaries include (i) Climate change, where excessive
greenhouse gas emissions drive warming and extreme weather; (ii) Biosphere integrity, compromised by
species extinction from habitat destruction and pollution; (iii) Land-system change, where deforestation
and urbanisation reduce biodiversity and soil health; and (iv) Freshwater use, strained by over-extraction
and contamination, leading to water scarcity and potential conflicts. (v) Biochemical flows from nitrogen
and phosphorus disrupt ecosystems, creating toxic “dead zones,” while (vi) Ocean acidification from
CO2 absorption threatens marine life. (vii) Atmospheric aerosol loading affects air quality and climate,
(viii) Stratospheric ozone depletion weakens UV protection, and (ix) Novel entities like plastics and
heavy metals accumulate, disrupting biological systems. Exceeding these boundaries risks irreversible
environmental damage and undermines ecosystems essential for human survival.

However, an excessive emphasis on carbon emissions often overshadows other critical ecological
thresholds, a phenomenon described as “carbon tunnel vision” [4]. Research and funding are dispropor-
tionately channelled towards climate change, leaving planetary boundaries such as biosphere integrity
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Figure 1: Illustration of the nine planetary boundaries, with unbreached boundaries in blue (adapted from [2]).
Representing critical systems essential for stability the stability of ‘Spaceship Earth,’ (as coined by Buckminster
Fuller [7]), for underscoring our planet’s finite resources and collective responsibility for sustainability.

or biochemical flows underexplored [4]. This skewed focus risks partial solutions and unforeseen
trade-offs, ultimately undermining broader sustainability goals [5]. A more holistic approach, allocating
resources across all nine planetary boundaries, is essential to safeguard Earth’s resilience [6].

Everyday, we have less margin before reaching these critical boundaries. Wemust urgently slow down
and reverse our approach to prevent further damage and begin repairing our planet. To acknowledge,
prevent the crossing of these boundaries, and to begin recovering the damage already done, education
is essential. A Yale University survey shows that awareness of environmental sustainability among
students rose from 21% in 2015 to 41% in 2020 [8]. While this signals progress, much work remains to
equip the youth with the tools needed to make an impactful change in their respective fields.

Engineers, who play a crucial role in building our limitless future using our planet’s limited resources,
must recognize their duty not only to improve lives but also to sustain them [9]. From designing
energy-efficient buildings to developing new forms of renewable energy, engineers are at the forefront
of tackling environmental issues. For instance, the creation of carbon capture technologies has emerged
as a promising solution to mitigate climate change by trapping CO2 emissions from industrial processes
[10]. Additionally, engineers are involved in the design of green urban spaces, where natural ecosystems
are integrated into city landscapes to combat biodiversity loss and reduce urban heat [11]. These exam-
ples illustrate how sustainable engineering principles are vital in addressing complex environmental
challenges.

To equip future engineers for the pressing challenge of sustainability, we propose utilising generative
artificial intelligence (GenAI), specifically in the form of a chatbot, to deliver accessible education and
guidance on planetary boundaries. In pursuit of this objective, we developed an initial GenAI prototype
designed to serve as an educational aid [12], with a targeted focus on empowering engineering students
to understand and integrate planetary boundaries within their academic projects and career trajectories.

Despite the promising educational potential of GenAI models such as ChatGPT [13], their application
is not without environmental cost, primarily due to the significant electricity demands associated with
their operation [14]. Nevertheless, studies indicate that AI-driven interactions often enhance learning
efficiency and engagement, surpassing traditional methods [15]. Empirical evidence further supports
GenAI’s efficacy as an educational tool, outperforming classic virtual content formats like videos;
for instance, interactive virtual content groups scored significantly higher than online class groups
[16]. Furthermore, GenAI-powered educational initiatives extend valuable resources to remote and



underserved communities [17]. In contexts where educational benefits justify the environmental costs,
GenAI represents a viable and powerful tool for advancing both educational outcomes and sustainability
awareness.

Our research investigates the prospects of a generative artificial intelligence (GenAI) chatbot designed
to educate engineering students about planetary boundaries and sustainable engineering practices.
This study was conducted in two phases, each aimed at refining and evaluating the effectiveness of the
AI agent in enhancing students’ learning experience. In the first phase, we tested the initial version
of our GenAI chatbot, referred to as Prototype I (see Section 3), with a small group of 10 engineering
students in an in-person setting. This Large Language Model(LLM) based chatbot was prompted to
provide detailed information related to planetary boundaries and sustainable engineering concepts.
After the students interacted with the chatbot, we conducted semi-structured interviews to assess their
understanding of the material presented and to evaluate the overall experience of the chatbot as an
educational tool.

