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Abstract
In this work we study the feasibility of the Dynamic Pipeline concurrent approach of computation to
maintain updated the minimum spanning tree (or forest) of evolving graphs. To do so we propose a
concurrent/parallel adaptation of Kruskal algorithm since it has been shown to be the fastest algorithm
in practice dealing with evolving graphs. So, in our algorithm, the input (undirected) graph is given by
a stream of weighted edges and it is dynamically created and maintained in a distributed way along a
pipeline of stateful stages. We show experimentally that our algorithm scales well to a large number
of processes and that it is competitive i) against the classic sequential Kruskal algorithm and ii) a well
known parallelized version of Kruskal algorithm. Our experimental study is done for a large class of
evolving graphs both real as well as randomly generated –including several densities and sizes.
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1. Introduction

"The Future is Big Graphs" states the CACM paper [1] of the same title, where forty one
experts from the data management and large-scale-systems communities settled –after Dagstuhl
Seminar 19491 held in Dec. 2019– their conclusions about the opportunities and challenges of
graph processing in next decade. Beyond the corroboration that graph algorithms should be
scalable to deal with the huge amount of data required by nowadays applications, this group of
experts claim –among other issues– that, in order to succeed, graph algorithms have to deal
with dynamic and streaming aspects of graph processing. This is, coping with updates such
as edge insertions, changes and deletions (dynamicity) as well as indefinitely growth and/or
evolution as new data arrives (stream model). Additionally, one of the challenges that these
experts identified is to define a reference architecture for big graph processing. So, in this work
we study the feasibility and suitability of the Dynamic Pipeline approach [2, 3] (DPA from now
on) to support the new requirements of nowadays graphs.

Abusing terminology, we will indistinctly say evolutionary graphs or dynamic graphs, al-
though the first is a slightly broader term than the second since it also includes graphs whose
changes depend on a function of time (specific case, the latter, which we will not include in this
work, but such that could be included with slight modifications to our algorithm).
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The study of dynamic graphs and, in particular, of algorithms that maintain a minimum
spanning forest (MST, from here on, abusing of notation) of the dynamic graph is not new.
In the extensive survey of Hanauer, Henzinger and Schulz [4] there is a reasoned state of the
art on these algorithms that divides them clearly into theoretic algorithms and practical ones.
Regarding specifically the maintenance of the MST of dynamic graphs, there has been very
little work done on both theoretical algorithms and their empirical evaluation. The lower bound
of Ω(log 𝑛) for the time per operation on graphs of 𝑛 vertices, given in [5], for connectivity
extends to maintaining MSTs. Holm et al. [6] gave the first fully dynamic algorithm with poly-
logarithmic time per operation improving it later to 𝑂(log4 𝑛/ log log 𝑛) amortised time per
operation [7], that is still far from the lower bound. The experimental work of Cattaneo et al. [8]
provide an extensive experimental study that assesses different approaches: [9, 10, 11, 12, 13, 7]
and shows that, except for very particular instances, a simple 𝑂(𝑚 log 𝑛)-time algorithm, as
Kruskal algorithm, has the best performance in practice (for graphs of 𝑛 vertices and 𝑚 edges)
and runs substantially faster than the poly-logarithmic algorithm of Holm et al. [7]. For the
specific case of graphs with changing weights –i.e. the edges of the graph are constant, but
the edge weights can change dynamically– Ribero and Toso [14] proposed a 𝑂(𝑚) amortized
running time algorithm –for graphs of 𝑚 edges– that reduces the computation time observed
for the algorithm of Cattaneo et al. [8], yielding the fastest experimental algorithm for the above
mentioned graphs.

