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Abstract
SHACL (SHApe Constraint Language) is a W3C standardized constraint language for RDF graphs. In
this paper, we study SHACL validation in evolving RDF graphs. We identify an update language that can
capture intuitive and realistic modifications on RDF graphs and study the problem of static validation
under updates, which asks to verify whether a given RDF graph that validates a set of SHACL constraints
will remain valid after applying a set of updates. Reducing this problem to usual validation (for a minor
SHACL extension) on the current graph allows us to identify problematic updates before applying them
to the graph, thus avoiding incorrect and costly computations on potentially huge RDF graphs. More
importantly, it provides a basis for further services for reasoning about evolving RDF graphs. In this
spirit, we provide preliminary results for a version of static validation under updates that verifies whether
every graph that validates a SHACL specification will still do so after applying a given update sequence.
This result builds on previous work that addresses analogous problems but using Description Logics
instead of SHACL to describe conditions on graphs.
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1. Introduction

SHApe Constraint Language (SHACL), a W3C recommendation since 2017, provides a language
for describing conditions on RDF data graphs (for example, objects that belong to the class
person can only have one date of birth). In particular, SHACL uses the notion of a shapes
graph to describe a set of shape constraints paired with targets, which specify which nodes of
the RDF graph should satisfy which shapes. The main computational problem in SHACL is
validation, which aims to check whether an RDF graph satisfies a shapes graph. SHACL is being
increasingly adopted as the basic means to provide quality guarantees on RDF data, and the
development of validators and other SHACL tools is progressing quickly. Nevertheless, SHACL
is a very recent technology, and many foundational questions remain to be addressed.

RDF graphs can be huge and their validation very costly. When graphs are subjected to
updates triggered by users or applications, the validation process may have to be repeated many
times. If it turns out that some updates lead to non-validation, returning to the initial valid state
may be very difficult, or even impossible. This motivates us to study the effect of updates on
SHACL validation, and whenever possible, to reason about such effects leveraging standard
technologies like SHACL validators. As a first step, we address the problem of validation under
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updates, which asks whether a given RDF graph will validate a SHACL shapes graph after
applying a sequence of updates. In this way, problematic updates may be detected before they
are applied, avoiding costly incorrect computations. We also provide preliminary results for a
more interesting version of static validation under updates that verifies whether every graph
that validates a SHACL specification will still do so after applying a given update sequence.

In our previous work [1], we explored the dynamics of graph-structured data that evolves
through user or application operations, and investigated validation under updates and related
reasoning problems. At that time, in the absence of a widely accepted language for describing
the states of data instances and expressing constraints on them, we used a custom description
logic (DL) [2]—akin to the two-variable fragment of first-order logic with counting quantifiers—
that allowed us to effectively reduce static verification to its consistency problem, which is
decidable. Now, almost a decade later, SHACL has been developed and standardized specifically
for describing the types of constraints and conditions on graphs advocated in that work [1].
Ensuring that SHACL constraints are preserved during RDF graph updates is essential for
maintaining data integrity and validity. We revisit the ideas from [1], focusing on SHACL
validation during RDF graph updates, and aim to leverage existing SHACL tools to perform
validation under these updates.

This work describes our first steps in this direction. We present a framework for specifying
transformations on RDF graphs in the presence of SHACL constraints. We propose a language
to express modifications on RDF graphs, related to SPARQL Update, but also allowing sequences
of updates that admit conditional actions. In particular, the update language uses SHACL shapes
for selecting nodes or arcs for modification and for expressing the preconditions in conditional
actions. We then study the problem of validation under updates in this setting, using SHACL
to describe the constraints that are to be preserved and in particular, we adapt the regression
method from [1], which rewrites the input shapes graph by incorporating the effects of the
actions ’backwards’. This allows us to show that validation under updates can be reduced
to standard validation in a small extension of SHACL. We also present some initial work on
a stronger, data independent form of static validation under updates, which checks whether
the execution of a given action preserves the SHACL constraints for every initial data graph.
Using the regression technique, we show that static validation under updates can be reduced
to (un)satisfiability of a shapes graph in (a minor extension of) SHACL. Since satisfiability is
known to be undecidable already for plain SHACL [3], we leverage the results of [4] to identify
an expressive fragment for which the problem is feasible in coNexpTime.

2. SHACL Validation

In this section, we introduce RDF graphs and SHACL validation. We follow the abstract syntax
and semantics for the fragment of SHACL core studied in [5]; for more details on the W3C
specification of SHACL core we refer to [6], and for details of its relation with DLs to [7, 8].

RDF Graphs. We let 𝑁𝑁, 𝑁𝐶, 𝑁𝑃 denote countably infinite, mutually disjoint sets of nodes
(constants), class names, and property names, respectively. An RDF (data) graph 𝐺 is a finite set
of (ground) atoms of the form 𝐵(𝑐) and 𝑝(𝑐, 𝑑), where 𝐵 ∈ 𝑁𝐶, 𝑝 ∈ 𝑁𝑃, and 𝑐, 𝑑 ∈ 𝑁𝑁.