The feedback collected during this phase, analysed through qualitative thematic analysis [18], was
instrumental in shaping our design. While all participants (10 out of 10) had not been introduced to the
concept of planetary boundaries prior to our study, they nevertheless found the chatbot to be informative
and easy to use, while highlighting several challenges that needed to be addressed. Specifically, many
students expressed concerns regarding the flow of conversation, noting that it occasionally felt disjointed
and lacking in personalisation. They indicated a desire for more specific examples and contextual
information that would directly relate to their domain of study. Despite these challenges, our results
suggest that the chatbot had successfully sparked a genuine interest in the topic of planetary boundaries
among these engineering students, indicating its potential as a valuable educational resource.

Building on our findings from the first phase, for the second phase of our study, we made significant
refinements to the design of the chatbot by implementing a human-centred interaction layer [19], built
using initial user feedback, for a better alignment with user expectations. We then tested this Prototype
II (see Section 4), with a larger cohort of 40 international engineering students recruited online via
Prolific [20]. The interaction-layered prompt architecture included elements such as an introduction to
planetary boundaries and their relevance to the students’ field of study, the generation of a “planetary
boundaries statement” tailored to the students’ current or hypothetical projects, and discussions on
sustainability in relation to their future careers, as well as the broader future scope for sustainable
engineering. It featured specific examples tailored to the students’ curriculum and included interactive
elements designed to encourage active participation. We conducted an A/B test with 40 students, where
20 students interacted with Prototype I and the remaining 20 tested Prototype II. Prototype I was built
using zero-shot prompting and retrieval-augmented generation (RAG), whereas Prototype II employed
an interaction-layer prompt architecture with RAG. This between-subjects testing approach required
each participant to engage with the chatbot for five minutes, after which they completed a feedback
questionnaire set that also included the Chatbot Usability Questionnaire (CUQ) [21] and the Technology
Acceptance Model (TAM) for education initiatives [22].

Qualitative analysis revealed an enhanced user satisfaction with the conversational flow of Prototype
II, with participants expressing a desire for more multimodal and in-depth content. Among the 40
students who participated in this second phase of our study, only one reported prior knowledge of the
nine planetary boundaries. Furthermore, the iterative comparison resulted in statistical significance
in both CUQ and TAM, indicating improved and robust usability and technology acceptance between
Prototype I and Prototype II.

We contribute empirical findings on the effectiveness of a GenAI chatbot in educating engineering
students on planetary boundaries, gathered from a two-phase study involving 50 students. Through
iterative testing, incorporation of user feedback, and the implementation of an interaction layer [19], we
demonstrate significant improvements in user alignment, usability, and technology acceptance between
prototypes, as measured by the Chatbot Usability Questionnaire (CUQ) and Technology Acceptance
Model (TAM). Our discussion underscores the potential of AI-driven tools in higher education but also
raises important human-centred and planet-centred considerations for a successful adoption of such
technologies.



This study also highlights the importance of universities incorporating planetary boundaries educa-
tion into engineering curricula, as evidenced by our finding that only 2% of participants (1 out of 50)
had prior knowledge of this concept. Our results demonstrate that thoughtfully designed GenAI is a
viable, accessible, and scalable tool to bridge this gap, fostering sustainability awareness and equipping
future engineers to operate within the ecological limits of ‘Spaceship Earth’ [7]. With the technology at
hand, it is high time to initiate this integration, allowing universities to play a pivotal role in preparing
students to address global environmental challenges. This work sets the foundation for future research
to refine and expand the use of GenAI in sustainability education, shaping a more environmentally
conscious generation of professionals.

2. Related Works

2.1. GenAI for Education

With the recent advancements in generative artificial intelligence (GenAI), there has been a surge of
interest in harnessing this technology across diverse fields. As foundation models capable of adapting
to various use cases by learning from extensive datasets [23], language-generative models—such as
ChatGPT [13]—have garnered particular attention within education as a means of stimulating curiosity
and enhancing engagement among learners [24].

The growing prevalence of artificial intelligence in education has catalysed numerous studies exam-
ining the impact of chatbots on learning outcomes [25]. For instance, a systematic literature review by
[26] analysed 74 publications on chatbots in education, revealing their potential to improve student
engagement and personalise learning experiences. Similarly, [27] conducted a systematic review of 36
studies, highlighting that chatbots can effectively support learners by providing immediate feedback
and fostering interactive learning environments.

Similar findings are observed across diverse educational contexts. Chatbot-assisted learning environ-
ments have been shown to increase student motivation and engagement in various subjects [28]. In
another study, [29] demonstrated that chatbots could effectively provide academic counselling, guiding
students in selecting elective courses—an outcome that highlights the adaptability and versatility of
AI-driven educational tools.

