
Opportunities for Shape-Based Optimization of Link
Traversal Queries
Bryan-Elliott Tam1,*, Ruben Taelman1, Pieter Colpaert1 and Ruben Verborgh1

1IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract
Data on the web is naturally unindexed and decentralized. Centralizing web data, especially personal data, raises
ethical and legal concerns. Yet, compared to centralized query approaches, decentralization-friendly alternatives
such as Link Traversal Query Processing (LTQP) are significantly less performant and understood. The two main
difficulties of LTQP are the lack of apriori information about data sources and the high number of HTTP requests.
Exploring decentralized-friendly ways to document unindexed networks of data sources could lead to solutions
to alleviate those difficulties. RDF data shapes are widely used to validate linked data documents, therefore, it
is worthwhile to investigate their potential for LTQP optimization. In our work, we built an early version of a
source selection algorithm for LTQP using RDF data shape mappings with linked data documents and measured
its performance in a realistic setup. In this article, we present our algorithm and early results, thus, opening
opportunities for further research for shape-based optimization of link traversal queries. Our initial experiments
show that with little maintenance and work from the server, our method can reduce up to 80% the execution time
and 97% the number of links traversed during realistic queries. Given our early results and the descriptive power
of RDF data shapes it would be worthwhile to investigate non-heuristic-based query planning using RDF shapes.

Keywords
Linked data, Link Traversal Query Processing, Query containment, RDF data shapes, Descentralized environments

1. Introduction

The World Wide Web is a naturally decentralized database. Centralizing large web segments in single end-
points provides easier query interfaces and faster query execution times. However, data centralization
can lead to practices that raise ethical and legal concerns, making the exploration of decentralization-
friendly query paradigms a relevant research topic. The query languages webSQL [1] and SPARQL
propose mechanisms to capture decentralized web data with conjunctive queries. However, webSQL
relies on web indexing [1]. Indexing processes can be expensive, particularly on the scale of the web,
and necessitate frequent updates, furthermore, they can be restrictive by excluding some sources thus
hindering the natural serendipity of the web. SPARQL solutions rely on the publication of linked data.
Linked data in their structure particularly with the presence of IRI gives the opportunity to find more
related information without indexes. However, most query processing over linked data is performed in
centralized and federated setups, leaving indexing-independent approaches largely experimental.

Link Traversal Query Processing (LTQP) [2] is a method to query unindexed networks of linked data
documents. The method consists of answering a query using an evolving triple store. This evolving
triple store is continuously updated with data acquired by the query engine through the recursive
dereferencing of IRIs from the store. The process is started with a set of IRIs provided by the user to the
engine. While LTQP enables live exploration of environments without prior indexing, it leads to some
difficulties. One of them is the pseudo-infinite search domain derived from the size of the World Wide

AMW 2024: 16th Alberto Mendelzon International Workshop on Foundations of Data Management, September 30th–October 4th,
2024, Mexico City, Mexico
*Corresponding author.
$ bryanelliott.tam@ugent.be (B. Tam); ruben.taelman@ugent.be (R. Taelman); pieter.colpaert@ugent.be (P. Colpaert);
ruben.verborgh@ugent.be (R. Verborgh)
� https://www.rubensworks.net (R. Taelman); https://pietercolpaert.be (P. Colpaert); https://ruben.verborgh.org
(R. Verborgh)
� 0000-0003-3467-9755 (B. Tam); 0000-0001-5118-256X (R. Taelman); 0000-0001-6917-2167 (P. Colpaert);
0000-0002-8596-222X (R. Verborgh)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://www.w3.org/TR/sparql11-query/
mailto:bryanelliott.tam@ugent.be
mailto:ruben.taelman@ugent.be
mailto:pieter.colpaert@ugent.be
mailto:ruben.verborgh@ugent.be
https://www.rubensworks.net
https://pietercolpaert.be
https://ruben.verborgh.org
https://orcid.org/0000-0003-3467-9755
https://orcid.org/0000-0001-5118-256X
https://orcid.org/0000-0001-6917-2167
https://orcid.org/0000-0002-8596-222X
https://creativecommons.org/licenses/by/4.0