Syntax of SHACL. We assume a countably infinite set 𝑁𝑆 of shape names, disjoint from
𝑁𝑁, 𝑁𝐶, 𝑁𝑃. A shape atom is an expression of the form 𝑠(𝑎), where 𝑠 ∈ 𝑁𝑆 and 𝑎 ∈ 𝑁𝑁. A
path expression 𝐸 is a regular expression built using the usual operators ∗, ⋅, ∪ from symbols
in 𝑁+

𝑃 = 𝑁𝑃 ∪ {𝑝− ∣ 𝑝 ∈ 𝑁𝑃}, where 𝑝− is the inverse property of 𝑝. A (complex) shape is an
expression 𝜙 obeying the syntax:

𝜙, 𝜙′ ∶∶= ⊤ ∣ 𝑠 ∣ 𝐵 ∣ 𝑐 ∣ 𝜙 ∧ 𝜙′ ∣ ¬𝜙 ∣≥𝑛 𝐸.𝜙 ∣ 𝐸 = 𝑝 ∣ 𝑑𝑖𝑠𝑗(𝐸, 𝑝) ∣ 𝑐𝑙𝑜𝑠𝑒𝑑(𝑃)

where 𝑠 ∈ 𝑁𝑆, 𝐵 ∈ 𝑁𝐶, 𝑐 ∈ 𝑁𝑁, 𝑃 is a set of property names, 𝑛 is a positive integer, and 𝐸 is a path
expression. In what follows, we write 𝜙 ∨ 𝜙′ instead of ¬(¬𝜙 ∧ ¬𝜙′); ≥𝑛 𝐸 instead of ≥𝑛 𝐸.⊤; ∃𝐸.𝜙
instead of ≥1 𝐸.𝜙; ∀𝐸.𝜙 instead of ¬∃𝐸.¬𝜙.

A (shape) constraint is an expression of the form 𝑠 ↔ 𝜙, where 𝑠 ∈ 𝑁𝑆 and 𝜙 is a possibly
complex shape. Targets in SHACL prescribe that certain nodes of the input data graph should
validate certain shapes. A target expression is of the form (𝑊 , 𝑠), where 𝑠 is a shape name and 𝑊
takes one of the following forms:

• constant from 𝑁𝑁, also called node target,
• class name from 𝑁𝐶, also called class target,
• expressions of the form ∃𝑝 with 𝑝 ∈ 𝑁𝑃, also called subjects-of target,
• expressions of the form ∃𝑝− with 𝑝 ∈ 𝑁𝑃, also called objects-of target.

A target is any set of target expressions. A shapes graph is a pair (𝐶, 𝑇), where 𝐶 is a set of
constraints and 𝑇 is a set of targets. We assume that each shape name appearing in 𝐶 occurs
exactly once on the left-hand side of a constraint, and each shape name occurring in 𝑇 must
also appear in 𝐶. A set of constraints 𝐶 is recursive, if there is a shape name in 𝐶 that directly or
indirectly refers to itself. In this work, we focus on non-recursive constraints.

Semantics of SHACL. The semantics of SHACL can naturally be given in terms of inter-
pretations. More precisely, an interpretation consists of a non-empty finite domain Δ ⊂ 𝑁𝑁
and an interpretation function ⋅𝐼 that maps each shape name or class name 𝑍 ∈ 𝑁𝑆 ∪ 𝑁𝐶 to a
set 𝑍 𝐼 ⊆ Δ and each property name 𝑝 ∈ 𝑁𝑃 to a set of pairs 𝑝𝐼 ⊆ Δ × Δ. The evaluation of
complex shape expressions w.r.t. an interpretation 𝐼 is given in terms of a function ⋅𝐼 that maps
a shape expression 𝜙 to a set of nodes, and a path expression 𝐸 to a set of pairs of nodes as
in Table 1. Then, an interpretation 𝐼 satisfies a constraint s ↔ 𝜙 if s𝐼 = 𝜙𝐼, and 𝐼 satisfies a
shapes graph (𝐶, 𝑇), if 𝐼 satisfies all constraints in 𝐶 and 𝑊 𝐼 ⊆ 𝑠𝐼 for each (𝑊 , 𝑠) ∈ 𝑇. If 𝐼 satisfies
Γ, for Γ a constraint, set of constraints, target, or shapes graph, we say 𝐼 is a model of Γ and
denote it in symbols by 𝐼 ⊧ Γ. An interpretation 𝐼 is a shape assignment for a data graph 𝐺, if
𝐵𝐼 = {𝑐 ∣ 𝐵(𝑐) ∈ 𝐺} for each class name 𝐵, and 𝑝𝐼 = {(𝑐, 𝑑) ∣ 𝑝(𝑐, 𝑑) ∈ 𝐺} for each property name 𝑝.
Intuitively, 𝐼 is a shape assignment for 𝐺 if class and property names are interpreted as specified
by 𝐺. For simplicity, in this work, we view shape assignments 𝐼 as sets of atoms of the form
𝐺 ∪ 𝐿, where 𝐿 = {𝑠(𝑎) ∣ 𝑎 ∈ 𝑠𝐼} is a set of shape atoms. A data graph 𝐺 validates a shapes graph
(𝐶, 𝑇) if there exists a shape assignment 𝐼 for 𝐺 that satisfies (𝐶, 𝑇).