Furthermore, the application of chatbots in specialised subject areas has proven promising. For
example, using a chatbot to support Chinese language instruction yielded significant gains in language
proficiency and learning success [30]. Such results underscore the potential of AI-driven models to make
meaningful contributions in subject-specific education. Nevertheless, many studies caution that while
chatbots can effectively complement traditional teaching methods, they often fall short as standalone
resources, especially for complex subject matter [31]. Despite these limitations, the continual evolution
of GenAI models like ChatGPT enhances their value in educational settings, particularly for fostering
independent learning and delivering personalised, real-time feedback to students.

As generative AI technology advances, its integration into educational frameworks will become
increasingly vital. The adaptability, accessibility, and potential for personalisation make GenAI an
invaluable tool for contemporary education, one that complements traditional learning while expanding
the possibilities for tailored, student-centred pedagogies.

2.2. AI for Sustainability

As humanity approaches critical planetary boundaries [2], the field of sustainability demands increased
attention. The recent surge in deep learning and generative language models has spurred a wave of
studies examining the potential of AI agents to foster sustainable behaviours, both at the individual and
organisational levels.

One notable example is AluxBot [32], a chatbot designed to encourage pro-environmental behaviours
among users. Through engaging, sustainability-focused conversations, the bot effectively raised envi-
ronmental awareness, highlighting the capacity of chatbots to inspire and educate users on sustainability



topics. Similarly, [33] explored the role of anthropomorphic design in chatbots as a tool to persuade
users towards sustainable mobility practices. The study demonstrated a significant positive impact on
users’ beliefs about sustainability, further illustrating the potential of AI-driven chatbots to influence
behaviour change in meaningful ways.

The impact of AI on sustainability also extends into organisational settings. The concept of Green
IS underscores how AI technologies can support sustainable information systems, reducing energy
consumption and enhancing operational efficiency [34]. In this vein, [35] discussed the role of digital
technologies, including AI, in driving sustainability innovation by enabling businesses to implement
eco-friendly practices. These findings suggest that AI applications are not limited to individual be-
haviour modification; they also equip organisations with powerful tools to achieve their environmental
objectives.

Moreover, the integration of AI with gamification techniques has shown considerable effectiveness
in promoting eco-friendly behaviours. Studies indicate that gamification elements, when combined
with AI, can heighten user engagement and incentivise sustainability efforts within corporate settings
[36]. Additionally, [37] outlined design principles for AI-driven business model development tools
that prioritise sustainability, revealing AI’s role in fostering innovation for sustainable organisational
practices.

While the promise of AI in sustainability is robust, several studies recommend its use as a complement
to traditional methods rather than as a complete replacement. For instance, although chatbots can
offer real-time feedback and personalised suggestions to support sustainability initiatives, complex
environmental challenges often necessitate human oversight [38]. Furthermore, the rapid digitalisation
of sustainability practices presents both opportunities and risks, underscoring the need to align AI
technologies with broader environmental and ethical considerations [39].

In summary, the application of AI in sustainability is a rapidly growing area of research, withmounting
evidence of its potential to drive environmentally responsible behaviours and support organisational
sustainability goals. As AI technologies continue to evolve, their role in shaping the future of sustainable
development is likely to become even more pronounced, positioning AI as a transformative tool in
advancing sustainability across multiple domains.

2.3. Human-Centred AI (HCAI)

Human-Centred AI (HCAI) prioritises the integration of human values, needs, and capabilities into
the design and operation of AI systems, ensuring these technologies remain aligned with ethical
standards and user-centric goals [40] [41] [42]. The literature delineates three core objectives of HCAI:
understanding, controlling, and improving AI systems [19]. These objectives are grounded in cybernetic
loop theory, which emphasises the iterative processes of sensing, processing, and feedback [43]. This
theoretical framework underscores the adaptive nature of HCAI, aiming to develop systems that are
not only intelligent and efficient but also transparent, controllable, and responsive to situational human
needs.

