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1. Introduction

Despite significant progress in query optimization techniques over the past decades and the
advent of powerful computer infrastructure (including cluster environments), DBMSs still
struggle with the potential explosion of intermediate results, even if the final output is small.
This is particularly glaring in the context of analytical queries which often combine data from
many tables to ultimately only produce comparatively tiny aggregate results.

Traditionally, database engines try to avoid expensive intermediate blow-up by searching for
an optimal join order. More recently, worst-case optimal joins, which at least guarantee to limit
the blow-up to the theoretical worst-case, have gained popularity as an alternative approach for
reducing intermediate materialisation. However, while these techniques may help to alleviate
the problem of (unnecessarily) big intermediate results in certain cases, they do not eliminate
the problem (see, e.g., [1]). Furthermore, the problem of big intermediate results holds all the
same even if joins are made only along foreign-key relationships [2].

By a landmark result of Yannakakis [3], we know that materialisation of unnecessary interme-
diate results can be avoided for acyclic conjunctive queries (ACQs) by eliminating all dangling
tuples (i.e., tuples not contributing to the final join result) via semi-joins. However, even if
dangling tuples have been eliminated the intermediate results produced in the join phase may
still become prohibitively big. This situation is highly unsatisfactory. Especially in aggregate
queries, where only a restricted amount of information is ultimately extracted from the result
of a join query, we would like to avoid the materialisation of the join result altogether.

Indeed, it is well known that, in case of Boolean queries (e.g., if we are only interested whether
the result of a join query is non-empty), the final answer can be determined by carrying out
only semi-joins and skipping the entire join step. In [4, 5], it was investigated how variations
of the same algorithmic idea also apply to counting the answers to conjunctive queries (i.e.,
join queries with COUNT aggregates). Subsequently, these ideas were extended to more general
aggregate queries in the FAQ-framework (Functional Aggregate Queries) [6] and, similarly,
under the name AJAR (Aggregations and Joins over Annotated Relations) in [7].

The algorithmic results in these works generally rely on the avoidance of exponential interme-
diate blow-up. However, these methods, analogous to Yannakakis’ algorithm, are incompatible
with the execution engines of typical relational DBMSs. In this work, we show that, for
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guarded acyclic aggregate queries, Yannakakis-style query execution can actually be
naturally integrated into standard SQL execution engines. As a result, intermediate
materialisation of join results can often be drastically reduced or even avoided entirely when
executing aggregate queries in relational DBMSs. We have implemented our approach in Spark
SQL and tested it on various standard benchmarks. The experimental results reported in Section
3 show significant improvements can be achieved for queries that fall into our targeted class.
Full details of this work are provided in [8].

2. Guarded Aggregate Queries

Recently, in [9] and [10], a particularly favourable class of ACQs with aggregates has been
presented: the class of 0MA (short for “zero-materialisation answerable”) queries. These
are acyclic queries that can be evaluated by executing only the first bottom-up traversal of
Yannakakis’ algorithm. That is, we only need to perform the comparatively cheap semi-joins
and can completely skip the typically significantly more expensive join phase. A query of
the form Q = 𝛾𝑔1,…,𝑔𝑘, 𝐴1(𝑎1),…,𝐴𝑚(𝑎𝑚)(𝑄𝐶) with 𝑄𝐶 = 𝜋𝑈(𝑅1 ⋈ ⋯ ⋈ 𝑅𝑛)) is 0MA if it satisfies the
following conditions:

• Guardedness, meaning that all grouping attributes 𝑔1, … , 𝑔𝑘 and all attributes 𝑎1, … , 𝑎𝑚
occurring in the aggregate expressions 𝐴1(𝑎1), … , 𝐴𝑚(𝑎𝑚) occur in some relation 𝑅𝑖.

• Set-safety of the aggregate functions𝐴1… ,𝐴𝑚, meaning that duplicate elimination applied
to the inner expression 𝜋𝑈(𝑅1 ⋈ ⋯ ⋈ 𝑅𝑛) does not alter the result of the grouping and
aggregate expression 𝛾𝑔1,…,𝑔𝑛, 𝐴1(𝑎1),…,𝐴𝑚(𝑎𝑚).

It is known (see, [9]) that for queries in the class 0MA, materialisation of join results can be
completely avoided. However, it is limited to a subset of the available SQL aggregate functions.
Heavily used analytical functions such as COUNT without DISTINCT as well as SUM, AVG, or
MEDIAN depend on full joins. In [4], it was shown how Yannakakis’ algorithm can be extended
to ACQs with a COUNT(*) aggregate on top. We adapt this approach to integrate it into the
logical QEP of relational DBMSs and we further extend it to related aggregates such as SUM, AVG,
and MEDIAN. To this end, we keep the requirements of acyclicity and guardedness, while the
set-safety requirement is now dropped. Our technique also works for COUNT(*), which we can
view as counting the number of non-null entries grouped by the empty set of attributes; hence,
it is trivially guarded. As in the 0MA-case, we start by checking acyclicity and, simultaneously,
computing a join tree of the join query 𝑄𝐶. If 𝑄𝐶 is acyclic and guarded, we take the node
labelled by the “guard” as the root of the join tree. Of course, in case of COUNT(*), we may
choose any node as the root of the join tree.