Web [3]. Additionally, HTTP requests can be very slow and unpredictable making their execution the
bottleneck of the method [3]. Reachability criteria [2] are a partial answer to this problem by defining
completeness based on the traversal of URIs contained in the internal data source of the engine instead
of on the acquisition of all the results or the traversal of the whole web. Another difficulty is the lack of
a priori information about the sources rendering query planning challenging. To alleviate this problem,
the current state-of-the-art consists of using carefully crafted heuristics for joins ordering [4]. The
limitations of the heuristics approach are usually of little importance because the main bottleneck is
the high number of HTTP requests.

Earlier LTQP research has focused on the open web. More recently, LTQP research has shifted its
focus to environments where the structure of data publication provides useful information for query
optimization. This line of research uses structural assumptions [5] to guide query engines [6] towards
relevant data sources. Structural assumptions act as contracts between the data provider and the query
engines stipulating that within a certain subdomain of the web, information meeting a specific constraint
can be found. The use of structural assumptions has been studied in Solid [5]. The method involves
the utilization of the solid storage hypermedia description [7] to locate all the resources of a pod. This
hypermedia description is not expressive enough to capture the content of the resources of a pod,
thus, for query-aware optimizations, the type index specification 1 is additionally used. The type index
formulation proposes a more declarative approach [8] by mapping RDF classes with sets of resources.
By using those structural assumptions it is possible to reduce the query execution time of realistic
queries to the extent where the bottleneck is not the execution of HTTP requests but the suboptimal
heuristic-based query plan [9, 5]. Yet, for multiple queries the high number of HTTP requests remains
the main bottleneck [9]. It is reasonable to hypothesize that a significant portion of those HTTP requests
lead to the dereferencing of documents containing data that do not contribute to the result of the query.
Hence, investigating more descriptive structural assumptions is a relevant research endeavor.

In this article, we propose to use RDF data shapes as the main mechanism for a structural assumption
in the form of a shape index. RDF data shapes are mostly used in data validation [10] thus, they
provided a good formalization to describe the structure of data. Additionally, to a lesser extent, they
have been used for query optimizations [11]. The shape index is an early effort for data summarisation
of decentralized datasets [12, 13, 14] within networks of unindexed linked data documents. The current
focus of the index is source selection. However, we foresee opportunities to use a similar approach for
link queue ordering and query planning. This paper presents our preliminary work on data discovery
and link pruning thus tackling the problem of the large search space of LTQP queries in linked data
environments with structure.

2. Shape Index and Query-Shape Containment

The RDF specification does not enforce schemas on data. However, the data published often adhere
to an implicit schema due to the nature of its modeled object and the formulation of RDF [15]. From
those observations, implicit schemas have been used with success for query optimization [15, 16]. We
propose to adapt those methods for LTQP by using explicit data schemas provided by the data provider
in our source selection process.

2.1. Shape Index

Our method introduces the concept of a shape index to reduce query execution time by minimizing
unnecessary dereferencing of RDF documents within web subdomains (sets of URLs or URL patterns). 2

We define a shape index as a set of mappings between RDF data shapes and sets of resources. This
mapping concept shares similarities with shape mapping [17] and target declarations [18]. However,

1 https://solid.github.io/type-indexes/
2 From a perspective where the domain is composed of URLs leading to linked data documents and the codomain is composed
of the documents with their RDF content.

https://solidproject.org/TR/protocol#resources
https://solid.github.io/type-indexes/
https://solid.github.io/type-indexes/


Figure 1: First, the shape index is dereferenced, then the query-shape containment operations are performed in
the query engine and lastly, only the relevant resources are dereferenced.

instead of mapping shapes to RDF subgraphs, the shape index maps shapes to sets of documents. The
shape index also shares commonalities with shape trees, 3 however, it is designed to be a simpler
formulation focused on query optimization. The shape index has a range of applications defined in a
domain and a flag indicating if the index is complete. A shape index is complete when every resource in
the domain is associated with a shape within the shape index. In a shape index when a shape is mapped
to a set of RDF resources then the shape must validate those resources. Furthermore, every set of triples
respecting the shape in the domain must be located inside one resource of the set.