Understanding: A fundamental aspect of HCAI is fostering a deeper comprehension of AI systems
among users. The literature highlights Explainable AI (XAI) as a critical component in achieving this
understanding [44]. Techniques such as Local Interpretable Model-agnostic Explanations (LIME) [45]
and SHapley Additive exPlanations (SHAP) [46] have been instrumental in demystifying AI processes,
rendering themmore accessible and fostering trust in AI technologies. However, while effective in many
scenarios, these methods often struggle with the inherent complexities of large language models (LLMs)
and other advanced AI architectures [47]. This gap underscores the necessity for more interactive and
user-centred explanatory frameworks, which can provide context-specific insights and foster deeper
engagement with AI systems.
Control: The principle of control in HCAI is centred on empowering users to influence and guide

AI systems effectively [48]. This involves the development of interfaces and tools that facilitate
meaningful human-AI collaboration [41]. For example, recommender systems that allow users to
customise their preferences illustrate how control can be operationalised, offering users the ability to



tailor system outputs to their specific needs [49]. However, implementing such control mechanisms
presents significant challenges, particularly in high-stakes domains such as healthcare or finance, where
the implications of algorithmic decisions can be profound [50]. Balancing user autonomy with the
reliability and safety of AI systems remains a critical area of research and development in HCAI.
Improvement: Continuous improvement in HCAI is facilitated through iterative feedback loops

and learning processes. Techniques such as Human-in-the-Loop (HITL) learning [51] and Interactive
Machine Learning (IML) [52] are pivotal in this context, enabling AI systems to adapt and evolve based
on user input. These iterative methods not only enhance the performance and adaptability of AI systems
but also ensure they remain aligned with evolving human values and ethical norms. This dynamic,
symbiotic interaction between users and AI fosters trust and collaboration, ultimately contributing to
more effective and user-centred AI applications.

In conclusion, the principles of Human-Centred AI are crucial for developing AI systems that are
understandable, controllable, and continuously improving. By integrating user feedback andmaintaining
alignment with human values, HCAI not only enhances the adoptability and adaptability of AI systems
but also promotes critical control and collaboration, ensuring these technologies serve the broader goals
of society.

3. Study I: Experiment with Engineering Students

3.1. Prototype I

Our Prototype I, designed to disseminate knowledge on planetary boundaries to engineering students,
was hosted as a Streamlit app [53] and developed using the GPT-4 turbo model from OpenAI [54]. The
bot was specifically configured to provide actionable knowledge on planetary boundaries by prompting
users to ask domain-specific questions and offering suggestions on potential actions they could take to
address the challenges they inquired about. It was designed to engage users actively in problem-solving
by being as detailed as possible in its responses. To support this, the bot was integrated with a dataset
comprising eight key publications from the Stockholm Resilience Centre, which amounted to a total
size of 2MB. These publications include foundational research on planetary boundaries, alongside
policy reports and practice guides from the Centre’s official website1, ensuring a robust and concrete
knowledge base.

In addition, the bot was designed to be responsive to various engineering disciplines by leveraging
the general knowledge from GPT-4 turbo’s broad training, which allows it to address discipline-specific
questions in fields such as civil, environmental, and mechanical engineering. It not only conveyed
theoretical insights but also encouraged students to reflect on the real-world applications of planetary
boundaries within their fields of study, guiding them towards solutions based on their technical expertise.

3.2. Methodology I

We employed a mixed-method approach, incorporating both qualitative and quantitative elements, for
our experimentation. Using an experience prototyping methodology [55], participants interacted with
our bot to understand the concept of planetary boundaries and its implications for engineering. Initially,
participants completed a preliminary questionnaire to assess their existing knowledge of planetary
boundaries and to collect demographic information and informed consent. Following this, they were
given a laptop with access to our Prototype I and engaged in a dialogue about planetary boundaries
relevant to their specific areas of study. Participants were encouraged to have at least five exchanges
with the bot. Upon completing this interaction, participants engaged in a semi-structured interview
[56] with the lead author to debrief their experience and answered a follow-up survey to register their
feedback on the bot’s usability and usefulness, and their perspectives on planetary boundaries and their
application to their future careers. Our objective was to evaluate any shifts in their opinions, assess the

1https://www.stockholmresilience.org/publications.html



Figure 2: Topic Analysis of Engineering Students Conversations with our Bot on Planetary Boundaries

bot’s educational utility, and explore its potential applications in broader contexts such as university
curriculum, governmental policy, and academic research.

The experiment involved ten participants, with two joining virtually and eight participating in
person. Each session lasted approximately thirty minutes. In addition to pre- and post-questionnaires,
semi-structured interviews with the author were recorded, and participants’ conversations with the
bot were also stored. Prior approval was obtained from the internal ethics committee, and all data was
anonymised and handled in accordance with GDPR guidelines [57]

3.3. Results I

We conducted a topic analysis [58] on participants’ conversations with our bot to identify their primary
queries regarding planetary boundaries and engineering (See Figure 2). Given that climate change
and global warming were the most familiar subjects to participants prior to their interaction with the
bot, it is unsurprising that these were the most discussed issues, with significant interest in subtopics
like fusion energy and carbon capture were revealed by the topic analysis. Other key areas of interest
include ocean acidification, stratospheric ozone depletion, fresh water usage, electricity usage, novel
entities, and green buildings.

