
Knowledge Graph Prediction using Negative Statements:
an Approach Based on Entity-nearest Neighbor Count
Algorithm
Furel D. Teguimene1,*,†, AZANZI Jiomekong1,†, Sanju Tiwari2 and Gaoussou Camara3

1Department of Computer Science, University of Yaounde I, Yaounde, Cameroon
2Teerthanker Mahaveer University, Universidad Autonoma de Tamaulipas - Matamoros
3Alioune Diop University of Bambey

Abstract
This paper presents our contribution to knowledge graph predictions using negative statements (NEGKNOW)
challenge. This contribution consists of the definition of the Entity-nearest Neighbor Count (E-NNC) Algorithm.
In this algorithm, we consider that if two entities are in relation, then, they linked to least one common entity. The
list of common entities between two entities are called their common neighbors. Thus, the algorithm calculates
the common neighbor between two entities. The E-NNC algorithm defined in this work was applied for the
three tasks of the NEGKNOW challenge. These tasks consists of predicting if there is an interaction between
two proteins (Task A), a protein and a disease (Task B) and a gene and a disease (Task C). The organizers of this
challenge provided the train and the test set. The algorithm assessed on the train set to evaluate its performance.
For task A, the algorithm proves to be powerful because we obtained an accuracy of 0.9. For Task B, an accuracy
of 0.9 and 0.5 for task C.

Keywords
Entity-nearest Neighbor Count, Knowledge Graph, Knowledge Graph Completion, Relation Prediction

1. Introduction

Knowledge graphs (KGs) are composed of real world entities and relations between these entities [1, 2].
However, knowledge graphs suffers the problem of completeness [3, 4, 2, 5]. Actually, in many KGs such
as Freebase DBpedia, Yago, a considerate number of important information are missing [3]. Therefore,
there is an urgent need for methods to automatically complete KGs by inferring missing knowledge
such as missing entities or missing relations.

Knowledge graph completion aims to identify missing information, such as missing links between
entities or missing entities and use these elements to complete the graph [4, 2]. In the biological domain
for instance, it may be interesting to predict if two proteins are in relation [4].

Relation prediction or relation linking [5, 4] aims to learn a relation between two KG entities when
the relation itself is not explicitly defined in the KG. The knowledge graph predictions using negative
statements challenge1 (NEGKNOW) challenge aims to evaluate systems handling negative statements
in knowledge graphs (KGs) during the relation prediction task.

In this paper, we present our contribution to the NEGKNOW challenge. This contribution consists of
a method for predicting relations between two entities by identifying the relations that these entities
have in common (or if these entities have the same neighbor). In this approach, when two entities
have a common neighbor, then they can be related. This approach was applied to the three prediction
tasks proposed by the challenge organizers: (1) Protein-protein interaction prediction, (2) Gene-Disease
Association Prediction, (3) Disease Prediction. A set of experiments were done to find out how the
parameter can be configured to help to have good predictions.

NEGKNOW@ISWC’24: Challenge presentation during ISWC, November 11-15, 2024, Baltimore, US
*Corresponding author.
†
These authors contributed equally.

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://negknow.github.io/NEGKNOW/index.html

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0/deed.en
https://negknow.github.io/NEGKNOW/index.html

In the rest of the paper, we present the methodology (Section 2), the results (Section 3) and the
conclusion (Section 4).

2. Entity-Nearest Neighbor Count Algorithm

In this work, we consider that if two entities are related, then they have at least one entity they are
linked to (an example is presented by the Fig. 1). We call this entity the common neighbor of the two
entities. The equation 𝐶𝑁(𝐸1, 𝐸2) = |𝑎| is used to calculate the number of neighbors the entities
𝐸1 and 𝐸2 have in common. The Entity-Nearest Neighbor Count (E-NNC) algorithm 1 calculates the
number of common neighbors between two entities. This algorithm is going to be used for calculating
the common neighbor between entities and predict if these entities are related for the different tasks.

Figure 1: Prediction a relation between entities E_1 and E_2 based on the number of common neighbor

Algorithm 1 E-NNC algorithm
Require: 𝐸_1, 𝐸_2,𝐾𝐺
Ensure: 𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐸1 : 𝑇𝑎𝑏𝑙𝑒[1...𝑛] of entity
𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐸2 : 𝑇𝑎𝑏𝑙𝑒[1...𝑚] of entity
𝑖← −1
𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 0
while Non 𝐸𝑂𝐹 (1) do

𝑖← 𝑖+ 1;
if 𝐿𝑖𝑟𝑒𝐹 𝑖𝑐ℎ𝑖𝑒𝑟1, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is an E1 element then

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐸1[𝑖]← 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
else if 𝐿𝑖𝑟𝑒𝐹 𝑖𝑐ℎ𝑖𝑒𝑟1, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 is an E2 element then

𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐸2[𝑖]← 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
end if

end while
for 𝑖←0 to 𝑛 do

for 𝑗 ←0 to 𝑚 do
if 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐸1[𝑖] == 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐸2[𝑗] then

𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 + 1
end if

end for
end for

2.1. Hardware, software and programming language

During this challenge, our working environment was as follows:

• A Dell Inc. Latitude 5580 laptop, with an Intel® Core™ i7-7820HQ processor clocked at 2.90 GHz
with 8 cores, 16.0 GB of RAM and a disk capacity of 512 GB ;

• The work was carried out on an Ubuntu 22.04.4 LTS operating system ;
• The Java language (jdk-20) is the one used for this challenge executed in the IntelliJ IDEA IDE

version 2023.