2.2. Query-Shape Containment

In order to determine before the traversal of a whole subdomain which resources are useful and which
can be pruned, the query engine solves a query-shape containment problem over the shape of the index
analogous to the classic query containment problem [19, 20, 21]. The query containment problem
consists of determining independent of the data source if the results of a query will be a subset of
the results of another query. We propose to express RDF data shapes into SELECT SPARQL queries
(𝑄𝑠) [22, 23, 24, 25] and apply similar resolution methods to query containment problems. Due to the
explicit domain definition of the index, this approach is adaptative, thus, the query engine can start its
processing with permissive reachability criteria such as 𝑐𝑎𝑙𝑙 [2] or the Solid state-of-the-art reachability
criteria [5] and not suffer from the associated longer execution time during the traversal of environments
containing a shape index. The source selection process is schematized for a single (sub)domain in
Figure 1. The process starts with the discovery of the shape index in the current (sub)domain. In the
case of Solid, the index can be at the root of the pod to be easily discoverable. 4 After the dereferencing
of the index, the analysis is started inside the query engine. The analysis consists of interpreting the
binding results (homomorphism and "partial" homomorphism) of the query-shape containment problem.
The algorithm divides the query from the user into multiple star patterns with their dependent star
pattern (𝑄𝑠𝑡𝑎𝑟). After the division of the query, the queries are pushdown [12, 26] to the level of source
selection to evaluate if the 𝑄𝑠𝑡𝑎𝑟 are contained inside the 𝑄𝑠 of the shape index. If all the 𝑄𝑠𝑡𝑎𝑟 are
contained in a 𝑄𝑠 or have no binding with any 𝑄𝑠 the reachability criterion is adapted to ignore all the
resources not linked to a 𝑄𝑠 even if the shape index is incomplete. If the shape index is complete and
not all the 𝑄𝑠𝑡𝑎𝑟 are contained in a 𝑄𝑠 the reachability criterion can be adapted to visit every resource
in relation to a 𝑄𝑠 with a partial binding with a 𝑄𝑠𝑡𝑎𝑟 . In a similar case with an incomplete shape index,
the query engine can only use the shape index for data discovery. This case is similar to the usage of
the type index but with a more reaching ability to match a query with the index because shapes in their
definition describe the properties (RDF predicates) of the entities whereas the type index only provides

3 https://shapetrees.org/TR/specification/
4 In this work, we do not take into consideration confidentiality restrictions.

https://shapetrees.org/
https://shapetrees.org/TR/specification/


the classes IRIs. It is possible to dereference the class IRIs to get information about the properties (if
available), however, it is not the current practice [5]. A comparison of the RDF data shapes and RDF
class approach due to their potential similarities is delegated to future works. 5

2.3. A Concrete Example

We conclude this section with a concrete example. Let’s assume that a user wants to retrieve the IDs
and contents of the comments in a network along with the forums ID where they have been posted
and the name of the moderator of the forums. This query is schematized in Figure 1. The query can
be represented by three star pattern queries, the comment 𝑄𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠, the forum 𝑄𝑓𝑜𝑟𝑢𝑚𝑠, and the
moderator 𝑄𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠. The full query is formed by the join of those star patterns, where the joins
respect the dependencies defined by shared variables 𝑄 = 𝑄𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠 ◁▷ 𝑄𝑓𝑜𝑟𝑢𝑚𝑠 ◁▷ 𝑄𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟𝑠.
When traversing the network the query engine cannot know the content of the documents encountered,
therefore, the engine must deference every reachable document as defined by a reachability criterion.
The presence of a shape index can change the state of affairs. If the engine encounters a domain
containing exclusively book data as indicated by a complete shape index, the engine can skip the
documents of the domain. If a domain has comment and movie review data declared by a complete
shape index, the query engine can safely limit its dereferencing operations to the set of documents
related to comments without affecting results completeness. The engine can restrict its dereferencing
operations because at least one star pattern is contained in the comment shape and none in the movie
review and book shapes. If the engine encounters a domain regardless of the completeness of the index,
declaring comment, forum, and individual (moderators are individuals/people) data, among others,
then the documents associated with the non-query-relevant part of the domain can be ignored with the
same containment logic presented earlier. Thus, we can consider that the traversal proceeds domain by
domain ignoring documents known a priori to not content query-relevant data.