We conducted a thematic analysis [18] on the data collected from the two questionnaires and the
interviews. The lead author, who conducted the experiments, and another author, who was not present
during the experiments, independently coded the raw data. Through twomeetings, the authors discussed
and aligned on the emerging themes, which are listed below:
Lack of Prior Knowledge: None of the participants (0 out of 10) demonstrated prior familiarity

with the concept of “planetary boundaries.” However, they possessed foundational knowledge of related
environmental issues, particularly climate change, one of the nine planetary boundaries. Although
unaware of the broader planetary boundaries framework, participants’ understanding of climate change
and topics such as ozone depletion served as a valuable entry point for further learning. The chatbot was
specifically designed to leverage and expand upon this prior knowledge, integrating their engineering
background to contextualise sustainability challenges pertinent to their field. Following their interaction
with the chatbot, participants reported an initial grasp of themeasurable limits governing Earth’s systems
and expressed heightened curiosity and motivation to delve deeper into sustainability topics relevant to
their academic and professional pursuits.

Educational Benefits and Need for Proactive Guidance: Most participants (9 out of 10) indicated
that an educational bot like ours would be highly beneficial for diverse groups, ranging from elementary
to university students, to learn about pressing issues such as planetary boundaries. Additionally, some
participants (3 out of 10) suggested that the bot should be more proactive and structured in guiding the
conversation by providing domain-specific examples and demonstrating its capabilities for users.

Demand for Domain-Specific Education Many participants (6 out of 10) could not prompt the bot
to make domain-specific connections, highlighting the need for educational tools that empower and
raise literacy across various fields. This underscores the global institutional need for education tailored
to specific disciplines while promoting a comprehensive understanding of planetary boundaries.

Note on Participant Mode: No significant differences were observed between virtual and in-person
participants in terms of engagement, learning outcomes, or chatbot usability.



4. Study II: Experiment with Engineering Students using Interaction
Layer

4.1. Prototype II

In response to the feedback gathered from users in Section 3.3, we developed the second version
of our chatbot, Prototype II, using the GPT-4o model, specifically addressing the issues faced by
engineering students with: (i) lack of familiarity with the concept of planetary boundaries, (ii) need for
proactive interaction by the chatbot, and (iii) domain-specific exemplification and discussion. These
key enhancements were built via a structured interaction layer based on the “Understand, Control, and
Improve” human-centred interaction model [19]. This version aimed to refine the bot’s engagement by
allowing it to guide users through structured educational exchanges, tailored project guidance, and
future career discussions.

The interaction layer was designed with templates to ensure consistency and relevance across
different stages of user interaction (see Figure 3 for prompt architecture). The bot begins by assessing
the student’s needs, offering initial explanations of planetary boundaries linked to their engineering
field. It then provides options for students to control the direction of the conversation, ensuring the
content remains pertinent to their studies. For instance, when guiding project design, the bot suggests
domain-specific strategies, and concludes with a tailored planetary boundary statement for the user’s
project. The aim was to create a personalised and contextually relevant learning experience that directly
connects planetary boundaries to the user’s academic and professional future.

4.2. Methodology II

We recruited 40 engineering students globally via the Prolific platform. Participants were informed
of the study’s purpose through an information sheet, and informed consent was obtained. They were
compensated $2.5 for their participation, with an average session lasting 20 minutes.

The study utilised an A/B testing approach to compare Prototype I and Prototype II. We did not alter
Prototype I, except for changing its base model to OpenAI’s GPT-4o. The study was structured as a
between-subjects experiment: 20 participants interacted with Prototype I, and 20 with Prototype II.
Among the 20 participants in Prototype I, the average age was 31.25 years, with 9 females, 11 identified
as non-white, and 10 were residing in global South countries. For Prototype II, among the 20 participants,
the average age was 27.95 years, 6 were female, 10 identified as non-white, and 9 were from the global
South countries. Both prototypes were hosted via Streamlit [53], providing a similar user interface.

After interaction, participants completed an anonymous survey via Google Forms, offering subjective
feedback on their experience. Additionally, they answered two qualitative questionnaires: the Chatbot
Usability Questionnaire (CUQ) [21] to evaluate chatbot usability, and a adaptation of [22] Technology
Acceptance Model (TAM) questionnaire. This was aimed at understanding their behavioural intention
to use the chatbot for learning about planetary boundaries and integrating them into their engineering
projects.In addition to pre- and post-questionnaires, semi-structured interviews with the author were
recorded, and participants’ conversations with the bot were also stored. Ethical approval was secured
from the internal review board, and all data were anonymised and processed in compliance with GDPR
regulations [57].