2.2. Protein-protein interaction prediction

Task A aims to predict whether there is a relationship between two given proteins. In this section, we
considered two data sources, the GO KG provided by the organizers and the STRING database. The
adaptation of the E-NNC algorithm is presented by the algorithm 2. In this algorithm, we consider two
parameters:

• The number of neighbors that two entities have in common in the GO KG which we named |𝑎|.
• The score that measures if two entities are similar, produced by the STRING database which we

named 𝑠. Actually, the interaction between two proteins is described in the STRING database
using a confidence score.

This algorithm returns 1 when the two entities are in relation and 0 when it is not the case.

Algorithm 2 Protein-protein interaction prediction using E-NNC algorithm
Require: 𝑃_1, 𝑃_2, 𝑔𝑜𝑘𝑔, |𝑎|, 𝑠
Ensure: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← 0
𝑠𝑐𝑜𝑟𝑒← 0.472
𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 1(𝑃_1, 𝑃_2, 𝑔𝑜𝑘𝑔)
if (𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≥ |𝑎|) and (𝑠 ≥ 𝑠𝑐𝑜𝑟𝑒) then

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← 1
end if

2.3. Patient-disease Interaction Prediction

Task B consists of predicting if a patient has already been diagnosed with a given disease. Thus, to
predict if there is the relation "hasBeendiagnosed" between a patient and a disease. The algorithm ??
presents how this interaction is being predicted. The organizers provided the HP (Human Phenotype
Ontology) knowledge base (KB). From this KB, we found that:

• Each patient and each disease are associated with phenotype;
• A patient and a disease can have phenotype in common.

Thus, the algorithm was adapted as follows: when a patient and a disease has a phenotype in common,
they are related (See the E-NNC algorithm 1).

The generic algorithm can therefore be modified here by adding a parameter 𝑎. This parameter will
allow us to check whether the number of common phenotypes calculated is equal to or greater than the
expected value. In this task, the only value of |𝑎| used is 1.

Algorithm 3 Patient-disease interaction prediction using E-NNC algorithm
Require: 𝑃,𝐷, ℎ𝑝𝑘𝑔, |𝑎|
Ensure: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← 0
𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 1(𝑃,𝐷, ℎ𝑝𝑘𝑔)
if 𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≥ |𝑎| then

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← 1
end if

The following figure shows an example of application of the algorithm.

2.4. Gene-Disease Interaction Prediction

Task C consists of predicting if there is an interaction between a gene and a disease. To this end, we
determined an identical number of elements linked to both the gene and the disease. Actually, the
analysis of the HP KB allowed us to remark that: A gene is linked to a set of GO terms, a disease is
linked to a set of phenotypes, each GO term and each phenotype are objects that can have common
restrictions. The E-NNC algorithm was therefore adapted (see algorithm 4). It takes as parameter the
variable |𝑎| which is the number of similarities.

Figure 2: Interaction between patient and disease using only HP (KG)

Algorithm 4 Gene-disease interaction prediction using E-NNC algorithm
Require: 𝐺,𝐷, 𝑔𝑜ℎ𝑝𝑘𝑔|𝑎|
Ensure: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← 0
𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 1(𝐺,𝐷, 𝑔𝑜ℎ𝑝𝑘𝑔)
if 𝑛𝑏𝑂𝑓𝐶𝑜𝑚𝑚𝑜𝑛𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≥ |𝑎| then

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛← 1
end if

The following picture represents an application of this algorithm.

3. Result

This Section presents the results during the experimentations. Section 3.1 presents the results for Task
A, Section 3.2 the results for Task B and Section 3.3 the results for task C.

Figure 3: Interaction between patient and disease using only HP (KG)

3.1. Result for task A

The algorithm defined in Section 2 was applied on the dataset for different values of the parameter
|𝑎| and |𝑠|. The table 1 presents the results obtained for different values of the parameters |𝑎| and |𝑠|.
This table shows that for the best score is obtained when |𝑎| = 0 and |𝑠| = 0.65. Thus, when a relation
exists between two entities and the string database predict with the minimum score that this relation
exist, then it is more probable that this relation exists.

a \s ≥ 0.472 ≥ 0.55 ≥ 0.65 ≥ 0.70
≥ 1 0.92 0.9204 0.9106 -
≥ 2 0.947 - 0.9086 -
≥ 7 - - - 0.835
≥ 8 - - - 0.801

Table 1
A descriptive summary of the result obtained in the task A (primary table)