3. Preliminary Results

1000

200

300
400
500
600700800900

2000

Ex
ec

ut
io

n 
tim

e 
(m

s) Type Index
Shape Index

S1V0
S1V1

S1V2
S1V3

S1V4
S5V0

S5V1
S5V2

S5V3
S5V4

D1V0
D1V1

D1V2
D1V3

D1V4
D3V0

D3V1
D3V2

D3V3
D3V4

D4V0
D4V1

D4V2
D4V3

D4V4
D5V0

D5V1
D5V2

D5V3
D5V4

D7V0
D7V1

D7V2
D7V3

D7V4

Query

0
50

100
150
200
250
300
350
400
450

Nu
m

be
r o

f H
TT

P 
re

qu
es

ts number of repetitions: 50
timeout: 6,000ms

Figure 2: The execution time with shape indexes is consistently lower (up to 80% with D1V3 and S1V3) or equal
to that with the type indexes (except for D3V3 and D3V4), and always uses fewer HTTP requests. The queries
are denoted with first the initial of the query template (e.g., S1 for interactive-short-1), and the version of the
concrete query (e.g., V0). Values not present in the plot (D7V0 and D7V3) indicate that the query timeout before
the end of the execution.

An open-source implementation of the algorithm and an integration in the query engine Comunica

5 There exist comparisons between the shape and class definition approaches in the context of data validation [27] but it is
left to be determined if their frame of comparison is compatible with our current problem and foreseen opportunities.

https://github.com/constraintAutomaton/query-shape-detection
https://github.com/constraintAutomaton/comunica-feature-link-traversal/tree/feature/shapeIndex


[28] is available online. 6 We use the benchmark Solidbench [5] to compare our approach with the
current state-of-the-art (the type index and the LDP specification 7 as structural assumptions) [5].
We used the supported subset of SolidBench queries, skipping the currently unimplemented SPARQL
property paths 8 and unions. We executed each query 50 times with a timeout of 1 minute (6,000
ms). Figure 2 shows that the reduction can be as high as 80% (D1V3 and S1V3) for execution time and
97% (S1V3) for the number of HTTP requests. Our approach reliably executes fewer HTTP requests
compared to the state-of-the-art. This is an expected result because no queries target (implicitly) each
file of a user. The shape index approach requests a subset of the request of the type index approach
(without sacrificing query results) with the addition of the request to get the shape definitions which
leads in general to the dereferencing of a small number of short documents. There is not a direct
correlation between the reduction of execution time and HTTP requests (e.g., the ratio between our
approach and the state-of-the-art of the number of HTTP requests by the execution time for D1V3 is
0.5 compared to 0.15 for S1V3). This hints at the results from the state-of-the-art [5] proposing that
the query plan is the bottleneck for some queries in this environment, however, the overhead of the
containment calculation could also be a contributing factor to the current results. In the worst cases, our
approach has similar query execution to the state-of-the-art except for D3V3 and D3V4 with an increase
of 9% of the mean of the execution time. The variance of the execution with a shape index tends to be
lower compared to the type index. A possible explanation for this observation is that the execution
time of HTTP requests is unpredictable [3] leading to an increase in variance. This observation not
only has potential implications for the reliability of multiple executions in terms of execution time but
also in terms of the performance of single executions in unstable networks where the server might take
longer times to respond.