The key idea is to propagate frequencies up the join tree rather than duplicating tuples
(cf. [4]). This propagation is realised by recursively constructing extended Relational Algebra
expressions Freq(𝑢) for every node 𝑢 of the join tree as follows: Every relation of the join query
𝑄𝐶 is extended by an additional attribute where we store frequency information for each tuple.
We write 𝑐𝑢 to denote this additional attribute for the relation at node 𝑢 and we write �̄�𝑢 for the
remaining attributes of that relation. If 𝑢 is a leaf node of the join tree labelled by relation 𝑅,
then we initialise the attribute 𝑐𝑢 to 1. Formally, we thus have Freq(𝑢) = 𝑅 × {(1)}.



Now consider an internal node 𝑢 of the join tree with child nodes 𝑢1, … , 𝑢𝑘. Again, we assume
that 𝑢 is labelled by some relation 𝑅 with attributes �̄�𝑢 and we write 𝑐𝑢 for the additional
attribute used for keeping track of frequencies. The extended Relational Algebra expression
Freq(𝑢) is constructed iteratively by defining subexpressions Freq𝑖(𝑢)with 𝑖 ∈ {0, … , 𝑘}. To avoid
confusion, we refer to the frequency attribute of such a subexpression Freq𝑖(𝑢) as 𝑐

𝑖
𝑢. That is,

each relation Freq𝑖(𝑢) consists of the same attributes �̄�𝑢 plus the additional frequency attribute
𝑐𝑖𝑢. Then we define Freq𝑖(𝑢) for every 𝑖 ∈ {0, … , 𝑘} and, ultimately, Freq(𝑢) as follows:
Freq0(𝑢) := 𝑅 × {(1)}
Freq𝑖(𝑢) := 𝛾�̄�𝑢,𝑐 𝑖𝑢←SUM(𝑐 𝑖−1𝑢 ⋅𝑐𝑢𝑖)

(Freq𝑖−1(𝑢) ⋈ Freq(𝑢𝑖))
Freq(𝑢) := 𝜌𝑐𝑢←𝑐𝑘𝑢(Freq𝑘(𝑢))

Intuitively, after initialising 𝑐0𝑢 to 1 in Freq0(𝑢), the frequency values 𝑐1𝑢 , … , 𝑐𝑘𝑢 are obtained by
grouping over the attributes �̄�𝑢 of 𝑅 and computing the number of possible extensions of each
tuple ̄𝑎 in 𝑅 to the relations labelling the nodes in the subtrees rooted at 𝑢1, … , 𝑢𝑘. By the
connectedness condition of join trees, these extensions are independent of each other, i.e., they
share no attributes outside �̄�𝑢. Moreover, the frequency attributes 𝑐1𝑢 , … , 𝑐𝑘𝑢 are functionally
dependent on the attributes �̄�𝑢. Hence, by distributivity, the value of 𝑐𝑘𝑢 obtained by iterated
summation and multiplication for given tuple ̄𝑎 of 𝑅 is equal to computing, for every 𝑖 ∈ {1, … , 𝑘}
the sum 𝑠𝑖 of the frequencies of all join partners of ̄𝑎 in Freq(𝑢𝑖) and then computing their
product, i.e., 𝑐𝑢 = 𝑐𝑘𝑢 = Π𝑘

𝑖=1𝑠𝑖.
It remains to modify the aggregate functions COUNT(∗), COUNT(𝐴), SUM(𝐴), and AVG(𝐴) so that

they can operate on tuples with frequencies. For instance, let 𝑐𝑟 denote the frequency attribute
in Freq(𝑟) and let 𝐴 be an attribute of the relation 𝑅 labelling the root node 𝑟 of the join tree.
Then, in SQL-notation, we can rewrite common aggregate expressions as follows. Note that
the PERCENTILE function is not part of the ANSI SQL standard, but it is provided in Spark SQL,
which we used for our prototype implementation.