Clearly, for non-recursive constraints, which is the setting we consider here, the unique
assignment 𝐼𝐺,𝐶 = 𝐺 ∪𝐿𝐺,𝐶 obtained in a bottom-up fashion, starting from 𝐺 and evaluating each
constraint once, is a model of 𝐶. More precisely, since the constraints in 𝐶 are non-recursive,



⊤𝐼 = Δ 𝑐𝐼 = {𝑐} 𝐴𝐼 = {𝑐 ∣ 𝐴(𝑐) ∈ 𝐼 }

s𝐼 = {𝑐 ∣ s(𝑐) ∈ 𝐼 } (¬𝜙)𝐼 = Δ ⧵ (𝜙)𝐼 (𝜙1 ∧ 𝜙2)𝐼 = (𝜙1)𝐼 ∩ (𝜙2)𝐼

(≥𝑛 𝐸.𝜙)𝐼 = {𝑐 ∣ |{(𝑐, 𝑑) ∈ (𝐸)𝐼 and 𝑑 ∈ (𝜙)𝐼}| ≥ 𝑛}

(𝐸 = 𝑝)𝐼 = {𝑐 ∣ ∀𝑑 ∶ (𝑐, 𝑑) ∈ (𝐸)𝐼 iff (𝑐, 𝑑) ∈ (𝑝)𝐼}

(𝑑𝑖𝑠𝑗(𝐸, 𝑝))𝐼 = {𝑐 ∣ ∄𝑑 ∶ (𝑐, 𝑑) ∈ (𝐸)𝐼 and (𝑐, 𝑑) ∈ (𝑝)𝐼}

(𝑐𝑙𝑜𝑠𝑒𝑑(𝑃))𝐼 = {𝑐 ∣ ∀𝑝 ∉ 𝑃 ∶ 𝑐 ∉ (∃𝑝)𝐼}

(𝑝)𝐼 = {(𝑎, 𝑏) ∣ 𝑝(𝑎, 𝑏) ∈ 𝐼 } (𝑝−)𝐼 = {(𝑎, 𝑏) ∣ 𝑝(𝑏, 𝑎) ∈ 𝐼 }

(𝐸 ⋅ 𝐸′)𝐼 = {(𝑎, 𝑏) ∣ ∃𝑑 ∶ (𝑎, 𝑑) ∈ (𝐸)𝐼 and (𝑑, 𝑐) ∈ (𝐸′)𝐼}

(𝐸 ∪ 𝐸′)𝐼 = (𝐸)𝐼 ∪ (𝐸′)𝐼 (𝐸∗)𝐼 = {(𝑎, 𝑎) ∣ 𝑎 ∈ Δ} ∪ (𝐸)𝐼 ∪ (𝐸 ⋅ 𝐸)𝐼 ∪ ⋯

Table 1
Semantics of SHACL shape expressions

one can start from constraints of the form 𝑠1 ↔ 𝜙1, where 𝜙1 has no shape names, and add
all the atoms 𝑠(𝑎) such that 𝑎 ∈ J𝜙1K𝐺 and obtain 𝐺 ∪ 𝐿1. We then proceed with constraints
of the form 𝑠2 ↔ 𝜙2, where 𝜙2 has only shape names occurring in 𝐿1 and add in 𝐿2 all 𝑠2(𝑎)
such that 𝑎 ∈ J𝜙2K𝐺∪𝐿1 ; the new assignment is 𝐺 ∪ 𝐿1 ∪ 𝐿2. We proceed like this with the
rest of the constraints, by evaluating each of them once, until all of them are processed. The
resulting assignment 𝐼𝐺,𝐶 is unique and is a model that satisfies all the constraints in 𝐶; we call
𝐼𝐺,𝐶 = 𝐺 ∪ 𝐿𝐺,𝐶 the model of 𝐺 and 𝐶. Then, we can formulate validation as follows: a data
graph 𝐺 validates (𝐶, 𝑇 ) if 𝐼𝐺,𝐶 satisfies (𝑊 , 𝑠) for every target (𝑊 , 𝑠) ∈ 𝑇.

Example 2.1. Consider the following data graph 𝐺 and shapes graph (𝐶, 𝑇 ):

𝐺 = {𝑃𝑟𝑗(𝑝1), 𝑃𝑟 𝑗(𝑝2), 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗(𝑝1), 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗(𝑝2), 𝐸𝑚𝑝𝑙(𝐴𝑛𝑛), 𝐸𝑚𝑝𝑙(𝐵𝑒𝑛), 𝐸𝑚𝑝𝑙(𝑇 𝑜𝑚),
𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟(𝐴𝑛𝑛, 𝑝1), 𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟(𝐵𝑒𝑛, 𝑝1), 𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟(𝑇 𝑜𝑚, 𝑝2)}

𝐶 = {PrjShape ↔ 𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗 ∨ 𝐹 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑃𝑟𝑗,
EmplShape ↔ 𝐸𝑚𝑝𝑙 ∨ ∃𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 .𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗},

𝑇 = {(𝑃𝑟𝑗,PrjShape), (∃𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 , EmplShape)}