4. Conclusion

The shape index approach shows that more precise source selection in LTQP can significantly reduce
query execution time. Although it is still an early effort, we believe that a solution inspired by our
approach could be beneficial for the query and publication of fragmented document-based linked data.
Our solution does not require extensive computational power from the data publisher during queries
and updates 9 of data sources. Additionally, using a shape index holds promise to improve the data
quality of fragmented document-based linked data. There are still multiple questions left to be answered
such as how to handle private data, what is the overhead and the complexity of the method 10, does the
reduction of HTTP request or the reduction on the size of the internal triple store has more impact on
the performance, can the shape index alone or with other data summarisation structures be used to
improve query planning without sacrificing query execution times.

Acknowledgements

Supported by SolidLab Vlaanderen (Flemish Government VV023/10) and the Research Foundation
Flanders (FWO) under grant number S006323N.

6 The algorithm implementation is available at the following link
https://github.com/constraintAutomaton/query-shape-detection and the integration in the Comunica query engine at the
following link https://github.com/constraintAutomaton/comunica-feature-link-traversal/tree/feature/shapeIndex. The imple-
mentation of the benchmark and complementary results such as the analysis of the statistical significance are available at the
following link https://github.com/constraintAutomaton/amw_shape_index_results.

7 https://www.w3.org/TR/ldp/
8 https://www.w3.org/TR/sparql11-query/#propertypaths
9 Considering no change in the data model.
10 Given the expressiveness of RDF data shapes language [22, 29, 30] and practice in shape definitions [31, 29, 32].

https://github.com/SolidBench/SolidBench.js
https://solid.github.io/type-indexes/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/sparql11-query/#propertypaths
https://www.w3.org/TR/sparql11-query/#propertypaths
https://github.com/constraintAutomaton/query-shape-detection
https://github.com/constraintAutomaton/comunica-feature-link-traversal/tree/feature/shapeIndex
https://github.com/constraintAutomaton/amw_shape_index_results
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/sparql11-query/#propertypaths


References

[1] A. Mendelzon, G. Mihaila, T. Milo, Querying the world wide web, in: Fourth International
Conference on Parallel and Distributed Information Systems, 1996, pp. 80–91. doi:10.1109/PDIS.
1996.568671.

[2] O. Hartig, J.-C. Freytag, Foundations of traversal based query execution over linked data, in:
Conference on Hypertext and Social Media, HT ’12, ACM, New York, NY, USA, 2012, p. 43–52.
doi:10.1145/2309996.2310005.

[3] O. Hartig, M. T. Özsu, Walking without a map: Optimizing response times of traversal-based
linked data queries (extended version), 2016.

[4] O. Hartig, Zero-knowledge query planning for an iterator implementation of link traversal based
query execution, in: The Semantic Web: Research and Applications, Springer, Berlin, Heidelberg,
2011, pp. 154–169.

[5] R. Taelman, R. Verborgh, Link traversal query processing over decentralized environments with
structural assumptions, in: Proceedings of the 22nd International Semantic Web Conference, 2023.

[6] R. Verborgh, R. Taelman, Guided link-traversal-based query processing, 2020.
arXiv:2005.02239.

[7] R. T. Fielding, Architectural styles and the design of network-based doftware architectures, Ph.D.
thesis, University of California, 2000.

[8] R. Taelman, R. Verborgh, Declaratively describing responses of hypermedia-driven web apis, in:
Knowledge Capture Conference, K-CAP ’17, Association for Computing Machinery, New York,
NY, USA, 2017. doi:10.1145/3148011.3154467.

[9] R. Eschauzier, R. Taelman, R. Verborgh, How does the link queue evolve during traversal-based
query processing?, in: Proceedings of the 7th QuWeDa, CEUR Workshop Proceedings, 2023.