4.3. Results II

4.3.1. Qualitative Results

Through a qualitative analysis of the open-ended feedback collected from the A/B testing of Prototype
I and Prototype II, significant improvements in user experience were observed. As highlighted in
Section 3.3, the in-person testing of Prototype I, the online testing with a more advanced LLM model
(GPT-4o), also revealed key issues such as lengthy and repetitive responses (reported by 13 out of 20
participants), lack of domain-specific information dissemination (reported by 16 out of 20 participants),



Figure 3: This figure (adapted from [19]) illustrates the interaction layer prompt architecture of Proto-
type II, showcasing how the chatbot guides user engagement through the core principle of “Understand,
Control, and Improve,” based on the user feedback received on testing Prototype I.

and a lack of dynamic conversational flow (reported by 18 out of 20 participants). In contrast, Prototype
II demonstrated notable enhancements in responsiveness, conversational engagement, and adaptability,
with users commending its more human-like and insightful interactions (reported by 15 out of 20
participants). Nevertheless, some participants continued to express a preference for shorter , more
concise responses (reported by 7 out of 20 participants), and the integration of multimodal content
(reported by 11 out of 20 participants). Across both prototype only 1 out of 40 participants (2.5%)
reported familiarly with the concept of nine critical planetary boundaries. Overall, the qualitative
findings suggest that the transition from Prototype I to Prototype II resulted in a refined user experience,
better aligning with user expectations and significantly enhancing overall satisfaction.



Figure 4: Comparison Of Average User Ratings: Prototype I vs Prototype II

4.3.2. Subjective Questionnaire

To evaluate the differences in user feedback between Prototype I and Prototype II, we conducted an
independent sample t-test for each subjective questionnaire aspect: hopes and goals met, understanding
of functionality, control over the chatbot, and improvement in chatbot outcomes. Although the average
scores for Prototype II were more than that of Prototype I for all four questions (See Figure 4), results
indicated that none of the differences were statistically significant. Specifically, the p-values ranged
from 0.12 to 0.58 across the various aspects. Further iterations with larger sample sizes may be required
to detect more subtle differences and validate the observed trends with respective to these subjective
questions.

4.3.3. Chatbot Usability Questionnaire

The Chatbot Usability Questionnaire (CUQ) [21] was administered to assess and compare the usability of
Prototype I and Prototype II (See Figure 5). 16 CUQ questions cover various aspects of user interaction,
including the ease of use, clarity of responses, efficiency, user satisfaction, and the perceived usefulness
of the chatbot in achieving its educational objectives. By systematically analysing user feedback, the
CUQ provides insights into how well the chatbot facilitates learning and engagement, highlighting
areas for improvement in both prototypes.
CUQ Scores Overview

• Prototype I had a mean CUQ score of 73.5 with a standard deviation of 14.7. The lowest score
recorded was 37.5, while the highest was 96.9, and the median score was 76.6.

• Prototype II achieved a higher mean CUQ score of 83.4, with a reduced standard deviation of 12.8,
indicating a more consistent user experience. The scores ranged from a minimum of 57.8 to a
maximum of 100.0, with a median of 85.2.

T-Test Analysis An independent samples t-test was performed to determine if the difference in CUQ
scores between the two prototypes was statistically significant. The t-test yielded a t-statistic of -2.26
and a p-value of 0.030, concluding that the difference in CUQ scores between Prototype I and Prototype
II is statistically significant.

The significant increase in CUQ scores for Prototype II indicates that the design modifications and
enhancements implemented based on feedback from Prototype I were effective in improving usability.
This finding suggests that the usability improvements made in Prototype II had a meaningful impact on
user experience.

4.3.4. Technology Acceptance Model

We adapted the Technology Acceptance Model (TAM) [22] to understand university students’ be-
havioural intention towards our LLM-based chatbots to learn about planetary boundaries. It verifies
various constructs such as Perceived Ease of Use (PE), Perceived Usefulness (PU), Attitude (AT), Be-
havioural Intention (BI), Self-Efficacy (SE), Subjective Norm (SN), and System Accessibility (SA), with



Figure 5: Comparison Of CUQ Scores Across Prototypes

17 questions answered by the users. A comprehensive statistical analysis was conducted to evaluate the
differences between Prototype I and Prototype II based on our participants’ responses. The methods
applied included t-tests, ANOVA, and MANOVA, as visualised in Figure 6.
T-Test Analysis An Independent Sample t-Test was conducted to compare the mean scores of

user responses across both prototypes. The results revealed a significant difference between the two
prototypes, with a t-statistic of -4.60 and a p-value of 0.0001.