Intuitively, the data graph contains 2 projects, 𝑝1, 𝑝2 which are also active projects, as well as
three employees, 𝐴𝑛𝑛, 𝐵𝑒𝑛, 𝑇 𝑜𝑚; the first two work for 𝑝1 and 𝑇 𝑜𝑚 works for 𝑝2. Together, the
constraints and target intuitively state that all projects must be either active or finished, and
all those working for some projects must be instances of the class 𝐸𝑚𝑝𝑙 or work for some active
project. In this case, 𝐺 validates (𝐶, 𝑇 ); this is witnessed by the assignment 𝐺 ∪ {PrjShape(𝑝1),
PrjShape(𝑝2), EmplShape(𝐴𝑛𝑛), EmplShape(𝐵𝑒𝑛), EmplShape(𝑇 𝑜𝑚)} which satisfies 𝑇.

3. Extending SHACL for Evolving RDF Graphs

In this section, we propose an extention of SHACLwith a construct (𝑎, 𝑏) for a singleton property
and with difference of properties. We also allow for complex target expressions (𝑊 , 𝑠), where 𝑊



can now be any complex shape expression without shape names, and we allow for variables to
occur in the place of constants. Moreover, we allow for targets to support Boolean combinations
of target expressions. We denote with SHACL+ this extended version of SHACL. This extension
turns out to be necessary to capture the effects of actions on SHACL constraints and to express
preconditions in the update language defined in the following section.

Assume a countable set 𝑁𝑉 of variables (disjoint from the rest). More precisely, SHACL+

properties are defined according to the following syntax:

𝑟 , 𝑟 ′ ∶∶= 𝑝 ∣ (𝑡1, 𝑡2) ∣ 𝑟− ∣ 𝑟 ⧵ 𝑟 ′

where 𝑡1, 𝑡2 ∈ 𝑁𝐼 ∪ 𝑁𝑉 and 𝑝 ∈ 𝑁𝑃; we call them complex properties. Paths 𝐸 over complex
properties and (complex) shape expressions over such paths are defined as expected. Targets are
extended to allow variables in the places of nodes and complex shapes and Boolean combinations
of target expressions as well.

More formally, SHACL+ target expressions are defined as follows:
• (𝑊 , 𝑠), where 𝑊 is a complex shape expression without shape names, is a target,
• a target expression (𝑡, 𝑠), where 𝑡 ∈ 𝑁𝑉 ∪ 𝑁𝐼 is a target,
• if 𝑇1 and 𝑇2 are targets, then 𝑇1 ∧ 𝑇2, 𝑇1 ∨ 𝑇2, and ¬𝑇1 are targets.

If no variables appear in 𝐶 (or 𝑇), then it is called ground. Now, when an assignment is a model
of a target is naturally defined as follows.

Definition 3.1. Consider a shape assignment 𝐼 and a ground target in SHACL+. Then, 𝐼 is a model
of 𝑇, that is 𝐼 ⊧ 𝑇, if the following hold:

• 𝑊 𝐼 ∈ 𝑠𝐼, if 𝑇 is a target expression of the form (𝑊 , 𝑠),
• 𝐼 ⊧ 𝑇1 and 𝐼 ⊧ 𝑇2, if 𝑇 is of the form 𝑇1 ∧ 𝑇2,
• 𝐼 ⊧ 𝑇1 or 𝐼 ⊧ 𝑇2, if 𝑇 is of the form 𝑇1 ∨ 𝑇2, and
• 𝐼 ̸⊧ 𝑇1, if 𝑇 is of the form ¬𝑇1

Finally, in SHACL+ we also allow for Boolean combinations of shapes graphs. More formally,
a SHACL+ shapes graph is defined recursively as follows:

• (𝐶, 𝑇 ) is a SHACL+ shapes graph, where 𝐶 and 𝑇 are ground SHACL+ sets of constraints
and targets, respectively, and

• if 𝒮1, 𝒮2 are SHACL+ shapes graphs, then 𝒮1 ∧ 𝒮2, 𝒮1 ∨ 𝒮2, and ¬𝒮1 are SHACL+ shapes
graphs.

A SHACL+ shapes graph is called normal, if it is of the form (𝐶, 𝑇 ), where 𝐶 and 𝑇 are ground
SHACL+ constraints and targets, respectively. Validation is naturally defined as follows.

Definition 3.2. Consider SHACL+ shapes graph 𝒮 and data graph 𝐺. Then, 𝐺 validates 𝒮, if the
following hold:

• 𝐼𝐺,𝐶 ⊧ 𝑇, if 𝒮 is of the form (𝐶, 𝑇 ),
• 𝐺 validates 𝒮1 and 𝒮2 if 𝒮 if of the form 𝒮1 ∧ 𝒮2,
• 𝐺 validates 𝒮1 or 𝒮2 if 𝒮 if of the form 𝒮1 ∨ 𝒮2, and
• 𝐺 does not validate 𝒮1 if 𝒮 is of the form ¬𝒮1

Allowing Boolean combinations of shapes graphs is just syntactic sugar, as each SHACL+

shapes graphs 𝒮 can be converted into equivalent normal shapes graphs by simply renaming the



shape names in each normal shapes graph appearing in 𝒮, taking the union of all constraints,
and pushing the Boolean operators to the targets.