The problem of computing theMST of a connected graph has also been studied for parallel and
concurrent models of computation leading to several algorithms [15, 16, 17]. In the parallel model
the objective is to minimize the maximum number of steps of computation that are performed by
each processor as well as the number of processors involved, while in the distributed model the
objective is to minimize the number of rounds of communication between the processors that
are supposed to be of unbounded computational power. Also the algorithms in the parallel case
assume that the processors have shared memory and this is not the case in distributed model. In
particular, Bader et al. [15] implement three parallel variants of Borůvka’s MST algorithm [18]
arguing that this algorithm is more naturally paralelizable than Prim’s and Kruskal’s ones. The
authors in [15] claim that –by the first time– they present a general parallel MST algorithm
that runs efficiently in the SMP computer architecture1. Independently of the topology of
the input graphs, all these algorithms are designed for working on in-memory and/or static
graphs –contrary to dynamic ones. To overcome the memory-bound problem, MST distributed
algorithms have been proposed [19] where it is necessary to deal with message passing overhead,
memory latency and fault-tolerance issues [20]. For fully dynamic graphs with sequences of
updates of (restricted) sub-linear size (with respect to the graph size) MST algoritm –based
on the massively parallel computation (MPC) computation model (MapReduce) [21] has been
presented in [22] and, up to our knowledge, there are no more parallel and /or distributed
algorithms dealing with the maintenance of the MST of fully dynamic graphs.

Summarizing all what we argued so far, we claim that current applications require algorithms
to keep updated the MST of evolving graphs (the existing algorithms in parallel and distributed
models are mainly for static graphs) that are competitive from a theoretical point of view,

1SMP computer architecture is a multiprocessor hardware and software architecture that has multiple identical
processors. Processors share main memory and have access to all I/O devices.



susceptible to be implemented efficiently and scalable to maintain their efficiency when the
graphs to be treated are large (existing algorithms have been tested only for small graphs, it
has been experimentally proven that they are not useful in practice and that the theoretical
predictions are not met).

Therefore, in this work we provide a parallel and concurrent algorithm –the DP_Kruskal
algorithm– that maintains continuously along time the evolution of fully dynamic graphs
together with their corresponding MSTs. DP_Kruskal keeps the graph distributed along
a pipeline, according to the DPA [2, 3]. Additionally, we show experimentally that the
DP_Kruskal algorithm introduced here is competitive in practice specially when dealing
with dense graphs –where other algorithms fail– and that the 𝑂(𝑚 log 𝑛) running time per
operation (when dealing with graphs of 𝑛 vertices and 𝑚 edges) of the best previous algorithms
in practice is a very pessimistic (and unreachable) upper bound of our algorithm. Moreover,
under this framework the computation of the Dynamic_MST problem turns out to be more
natural and intuitive as well as more efficient in several cases since the algorithm discards –early
in its execution– several edges.

Our work is organised as follows. In next section (Section 2) we introduce our algorithm
together with its fundamental features, extensions and functioning. In Section 3 we discuss the
results of our experimental study. Finally, in Section 4, we give our conclusions and lines for
further work.

2. The DP_Kruskal Algorithm

An evolving graph 𝐺 = (𝑉,𝐸) is a graph (that might be weighted, in that case we assume that
the weight of each edge 𝑒 is a positive real value) that supports the following update operations:

(i) modify(𝐺, 𝑒, 𝑤𝑒) where the previous weight of edge 𝑒 ∈ 𝐸 is replaced by 𝑤𝑒,

(ii) insert(𝐺, 𝑒, 𝑤𝑒) that inserts edge 𝑒 in 𝐸 and assigns to it weight 𝑤𝑒 and,

(iii) delete(𝐺, 𝑒) that removes 𝑒 from 𝐸.

Since operation (i) can be simulated by a deletion followed by an insertion, we focus our attention
in operations (ii) and (iii). We call any instance of these operations an event and an evolving
graph is therefore given (and/or defined) by a stream of events: the input of our DP_Kruskal
algorithm.

The functioning of DP_Kruskal requires to represent the input graph as a partition of its
edges. Any partition is valid but we use a representation based on the graph’s underlying forest.
In what follows we assume without loss of generality that the input graphs have no isolated
vertices (vertices with no incident edges), although with slight modifications the algorithm
could deal with them.

Definition 1. Given a graph 𝐺 = (𝑉,𝐸), we say that the sequence 𝐹𝐺 = ⟨𝑇1, . . . , 𝑇𝑘⟩, 𝑘 ≥ 1,
is an underlying forest of 𝐺 if 𝑇𝑖 ⊆ 𝐸 ∀𝑖, ∪𝑘

𝑖=1𝑇𝑖 = 𝐸, ∀𝑖, 𝑗, 𝑖 ̸= 𝑗, 𝑇𝑖 ∩ 𝑇𝑗 = ∅ and ∀𝑖 𝑇𝑖 ∈ 𝐹𝐺

there exists a distinguished vertex 𝑣𝑖 ∈ 𝑉 , called the root of 𝑇𝑖, such that ∀𝑒 ∈ 𝑇𝑖, 𝑒 is incident to
vertex 𝑣𝑖.
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Figure 1: Example of graph 𝐺 (extreme left). The edges marked in red belong to a MST𝐺. The sequence
of trees on the right form an underlying forest of 𝐺, 𝐹𝐺.