T-tests were also performed on individual questions to assess mean differences between prototypes.
Statistically significant differences were observed in the following questions:

• Q14 (Subjective Norm): 𝑡 = −2.3576, 𝑝 = 0.0236
• Q15 (Subjective Norm): 𝑡 = −2.5317, 𝑝 = 0.0156
• Q16 (Subjective Norm): 𝑡 = −2.6968, 𝑝 = 0.0104

These results indicate that user perceptions related to the chatbot’s relevance and alignment with their
work and societal expectations differ significantly between the prototypes.

ANOVA Analysis ANOVA was used to compare the prototypes across different sections of the
questionnaire. Significant differences were observed in the following sections:

• Behavioural Intention (BI): 𝐹(2, 38) = 23.1477, 𝑝 < 0.0001
• Self-Efficacy (SE): 𝐹(2, 38) = 22.5068, 𝑝 < 0.0001

Tukey Post-Hoc Analysis confirmed these differences: BI (Mean Difference = 0.6, 𝑝 = 0.0212) and SE
(Mean Difference = 0.475, 𝑝 = 0.0267), indicating that the prototypes differ significantly in these areas.

These findings demonstrate that the prototypes differ significantly in terms of users’ perceived
intention to use the chatbot in future and their belief in their ability to successfully using it.
MANOVA Analysis A MANOVA was conducted to explore the overall differences between the

prototypes across all sections simultaneously:

• Wilks’ Lambda: Λ = 0.2187, 𝐹 (17, 23) = 4.8344, 𝑝 = 0.0003
• Pillai’s Trace: 𝑉 = 0.7813, 𝐹 (17, 23) = 4.8344, 𝑝 = 0.0003
• Hotelling-Lawley Trace: 𝑇 = 3.5732, 𝐹 (17, 23) = 4.8344, 𝑝 = 0.0003

These multivariate tests confirm significant overall differences between the two prototypes.
Section-Specific MANOVA Further breakdown using MANOVA on individual sections with multiple

questions also confirmed significant differences:

• Perceived Ease of Use (PE): Λ = 0.4599, 𝐹 (3, 37) = 14.4870, 𝑝 < 0.0001
• Perceived Usefulness (PU): Λ = 0.4716, 𝐹 (3, 37) = 13.8195, 𝑝 < 0.0001
• Attitude (AT): Λ = 0.4652, 𝐹 (3, 37) = 14.1814, 𝑝 < 0.0001



Figure 6: Comparison of Technology Acceptance Model (TAM) Mean Scores for Prototype I and Prototype II

• Behavioural Intention (BI): Λ = 0.4508, 𝐹 (2, 38) = 23.1477, 𝑝 < 0.0001
• Self-Efficacy (SE): Λ = 0.4578, 𝐹 (2, 38) = 22.5068, 𝑝 < 0.0001
• Subjective Norm (SN): Λ = 0.4249, 𝐹 (3, 37) = 16.6915, 𝑝 < 0.0001

These results indicate that the prototypes vary significantly across all these sections, reinforcing the
findings from the ANOVA and t-tests.

The statistical analyses provide robust evidence of significant differences between Prototype I and
Prototype II across TAM. These insights support further refinement and evaluation of the chatbot
prototypes based on the identified areas of variance.

5. Discussion

5.1. Enhancing Sustainability Education through GenAI Chatbots

The findings of our research study reveal a substantial knowledge gap among engineering students
concerning planetary boundaries. While many participants demonstrated foundational awareness of
environmental issues such as climate change and ozone depletion, only 1 out of 50 (2%) was familiar
with the specific framework of planetary boundaries. This gap underscores the urgent need for targeted
educational interventions to bridge this divide. The outcome of our experiments, where students’
curiosity piqued despite the knowledge gap, as well as high CUQ and TAM scores, showcases Generative
AI to offer a promising avenue for addressing this challenge.

The iterative improvements from Prototype I to Prototype II demonstrated significant advancements
in delivering educational content more effectively. Applying Human-Centred AI (HCAI) principles
by depolying the interaction layer in our prompt architecture was crucial in designing a chatbot that
promotes active user engagement. Feedback from users highlighted the importance of responsiveness
and the need for a conversational flow that feels natural and engaging. The balance between structured
goals and personalised interaction was pivotal in enhancing the learning experience, making the chatbot
more effective and relatable.

User feedback highlighted the critical need for personalisation and contextualisation in GenAI-
powered educational tools, stressing that a one-size-fits-all approach fails to effectively cater to the
diverse learning needs and backgrounds of students, thereby limiting engagement and educational
impact. By aligning educational guidance with the specific needs of the students and concepts of their
field, as we had attempted with our Prototype II in Section 4.1, the GenAI bot could foster a deeper
comprehension of sustainability’s intersection with diverse fields, thereby empowering students to
embed these principles into their academic projects and future professional practices.