Proposition 3.3. Consider a shapes graph 𝒮 in SHACL+ and consider a data graph 𝐺. Then, 𝒮
can be converted in linear time into a normal SHACL+ shapes graph (𝐶𝒮, 𝑇𝒮) such that for every
data graph 𝐺, it holds that 𝐺 validates 𝒮 iff 𝐺 validates (𝐶𝒮, 𝑇𝒮).

The above proposition shows that allowing Boolean combinations of shapes graphs is just
syntactic sugar, since we can equivalently transform such shapes graphs into a unique normal
shapes graph (𝐶, 𝑇 ) in SHACL+.

4. Update Language for RDF Graphs

We now present the action language for updating RDF graphs. It is composed of two types of
actions, namely basic and complex actions. Roughly, the basic actions allow to insert or delete
constants from the evaluation of a shape expression or arbitrary property over the graph to a
class or property name, respectively. The complex actions allow for composing various actions
and to perform conditional checks over the data. In particular, we assume that a set of SHACL
constraints that contains all the necessary and sufficient shape constraints is given in the input
together with the set of actions. The preconditions in the actions are targets in SHACL+, that is
any Boolean combination of target expressions that will be checked w.r.t. a set of constraints.

Basic actions 𝛽 are defined by the following grammar:

𝛽 ∶∶= (𝐴
⊕
⟵ 𝜙) ∣ (𝐴

⊖
⟵ 𝜙) ∣ (𝑝

⊕
⟵ 𝑟) ∣ (𝑝

⊖
⟵ 𝑟)

where 𝐴 is a class name, 𝜙 a complex shape without shape names, 𝑝 a property name, and 𝑟 a
complex property. Complex actions 𝛼 are defined by the following grammar:

𝛼 ∶∶= ∅ ∣ 𝛽 ⋅ 𝛼 ∣ ((𝐶, 𝑇+)?𝛼[𝛼]) ⋅ 𝛼

where 𝛽 is a basic action, ∅ is an empty action, 𝛼 is a complex action, and (𝐶, 𝑇+) is a SHACL+

normal shapes graph. We may sometimes write (𝑇+?𝛼[𝛼]) ⋅ 𝛼, omitting 𝐶 from the actions if 𝐶
is given in the input, and the precondition targets 𝑇+ are required to be applied on the input 𝐶.

A substitution is a function 𝜎 from 𝑁𝑉 to 𝑁𝑁. For a Boolean target, an action, or an action
sequence 𝛾, we use 𝜎(𝛾 ) to denote the result of replacing in 𝛾 every occurrence of a variable 𝑥
by a constant 𝜎(𝑥). An action 𝛼 is ground if it has no variables, and 𝛼′ is a ground instance of
an action 𝛼 if 𝛼′ = 𝜎(𝛼) for some substitution 𝜎.

Intuitively, an application of a ground action (𝐴
⊕
⟵ 𝜙) on a graph 𝐺 and a ground set of

constraints 𝐶, stands for the addition of 𝐴(𝑐) to 𝐺 for each 𝑐 that makes true 𝜙 in the model

𝐼𝐺,𝐶 of 𝐺 and 𝐶; analogously for (𝐴
⊖
⟵ 𝐶), where now 𝐴(𝑐) will be removed from 𝐺 for each

𝑐 that makes true 𝜙 in 𝐼𝐺,𝐶. The two operations can also be performed on complex properties.
Composition stands for successive action execution, and a conditional action ((𝐶, 𝑇+)?𝛼1[𝛼2])
expresses that 𝛼1 is executed if 𝑇 is true in 𝐼𝐺,𝐶, and 𝛼2 is performed otherwise. If 𝛼2 = ∅, then
we have an action with a simple precondition as in classical planning languages, and we write



it as (𝐶, 𝑇+)?𝛼1, without 𝛼2. The semantics of applying actions on data graphs, w.r.t. a set of
constraints, is defined only on ground actions and constraints.

Definition 4.1. Let 𝐺 be a data graph, and 𝛼 a ground complex action. Then, the result 𝐺𝛼 of
applying 𝛼 on 𝐺 is defined recursively as follows:

• if 𝛼 is a basic action, then

– 𝐺𝛼 = 𝐺 ∪ {𝐴(𝑎) ∣ 𝑎 ∈ 𝜙𝐼} for 𝛼 of the form (𝐴
⊕
⟵ 𝜙),

– 𝐺𝛼 = 𝐺 ⧵ {𝐴(𝑎) ∣ 𝑎 ∈ 𝜙𝐼} for 𝛼 of the form (𝐴
⊖
⟵ 𝜙),

– 𝐺𝛼 = 𝐺 ∪ {𝑝(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∈ 𝑟 𝐼} for 𝛼 of the form (𝑝
⊕
⟵ 𝑟), and

– 𝐺𝛼 = 𝐺 ⧵ {𝑝(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∈ 𝑟 𝐼} for 𝛼 of the form (𝑝
⊖
⟵ 𝑟)

• if 𝛼 is a complex action 𝛾 of the form 𝛽 ⋅ 𝛼, then 𝐺𝛾 = (𝐺𝛽)𝛼

• if 𝛼 is a complex action 𝛾 of the form ((𝐶, 𝑇+)?𝛼1[𝛼2]) ⋅ 𝛼, then 𝐺𝛾 is

– 𝐺𝛼1⋅𝛼, if 𝐼𝐺,𝐶 satisfies 𝑇,

– 𝐺𝛼2⋅𝛼 if 𝐼𝐺,𝐶 does not satisfy 𝑇.