Ablation To study the impact of the different datasets on the results, we decided to test on each of
them. Then, for the ablation study, on the other hand, we will consider that |𝑎| = 0 (the GO knowledge
graph is not used) and on the other hand, |𝑠| = 0 (the string knowledge graph is not used). The tables 2,
3 and 1 presents the different results obtained by considering the different source of knowledge. The
table 3 presents the results when |𝑎| = 0 and the table 2 presents the results when |𝑠| = 0. These tables
show that the highest values of the accuracy are obtained when the two knowledge base are combined.

|𝑎| ≥ 7 ≥ 8
Accuracy 0.79 0.76

Table 2
A descriptive summary of the result obtained in the task A Using only GO (KG)

STRING DB score (s) ≥ 0.472 ≥ 0.55 ≥ 0.65 ≥ 0.7 ≥ 0.8
Accuracy 0.9405 0.940 0.943 0.903 0.8609

Table 3
A descriptive summary of the result obtained in the task A Using only the score of STRING Database

The experimentations show that the best precision is obtained when one combine the GO Knowledge
Graph with the STRING database. Thus, the results submitted for evaluation was the one obtained by
the combination of these data sources.

3.2. Result for Task B

The model defined in Section 2.3 was applied to 10% of the train dataset for an unique value of the
parameter |𝑎|. The table 4 presents the results obtained for |𝑎| ≥ 1. This table shows that for the best
score is obtained when |𝑎| = 1. Thus, when a patient and a disease have at least one phenotype in
common, it is very likely that the latter has already been diagnosed with this disease.

|𝑎| ≥ 1
Accuracy 0.901

Table 4
A descriptive summary of the result obtained in the task B using HP (KG)

3.3. Result for Task C

The model defined in Section 2.4 was applied to the dataset for a unique value of the parameter |𝑎|. The
table 5 presents the results obtained for |𝑎| ≥ 1. This table shows that for the best score is obtained
when |𝑎| = 1. Thus, when a GO’s term and a phenotype have at least one restriction in common, it is
very likely that the gene and the disease are related.

|𝑎| ≥ 1
Accuracy 0.53

Table 5
A descriptive summary of the result obtained in the task C using GO (KG) and HP (KG)

4. Conclusion

The knowledge graph predictions using negative statements (NEGKNOW) challenge aims to evaluate
systems handling negative statements in knowledge graphs (KGs) during the relation prediction task.

In this paper, we present a new algorithm (entity-nearest neighbor count (E-NNC) algorithm consisting
of counting the number of neighbors that two entities have in common and predict that these entities
are related. We applied this algorithm on the three tasks of the NEGKNOW challenge and the results
obtained were promising.

Future work consists of comparing this algorithm to other algorithms used for the same task such as
TransE, TransH, TransR, DistMult, etc.

References

[1] A. Jiomekong, F. Asong, Designing, implementing and deploying an enterprise knowledge graph
from a to z, in: Proceedings of the Federated Africa and Middle East Conference on Software
Engineering, FAMECSE ’22, Association for Computing Machinery, New York, NY, USA, 2022, p.
87–88. doi:10.1145/3531056.3542761.

[2] P. Cimiano, H. Paulheim, Knowledge graph refinement: A survey of approaches and evaluation
methods, Semant. Web 8 (2017) 489–508. doi:10.3233/SW-160218.

[3] T. Madushanka, R. Ichise, Negative sampling in knowledge graph representation learning: A review,
2024. URL: https://arxiv.org/abs/2402.19195. arXiv:2402.19195.

[4] R. T. Sousa, S. Silva, H. Paulheim, C. Pesquita, Biomedical knowledge graph embeddings with neg-
ative statements, in: T. R. Payne, V. Presutti, G. Qi, M. Poveda-Villalón, G. Stoilos, L. Hollink,
Z. Kaoudi, G. Cheng, J. Li (Eds.), The Semantic Web – ISWC 2023, Springer Nature Switzerland,
Cham, 2023, pp. 428–446.

[5] A. Jiomekong, B. Foko, U. M. Vadel Tsague, G. Camara, Towards an approach based on knowledge
graph refinement for relation linking and entity linking, in: SMARTTask 2022, SMARTTask@ISWC,
2022.

5. Online Resources

The source code used in this work is available on github2 under the Apache License, Version 2.0

2https://github.com/Teguimene/NEGKNOW_CHALLENGE

http://dx.doi.org/10.1145/3531056.3542761
http://dx.doi.org/10.3233/SW-160218
https://arxiv.org/abs/2402.19195
http://arxiv.org/abs/2402.19195
https://github.com/Teguimene/NEGKNOW_CHALLENGE

	1 Introduction
	2 Entity-Nearest Neighbor Count Algorithm
	2.1 Hardware, software and programming language
	2.2 Protein-protein interaction prediction
	2.3 Patient-disease Interaction Prediction
	2.4 Gene-Disease Interaction Prediction

	3 Result
	3.1 Result for task A
	3.2 Result for Task B
	3.3 Result for Task C

	4 Conclusion
	5 Online Resources