[10] J.-E. L. Gayo, E. Prud’hommeaux, I. Boneva, D. Kontokostas, Validating RDF Data: Ap-
plications, Springer International Publishing, Cham, 2018, pp. 195–231. doi:10.1007/
978-3-031-79478-0_6.

[11] K. Rabbani, M. Lissandrini, K. Hose, Optimizing sparql queries using shape statistics, 2021. doi:10.
5441/002/EDBT.2021.59.

[12] H. Stuckenschmidt, R. Vdovjak, G.-J. Houben, J. Broekstra, Index structures and algorithms for
querying distributed rdf repositories, in: Proceedings of the 13th International Conference on
World Wide Web, WWW ’04, Association for Computing Machinery, New York, NY, USA, 2004, p.
631–639. URL: https://doi.org/10.1145/988672.988758. doi:10.1145/988672.988758.

[13] R. Goldman, J. Widom, Dataguides: Enabling query formulation and optimization in semistructured
databases, in: Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB
’97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997, p. 436–445.

[14] A. Harth, K. Hose, M. Karnstedt, A. Polleres, K.-U. Sattler, J. Umbrich, Data summaries for
on-demand queries over linked data, in: Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, Association for Computing Machinery, New York, NY, USA, 2010, p.
411–420. URL: https://doi.org/10.1145/1772690.1772733. doi:10.1145/1772690.1772733.

[15] T. Neumann, G. Moerkotte, Characteristic sets: Accurate cardinality estimation for rdf queries
with multiple joins, 2011 IEEE 27th International Conference on Data Engineering (2011) 984–994.

[16] M. Meimaris, G. Papastefanatos, Hierarchical characteristic set merging for optimizing sparql
queries in heterogeneous rdf, ArXiv abs/1809.02345 (2018).

[17] J.-E. L. Gayo, E. Prud’hommeaux, I. Boneva, D. Kontokostas, Shape Expressions, Springer Interna-
tional Publishing, Cham, 2018, pp. 55–117. doi:10.1007/978-3-031-79478-0_4.

[18] J.-E. L. Gayo, E. Prud’hommeaux, I. Boneva, D. Kontokostas, SHACL, Springer International
Publishing, Cham, 2018, pp. 119–194. URL: https://doi.org/10.1007/978-3-031-79478-0_5. doi:10.
1007/978-3-031-79478-0_5.

[19] R. C. Foto Afrati, Query Containment and Equivalence, Springer Cham, 2019, pp. 21–59. doi:https:
//.doi.org/10.1007/978-3-031-01871-8.

[20] M. Spasić, M. V. Janičić, Solving the SPARQL query containment problem with SpeCS, Journal of

http://dx.doi.org/10.1109/PDIS.1996.568671
http://dx.doi.org/10.1109/PDIS.1996.568671
http://dx.doi.org/10.1145/2309996.2310005
http://arxiv.org/abs/2005.02239
http://dx.doi.org/10.1145/3148011.3154467
http://dx.doi.org/10.1007/978-3-031-79478-0_6
http://dx.doi.org/10.1007/978-3-031-79478-0_6
http://dx.doi.org/10.5441/002/EDBT.2021.59
http://dx.doi.org/10.5441/002/EDBT.2021.59
https://doi.org/10.1145/988672.988758
http://dx.doi.org/10.1145/988672.988758
https://doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1145/1772690.1772733
http://dx.doi.org/10.1007/978-3-031-79478-0_4
https://doi.org/10.1007/978-3-031-79478-0_5
http://dx.doi.org/10.1007/978-3-031-79478-0_5
http://dx.doi.org/10.1007/978-3-031-79478-0_5
http://dx.doi.org/https://.doi.org/10.1007/978-3-031-01871-8
http://dx.doi.org/https://.doi.org/10.1007/978-3-031-01871-8


Web Semantics 76 (2023) 100770. doi:10.1016/j.websem.2022.100770.
[21] M. W. Chekol, J. Euzenat, P. Genevès, N. Layaïda, Sparql query containment under schema,

Journal on Data Semantics 7 (2018) 133–154. URL: http://dx.doi.org/10.1007/s13740-018-0087-1.
doi:10.1007/s13740-018-0087-1.