We illustrate the effects of an action update on a data graph with an example.

Example 4.2. Consider again 𝐺 and (𝐶, 𝑇 ) from Example 2.1. Now, consider the action 𝛼 that
expresses the termination of project 𝑝2, which is removed from the active projects and added to the
finished ones; the employees working only for this project are removed.

𝛼 = (𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗
⊖
⟵ 𝑝2) ⋅ (𝐹 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑃𝑟𝑗

⊕
⟵ 𝑝2) ⋅ (𝐸𝑚𝑝𝑙

⊖
⟵ ∀𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 .𝑝2)

After applying 𝛼 to 𝐺, we obtain the updated data graph 𝐺𝛼 = (𝐺 ⧵ {𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗(𝑝2), 𝐸𝑚𝑝𝑙(𝑇 𝑜𝑚)}) ∪
{𝐹 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑃𝑟𝑗(𝑝2)}. The updated data graph 𝐺𝛼 does not validate the shapes graph (𝐶, 𝑇 ) since now
𝑇 𝑜𝑚 will still have a 𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟-relation to project 𝑝2, but he does not satisfy the constraint for the
shape name EmplShape–𝑇 𝑜𝑚 is not an employee and does not work for an active project.

Note that we have not defined the semantics of actions with variables, that is non-ground
actions. In our approach, all variables of an action are seen as parameters whose values are
given before execution by a substitution with actual constants, such as by grounding. Note that
the execution of actions on an initial data graph is allowed to modify the extensions of class
and property names, yet the domain remains fixed. In many scenarios, we would like actions
to have the ability to introduce “fresh” nodes to a data graph. Intuitively, the introduction of
new nodes can be modeled in our setting by separating the domain of an assignment into the
active domain and the inactive domain. The active domain consists of all nodes that occur in
the data graph, whereas the inactive domain contains the remaining nodes, which can be seen
as a supply of fresh nodes that can be introduced into the active domain by executing actions.
Since we are interested only in finite sequences of actions, a sufficient supply of fresh constants
can always be ensured by taking a sufficiently large yet still finite inactive domain in the initial
instance. We remark also that deletion of nodes can naturally be modeled in this setting by
actions that move objects from the active domain to the inactive domain.



Example 4.3. Consider again our running example. Now consider the following action:

𝛼′ = ({𝑠 ↔ ∀𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 .𝑝2}, {(𝑡 , 𝑠)})?(𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟
⊖
⟵ {(𝑡, 𝑝2)})

Under the substitution 𝜎(𝑡) = 𝑇 𝑜𝑚, which maps the variable 𝑡 to 𝑇 𝑜𝑚, the data graph 𝐺 validates
the shapes graph ({𝑠 ↔ ∀𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 .𝑝2}, {(𝑇 𝑜𝑚, 𝑠)}). Hence, the ground action 𝛼′

𝑇 𝑜𝑚 can be applied to
𝐺𝛼 by deleting 𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟(𝑇 𝑜𝑚, 𝑝2). The resulting data graph satisfies (𝐶, 𝑇 ). Thus, the application
of the ground complex action 𝛼 ⋅ 𝛼′

𝑇 𝑜𝑚 on 𝐺 results in a valid data graph.

5. Capturing Effects of Updates

In this section, we define a transformation 𝑇𝑅𝛼(𝐶, 𝑇 ) that essentially rewrites the input shapes
graph (𝐶, 𝑇 ) to capture all the effects of an action 𝛼. This transformation can be seen as a form
of regression, which incorporates the effects of a sequence of actions “backwards,” from the last
one to the first one. More precisely, the transformation 𝑇𝑅𝛼(𝐶, 𝑇 ) takes a SHACL shapes graph
(𝐶, 𝑇 ) and an action 𝛼 and rewrites them into a new shapes graph (𝐶𝛼, 𝑇𝛼), possibly in SHACL+,
such that for any data graph 𝐺 the following holds:

𝐺𝛼 validates (𝐶, 𝑇 ) iff 𝐺 validates (𝐶𝛼, 𝑇𝛼)

If 𝛼 is without preconditions, the result of applying the transformation is a shapes graph
(𝐶𝛼, 𝑇 𝛼), where 𝐶𝛼 is a SHACL set of constraints, and 𝑇 𝛼 is a set of target expressions (𝑊 , 𝑠)
(similarly as in plain SHACL), but may contain complex shape expressions in place of 𝑊.
Intuitively, the idea is to simply update the bodies of constraints in 𝐶 and target expressions in
𝑇 accordingly, namely the actions replace a concept name 𝐴 occurring in 𝐶 and 𝑇 with 𝐴 ∧ 𝐶 (or