In Figure 1 we show the weighted graph 𝐺 = (𝑉,𝐸) such that 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝐸 =
{(𝑎, 𝑏, 2), (𝑎, 𝑒, 1), (𝑏, 𝑒, 1), (𝑐, 𝑒, 1), (𝑏, 𝑑, 7), (𝑐, 𝑑, 4), (𝑏, 𝑐, 1)} together with the sequence 𝐹𝐺,
one of its possible underlying forests.

Notice that every element of an underlying forest of 𝐺 is a tree of height 1. Indeed, ∀𝑇𝑖 ∈
𝐹𝐺 height(𝑇𝑖) = 1. Notice also that if 𝑇𝑖 consists of a unique edge any of its two vertices could
be distinguished as the root of 𝑇𝑖. Moreover, 𝐺 can be characterized as 𝐺 = (𝑉,

⋃︀𝑘
𝑗=1 𝑇𝑗), 𝑘 ≥ 1

and hence, in what follows, by an abuse of notation we might also write 𝐺 =
⋃︀𝑘

𝑖=1 𝑇𝑖. Likewise,
we will also refer by 𝐺𝑖 to the graph of 𝐺 given by 𝐺𝑖 =

⋃︀𝑖
𝑗=1 𝑇𝑗 , 1 ≤ 𝑖 ≤ 𝑘.

This characterization allows to analyze various properties of graphs in the DPA, however,
our interest is to study the way to compute and maintain dynamically the MST of an evolving
graph (the edges in red in Figure 1 conform one of the possible MSTs of the graph therein). To
do so, next proposition, that can be proved by induction on the size of the underlying forest, is
crucial.

Proposition 1. Given a weighted graph 𝐺 = (𝑉,𝐸) represented by the underlying forest 𝐹𝐺 =
⟨𝑇1, . . . , 𝑇𝑘⟩ (𝑘 ≥ 1) and the subgraphs 𝐺𝑖, 1 ≤ 𝑖 ≤ 𝑘, of 𝐺 such that 𝐺𝑖 = ∪𝑖

𝑗=1𝑇𝑗 , it holds
that

MST(𝐺𝑖) =

{︂
𝑇1 if 𝑖 = 1
MST(𝑇𝑖 ∪MST(𝐺𝑖−1)) if 𝑖 > 1

where MST(G) is any correct procedure to compute a MST of 𝐺.

Proposition 1 gives us the foundation to compute the MST of graphs represented by any of
their underlying forests. To get insights about how this can help us to design an algorithmic
proposal, let us consider the following example.

Example 1 (Computation of MST(𝐺) from 𝐹𝐺:). Let 𝐺 be the forest 𝐹𝐺 = ⟨𝑇1, 𝑇2, 𝑇3⟩, where
𝑇1 = {(𝑎, 𝑏, 2), (𝑎, 𝑒, 1)}, 𝑇2 = {(𝑏, 𝑐, 1), (𝑏, 𝑑, 7), (𝑏, 𝑒, 1)} and, 𝑇3 = {(𝑐, 𝑑, 4), (𝑐, 𝑒, 1)}
shown in Figure 1. The computation of MST(𝐺) is done according to Proposition 1. This is,
MST(𝐺) is MST(𝑇3) and is computed as follows:

1. MST(𝐺1) = 𝑇1 = {(𝑎, 𝑏, 2), (𝑎, 𝑒, 1)}

2. MST(𝐺2) = MST(𝑇2 ∪MST(𝐺1)) = {(𝑎, 𝑒, 1), (𝑏, 𝑐, 1), (𝑏, 𝑑, 7), (𝑏, 𝑒, 1)}

3. MST(𝐺3) = MST(𝑇3 ∪MST(𝐺2)) = {(𝑎, 𝑒, 1), (𝑏, 𝑐, 1), (𝑏, 𝑒, 1), (𝑐, 𝑑, 4)}



In the classical sequential model of computation one could easily implement the traversal
of forest 𝐹𝐺 by a simple loop running over its trees. However, thinking in alternative ways of
computation, it would be natural to distribute the trees of 𝐹𝐺 along a pipeline, distributing the
sequence among several processors. Then, the sequence of computations given in Example 1
would also been distributed along the processors holding the trees implied in the computation.
For instance, the computation of MST𝐹𝐺

(𝑇2) requires the tree 𝑇2 but also the tree (or forest)
corresponding to the MST of the previous trees in the sequence, 𝑇1, in this case.