• COUNT(∗) → SUM(𝑐𝑟)
• COUNT(𝐴) → SUM(IF(ISNULL(𝐴), 0, 𝑐𝑟))
• SUM(𝐴) → SUM(𝐴 ⋅ 𝑐𝑟)
• AVG(𝐴) → SUM(𝐴 ⋅ 𝑐𝑟)/COUNT(𝐴)
• MEDIAN(𝐴) → PERCENTILE(0.5, 𝐴, 𝑐𝑟)

3. Implementation and Results

The approach outlined in Section 2 can be fully realised by rewriting logical query plans, even
in systems that only execute query plans based on classical two-way join trees. We have
implemented these optimisations for guarded aggregate queries in the form of standard logical
optimisation rules in Spark SQL. Recall that the Freq𝑖 operator allowed us to drastically reduce
the number of joins needed for aggregate evaluation. In our Spark SQL implementation, we
have managed to completely eliminate the need for joins in case of guarded aggregation by
introducing a new physical operator FreqJoin. Intuitively, it does the work of Freq𝑖 in the style
of semi-joins by first (say in relation 𝑆) summing up the frequencies of all tuples in 𝑆 with the
same join partner (𝑟 , 𝑐𝑟) in the other relation (say 𝑅) and then multiplying the frequency 𝑐𝑟 of 𝑟
with this sum.



wiki-topcats com-DBLP
Query Ref Opt+ Ref Opt+

path-03 X 23.71±0.54 6.32±1.1 1.59±0.12
path-04 X 25.94±1.12 50.97±9.8 1.76±0.16
path-05 X 27.46±0.64 400.87±15.2 2.03±0.25
path-06 X 30.16±1.00 X 2.18±0.14
path-07 X 33.32±1.62 X 2.38±0.26
path-08 X 34.49±0.68 X 2.53±0.30
tree-01 X 25.44±0.43 25.96±4.5 1.47±0.28
tree-02 X 27.64±0.57 328.88±11.5 1.69±0.16
tree-03 X 30.70±1.01 X 1.99±0.16

(a) Performance on SNAP graphs (X means
Spark SQL fails by running out of memory).

Query Ref Opt+ Speedup
STATS-CEB e2e 1558±7.3 64.8±7.9 24.04 x

JOB Q2 5.6±1.21 4.72±0.57 1.19 x
JOB Q3 5.2±0.32 4.70±0.22 1.11 x
JOB Q5 1.23±1.22 1.00±0.98 1.23 x
JOB Q17 118.5±32 35.69±0.59 3.32 x
JOB Q20 23.98±1.60 21.72±1.92 1.1 x

TPC-H Q2 SF200 179.4±6.5 160.6±3.7 1.12 x
TPC-H Q11 SF200 361.0±13.3 341.6±19.2 1.06 x
TPC-H V.1 SF200 168.4±4.4 105.11±3.9 1.6 x
LSQB Q1 SF300 3096±232 688±23 4.57 x
LSQB Q4 SF300 602±37 592±9 1.02x

(b) Summary of the impact of aggregate optimisa-
tion on execution times (seconds).

Figure 1: Summary of Experimental Results.

We evaluate the performance of the optimisation over 5 benchmark databases / datasets with
different characteristics: Join Order Benchmark (JOB) [11], STATS / STATS-CEB [12], Large-Scale
Subgraph Query Benchmark (LSQB) [13], SNAP (Stanford Network Analysis Project [14]), and
TPC-H [15]. For further details on the experiments, see [8].

The overall performance of our proposed optimisations on the applicable queries is sum-
marised in Table 1b. The numbers reported there are mean times over 5 runs of the same query
with standard deviations given after ±. Our experiments on the SNAP graphs specifically are
summarised in Table 1a. The fastest execution time achieved for each case is printed in boldface.
In both tables, we refer to the reference performance of Spark SQL without any alterations as
Ref. The results obtained by applications of the logical QEP optimisations are referred to as
Opt+. The speed-up achieved by Opt+ over Ref is explicitly stated in Table 1b in the column
Opt+ Speedup. Since our optimisations apply to all 146 queries of STATS-CEB, we report the
end-to-end time of executing all queries in the benchmark.

Avoiding Materialisation. To validate that the significant speedups are a result of decreased
materialisation we perform additional experiments for the STATS-CEB queries where we record
the peak number of materialised tuples during query execution. We see that the reduction
in materialisation is immense, especially in the queries that are most challenging for original
SparkSQL. In particular, in the 20 hardest queries (by runtime) for SparkSQL, we observe a
reduction of peak materialised tuples by at least 3 orders of magnitude when using Opt+.

4. Conclusion

We propose the integration of optimisation techniques for certain kinds of aggregate queries
into relational DBMSs to eliminate the materialisation of intermediate join results. We have
shown how queries with COUNT and related aggregates (such as SUM, AVG, and MEDIAN) can be
evaluated more efficiently while operating fully within the standard two-way join plan paradigm
of query evaluation engines. We have implemented these optimisations into Spark SQL and our
experimental evaluation confirms that these techniques can provide significant performance
improvements and avoid large amounts of unnecessary materialisation in a variety of settings.
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