𝐴 ∧ ¬𝐶) if the action is 𝐴
⊕
⟵ 𝐶 (or 𝐴

⊖
⟵ 𝐶), and a property 𝑝 with 𝑝 ∪ 𝑟 (or 𝑝 ⧵ 𝑟) if the action is

𝑝
⊕
⟵ 𝑟 (or 𝑝

⊖
⟵ 𝑟). Now consider the case, where the action is of the form (𝐶, 𝑇+)?𝛼1[𝛼2]. Then,

intuitively, we create two shapes graphs: one shapes graph (𝐶𝛼1 , 𝑇𝛼1) if the SHACL+ target 𝑇+

is satisfied by 𝐼𝐶,𝐺 and (𝐶𝛼2 , 𝑇𝛼2) if the SHACL+ target 𝑇+ is not satisfied by 𝐼𝐶,𝐺.

Definition 5.1. Assume SHACL+ shapes graph 𝒮 and and an action 𝛼. We use 𝒮𝐸←𝐸′ to denote
the new SHACL+ shapes graph that is obtained from 𝒮 by replacing in 𝒮 every class or property
name 𝐸 with the expression 𝐸′. Then, the transformation 𝑇𝑅𝛼(𝒮 ) of 𝒮 w.r.t., 𝛼 is defined recursively
as follows:

𝑇𝑅𝜖(𝒮 ) = 𝒮
𝑇𝑅

(𝐴
⊕

⟵𝐶)⋅𝛼
(𝒮 ) = (𝑇𝑅𝛼(𝒮 ))𝐴←𝐴∨𝐶

𝑇𝑅
(𝐴

⊖
⟵𝐶)⋅𝛼

(𝒮 ) = (𝑇𝑅𝛼(𝒮 ))𝐴←𝐴∧¬𝐶

𝑇𝑅
(𝑝

⊕
⟵𝑟)⋅𝛼

(𝒮 ) = (𝑇𝑅𝛼(𝒮 ))𝑝←𝑝∪𝑟

𝑇𝑅
(𝑝

⊖
⟵𝑟)⋅𝛼

(𝒮 ) = (𝑇𝑅𝛼(𝒮 ))𝑝←𝑝⧵𝑟

𝑇𝑅((𝐶,𝑇+)?𝛼1[𝛼2])⋅𝛼(𝒮 ) = (¬(𝐶, 𝑇+) ∨ 𝑇𝑅𝛼1⋅𝛼(𝒮 )) ∧ ((𝐶, 𝑇+) ∨ 𝑇𝑅𝛼2⋅𝛼(𝒮 ))



Note that in the presence of conditional actions, we may obtain Boolean combinations of
normal shapes graphs, whose number may be exponential in the size of the input action 𝛼.
However, each of the normal shapes graphs will be of polynomial size. When no conditional
actions are present, then the result of the transformation on a SHACL shapes graph is a
normal SHACL+ shapes graph that simply uses role difference in constraints (role union can be
captured by paths) and possibly complex expressions without shape names in target expressions.
Moreover, note that by proceeding as in Proposition 3.3, the result of 𝑇𝑅𝛼(𝒮 ) can be converted
in an equivalent SHACL+ normal shapes graph (𝐶𝛼, 𝑇𝛼).

Using similar arguments as in the proof of Theorem 4.2 in [1], and arguing about the additional
constructs allowed in SHACL+, we can show that this transformation correctly captures the
effects of complex actions.

Theorem 5.2. Given a ground action 𝛼, a data graph 𝐺 and a SHACL shapes graph 𝒮. Then, 𝐺𝛼

validates 𝒮 if and only if 𝐺 validates 𝑇𝑅𝛼(𝒮 ).

This allows us to perform validation under updates leveraging standard, static validators for
SHACL+. We illustrate the transformation above with an example.

Example 5.3. Consider the shapes graph (𝐶, 𝑇 ) and the action 𝛼 from our running example. Then,
the transformation 𝑇𝑅𝛼((𝐶, 𝑇 )) of (𝐶, 𝑇 ) w.r.t. 𝛼 is the new shapes graph (𝐶′, 𝑇 ′), where:

𝐶′ = {PrjShape ↔ (𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗 ∧ ¬𝑝2) ∨ (𝐹 𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑃𝑟𝑗 ∨ 𝑝2),
EmplShape ↔ (𝐸𝑚𝑝𝑙 ∧ ¬∀𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 .𝑝2) ∨ ∃𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 .(𝐴𝑐𝑡𝑖𝑣𝑒𝑃𝑟𝑗 ∧ ¬𝑝2)},

𝑇 ′ = {(𝑃𝑟𝑗,PrjShape), (∃𝑤𝑜𝑟𝑘𝑠𝐹𝑜𝑟 , EmplShape)}

6. Static Validation under Updates for Arbitrary Graphs

In this section, we consider a stronger form of reasoning about updates. We have seen that, for
each input graph, validation under updates can be reduced to usual validation. Now we look at
whether a sequence of actions is compatible with the constraints, independently of a concrete
data graph, that is, whether the execution of a given sequence of actions always preserves the
satisfaction of a given shapes graph, for every data graph.