Future design iterations should focus on further refining these elements, ensuring that the chatbot
remains a robust educational aid. Challenges such as overly lengthy responses and the need for
multimodal content, including visuals and concise summaries, should also be noted as areas for future



improvement. Overall, the chatbot’s ability to adapt to different educational contexts and student needs
underscores its potential as a valuable tool in sustainability education. By leveraging GenAI’s capability
to deliver complex sustainability concepts in an accessible and engaging manner, educators can foster
deeper understanding and stimulate proactive engagement with critical environmental issues.

5.2. Sustainability of the Tool

The environmental impact of AI technologies, particularly large models, underscores the need for
strategies to minimise their carbon footprint. Throughout the development of our prototypes, we were
mindful of these considerations, striving to balance performance with environmental responsibility. We
utilised pre-trained models, which significantly reduced the computational cost and energy consumption
associated with training large models from scratch. Additionally, we designed meaningful interactions
to deliver precise and relevant content, ensuring efficiency in both user engagement and resource
utilisation. Furthermore, we optimised the chatbot’s performance by limiting unnecessary computations
and streamlining the dialogue flow to minimise processing time. Leveraging OpenAI’s Agent model
allowed us to dynamically allocate resources, scaling usage based on real-time demand, which helped
to avoid over-provisioning and reduce energy waste.

In future iterations, we aim to further enhance sustainability by incorporating more lightweight
models with fewer parameters. These models can maintain educational effectiveness while reducing
computational demands and energy consumption, aligning with broader environmental goals. Addi-
tionally, we plan to explore hosting the GenAI bot on cloud platforms powered by renewable energy.
This shift can significantly decrease the environmental impact of its operation, serving as a model for
responsible AI use in education. Future research will also focus on algorithmic optimisation techniques
such as model pruning, quantisation, and knowledge distillation to improve energy efficiency without
compromising the chatbot’s performance. By integrating these sustainability measures, AI-driven
educational tools like the GenAI bot can effectively educate students on sustainability while exemplify-
ing sustainable practices, preparing future population to address complex environmental challenges
responsibly.

6. Limitations and Future Work

While this research highlights the potential of AI-driven tools in higher education, it also sustains
critical limitations that must be addressed to fully realise their benefits. A primary limitation is the
modest sample size of 50 engineering students, which may constrain the generalisability of the findings
across broader educational contexts. A key limitation of this study is that the effectiveness of the GenAI
chatbot has not yet been compared with traditional learning methods, such as lecture-based instruction
and textbook-driven learning. Future research should conduct controlled comparative studies to assess
whether AI-driven interactions offer measurable advantages over conventional educational approaches
in fostering planetary boundary awareness among engineering students. Another key limitation lies
managing the continuous evaluation and iterative adaptation of AI systems to ensure they align with
the evolving needs of students and adhere to pedagogical best practices. The study revealed significant
challenges, notably the need to maintain the accuracy and contextual relevance of chatbot responses,
underscoring the complexities inherent in integrating AI within educational frameworks.

Future research should investigate the scalability of the GenAI chatbot across a broader spectrum
of educational environments and disciplines. Such exploration could uncover its utility in addressing
a wider range of sustainability issues beyond the scope of planetary boundaries. While our study
primarily focused on user experience, usability, and technology acceptance, an equally crucial aspect
in educational contexts is knowledge retention. The educational efficacy of the chatbot, specifically
its impact on long-term learning and comprehension, remains to be validated in future research. By
leveraging these opportunities, educators can harness AI’s capacity to deepen students’ understanding
of critical global challenges, ultimately fostering a generation of engineers equipped to make informed,
sustainable decisions in their professional and academic pursuits.



7. Conclusion

To address the critical educational gaps in sustainable practices, especially among engineering students
poised to influence future environmental outcomes, we explore the potential of generative artificial
intelligence (GenAI) to foster a deeper understanding of planetary boundaries. Our findings suggest
that an AI-driven chatbot, when iteratively refined with user feedback and human-centred interaction
design, significantly enhances engineering students’ comprehension of planetary boundaries, improves
usability and engagement, and fosters a stronger inclination towards integrating sustainability principles
in their academic and professional pursuits. Through our efforts, we earnestly hope that educational
institutions will take decisive action by embracing this AI-driven approach, empowering the next
generation of engineers with the knowledge and skills needed to navigate and uphold the ecological
boundaries of ‘Spaceship Earth.’
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