[22] Delva, Thomas and Dimou, Anastasia and Jakubowksi, Maxime and Van den Bussche, Jan, Data
provenance for SHACL, in: Proceedings 26th International Conference on Extending Database
Technology (EDBT 2023), volume 26, 2023, pp. 285–297. URL: http://doi.org/10.48786/edbt.2023.23.

[23] W3C, Sparql queries to validate shape expressions (informative), 2013. URL: https://www.w3.org/
2013/ShEx/toSPARQL.html.

[24] J.-E. L. Gayo, E. Prud’hommeaux, H. Solbrig, I. Boneva, Validating and describing linked data
portals using shapes, 2017. arXiv:1701.08924.

[25] J. Corman, F. Florenzano, J. L. Reutter, O. Savković, Validating shacl constraints over a sparql
endpoint, in: The Semantic Web – ISWC 2019, Springer International Publishing, Cham, 2019, pp.
145–163.

[26] Y. Yang, M. Youill, M. Woicik, Y. Liu, X. Yu, M. Serafini, A. Aboulnaga, M. Stonebraker, Flex-
pushdowndb: Hybrid pushdown and caching in a cloud dbms, Proc. VLDB Endow. 14 (2021)
2101–2113.

[27] B. De Meester, P. Heyvaert, D. Arndt, A. Dimou, R. Verborgh, RDF graph validation using rule-based
reasoning, Semantic Web Journal 12 (2021) 117–142. doi:10.3233/SW-200384.

[28] R. Taelman, J. Van Herwegen, M. Vander Sande, R. Verborgh, Comunica: a modular sparql query
engine for the web, in: Proceedings of the 17th International Semantic Web Conference, 2018.

[29] S. Staworko, I. Boneva, J.-E. L. Gayo, S. Hym, E. G. Prud’hommeaux, H. Solbrig, Complexity and
Expressiveness of ShEx for RDF, in: 18th International Conference on Database Theory (ICDT
2015), volume 31 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2015, pp. 195–211. doi:10.4230/LIPIcs.
ICDT.2015.195.

[30] I. Boneva, J.-E. L. Gayo, E. G. Prud’hommeaux, Semantics and validation of shapes schemas for
rdf, in: The Semantic Web – ISWC 2017: 16th International Semantic Web Conference, Vienna,
Austria, October 21–25, 2017, Proceedings, Part I, Springer-Verlag, Berlin, Heidelberg, 2017, p.
104–120. doi:10.1007/978-3-319-68288-4_7.

[31] S. Lieber, A. Dimou, R. Verborgh, Statistics about data shape use in RDF data, in: Proceedings of the
19th International Semantic Web Conference: Posters, Demos, and Industry Tracks, volume 2721
of CEUR Workshop Proceedings, 2020, pp. 330–335. URL: http://ceur-ws.org/Vol-2721/paper584.pdf.

[32] S. Staworko, P. Wieczorek, Containment of shape expression schemas for rdf, Proceedings of the
38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (2018).

http://dx.doi.org/10.1016/j.websem.2022.100770
http://dx.doi.org/10.1007/s13740-018-0087-1
http://dx.doi.org/10.1007/s13740-018-0087-1
http://doi.org/10.48786/edbt.2023.23
https://www.w3.org/2013/ShEx/toSPARQL.html
https://www.w3.org/2013/ShEx/toSPARQL.html
http://arxiv.org/abs/1701.08924
http://dx.doi.org/10.3233/SW-200384
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.195
http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.195
http://dx.doi.org/10.1007/978-3-319-68288-4_7
http://ceur-ws.org/Vol-2721/paper584.pdf

	1 Introduction
	2 Shape Index and Query-Shape Containment
	2.1 Shape Index
	2.2 Query-Shape Containment
	2.3 A Concrete Example

	3 Preliminary Results
	4 Conclusion