Definition 6.1. Let 𝒮 be a shapes graph and let 𝛼 be an action. Then 𝛼 is a 𝒮-preserving action if
for every data graph 𝐺 that validates 𝒮, it holds that 𝐺𝛼 validates 𝒮. The static validation under
updates problem is:

Given an action 𝛼 and a shapes graph 𝒮, is 𝛼 𝒮-preserving?

Using the transformation from Definition 5.1, we can reduce static validation under updates
to unsatisfiability of shapes graphs: an action 𝛼 is not 𝒮-preserving if and only if there is some
data graph that does not validate 𝑇𝑅𝛼∗(𝒮 ), where 𝛼∗ is obtained from 𝛼 by replacing each
variable with a fresh constant name not occurring in the input.

Analogously to Theorem 5.2 in [1], we can show the correctness of the following theorem.

Theorem 6.2. Let 𝛼 be a complex action and 𝒮 a SHACL+ shapes graph. The following are
equivalent:



• 𝛼 is not 𝒮-preserving,

• 𝒮 ∧ ¬𝑇𝑅𝛼∗(𝒮 ) is satisfiable, where 𝛼∗ is obtained from 𝛼 by replacing each variable with a
fresh constant not occurring in 𝒮 and 𝛼.

It has been shown in [3] that checking satisfiability is undecidable already for (plain) SHACL
shapes graphs. However, if we restricts the constructs allowed in the SHACL+ shape expressions
to the 𝐴𝐿𝐶𝐻𝑂𝐼𝑄𝑏𝑟 fragment studied in [1], we can obtain better upper-bounds. In particular, it
was shown in [1] that the static validation under updates problem is in coNExpTime when the
input is in𝐴𝐿𝐶𝐻𝑂𝐼𝑄𝑏𝑟 and in ExpTime when the input KB is expressed in𝐴𝐿𝐶𝐻𝑂𝐼. Hence, if we
disallow path expressions (other than role union, which can be allowed), equality, disjointness,
and closed constraints in SHACL+ shapes graphs, then the resulting 𝒮 ∧¬𝑇𝑅𝛼∗(𝒮 ) can be easily
converted into an 𝐴𝐿𝐶𝐻𝑂𝐼𝑄𝑏𝑟 knowledge base–with shape names, which can be treated as class
names–showing the membership in coNExpTime. Further, if we restrict cardinality constraints
and are left with 𝐴𝐿𝐶𝐻𝑂𝐼 knowledge bases, then we obtain membership in ExpTime. Note
that using similar arguments as in [1] we can argue that each normal shapes graph appearing
in 𝒮 ∧ ¬𝑇𝑅𝛼∗(𝒮 ) is of polynomial size. For the lower bounds, we can reduce the NexpTime
problem of finite satisfiability of 𝐴𝐿𝐶𝐻𝑂𝐼𝑄 (or ExpTime of 𝐴𝐿𝐶𝐻𝑂𝐼) into the co-problem of
static validation for SHACL under updates.

7. Conclusion and Future Work

We have presented some preliminary work on formalizing updates for RDF graphs over SHACL
constraints. We addressed an important question: validation under updates, which asks to
verify whether a given RDF graph that validates a set of SHACL constraints, will remain valid
after applying a set of updates. This allows to identify problematic updates before applying
them to the graph, and thus to avoid incorrect and very costly computations on potentially
huge RDF graphs. In particular, it is beneficial to know if a set of updates leads to a valid graph
in case returning to the initial valid state is difficult, or that the user does not have sufficient
permissions in the system. To realize this form of static validation, we first identify a suitable
update language, that can capture intuitive and realistic modifications on RDF graphs, covers a
significant fragment of SPARQL updates and extends them to allow for conditional updates.

We also present a stronger form of static validation under updates that considers validation
on every graph that validates a given SHACL shapes graph. We show that the latter problem
can be reduced to (un)satisfiability of a shapes graph in SHACL+, a minor extension of SHACL,
which is known to be undecidable already for plain SHACL, but feasible in coNexpTime for
some expressive fragments.

SHACL+ mainly extends SHACL with singleton properties and difference of properties, which
are needed to capture the effects of the proposed actions on SHACL constraints. We also allow
for more complex targets. However, most of the extensions allowed in the targets in this work
are “syntactic sugar” and can be incorporated into plain SHACL. We note that the SHACL
Community Group is working on extending SHACL to support some of the features allowed in
this work, including more expressive targets as so-called SPARQL-based targets, with ongoing



review and documentation in the SHACL Advanced Features draft1.
Toward lowering the complexity of static validation, we plan to analyze the problem for other

relevant fragments of SHACL. We will also study other basic static analysis problems such as,
for instance, the static type checking problem [9], which for a given action, a source and target
shapes graph, asks whether, for every data graph that validates the source shapes graph, the
data graph after applying the action also validates the target shapes graph. Other interesting
problems related to planning ask to check whether there exists a sequence of actions that leads
a given data graph into a desired (or undesired) state where some property holds (or does not
hold). An important direction for future work is to provide an implementation of the regression
method. This method allows us to perform validation under updates by leveraging standard
validators, provided that they can support SHACL+; this is not the case for current validators,
but we believe that this extension is not hard to incorporate to existing validators, and plan to
address this in our future work.
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