We connect the different stages of the pipeline by means of communication channels that are
in charge of the synchronisation of the procedure.

We identify every tree 𝑇𝑖 (1 ≤ 𝑖 ≤ 𝑘) of 𝐹𝐺 with a stage 𝐹𝑣𝑖 (1 ≤ 𝑖 ≤ 𝑘) of the pipeline
that we call filter, and it is the filter corresponding to vertex 𝑣𝑖. In fact, it is possible to allow
filters to contain as many vertices (and, in consequence, trees) as possible. This option does not
change the algorithm, but shrinks or streches the longitude of the pipeline. So, further in our
experiments we study the effect of having a constant number of vertices (DP_Kruskal_const),
a log(𝑛) number of filters (DP_Kruskal_log) and a

√
𝑛 number of filters (DP_Kruskal_sqrt)

for graphs of 𝑛 vertices.
There are tree more kinds of stages in the pipeline: the Input, the Output and the Generator,

all of them follow an ordering along the pipeline. The first one in the order is the Input stage,
followed by the sequence of filters (that is empty when the process starts), then comes the
Generator and finally the Output stage.

When a pipeline is initialised, only the Input, the Generator and the Output stages exist.
Then, the pipeline shrinks and expands dynamically depending on the sequence of insertions
and deletions of the edges of the graph but all these operations can modify only the number of
filter stages, the underlying structure is not modified, unless DP_Kruskal terminates. Below
we describe all the stages with more precision.

Data: The input data of the DP_Kruskal is a stream of events of the form (op, 𝑒), with
𝑜𝑝 ∈ {insert, delete, mst, eof} and 𝑒 ∈ 𝐸 ∪ ⊥ where ⊥ is interpreted as an empty edge.
When op ∈ {insert, delete} 𝑒 is a weighted edge and 𝑒 = ⊥ in any other case. The event
(mst,⊥) requests for the computation of the MST of the current graph while the event (eof,⊥)
causes the deactivation of the DP_Kruskal.

Channels: There are two types of channels, the event channel and the graph channel carrying
events and MSTs, respectively.

Input (𝐼) Whenever this stage receives an event it passes it to the rest of the pipeline through
the event channel, if op = mst it also passes the empty set through the graph channel.

Filters (𝐹𝑣) An instance 𝐹 (𝑣) of the Filter stage stores 𝐹𝑣 . Whenever an event (op, e) arrives
to 𝐹 (𝑣), the following things can happen: (i) If op = {insert, delete} and 𝑒 is incident to 𝑣,
the event is treated in 𝐹 (𝑣) according to op. In case of deleting, if the tree becomes empty 𝐹 (𝑣)
dies. If on the contrary, 𝑒 is not incident to 𝑣, the event is passed through the event channel
to the next stage of the pipeline; (ii) If op = mst, a partial MST is computed and passed to



the rest of the DP_Kruskal through the graph channel by combining the MST that arrives
through the graph channel together with the tree in 𝐹 (𝑣) as stated by Proposition 1. The filter
stage has been implemented with two different goroutines with a communication channel from
the first to the second. The first goroutine is supposed to be light-weighted to avoid blocking
the pipeline and it will only manage the event channel. In case op = {insert, delete}, the
goroutine will check if the edge involved belongs to the filter. If so, it will send the event to
the other goroutine, otherwise it will send the event to the next filter. If the event is op = mst,
then it will be passed to the other goroutine and to the next filter. The second goroutine will
perform the operation received from the first goroutine and in the case of op = mst it will read
the partial MST from the previous filter.

Generator (𝐺𝑒𝑛): Whenever an event (op, e) arrives to the Generator stage by the event
channel, depending on 𝑜𝑝, the following actions are taken: If op ∈ {insert, update} and
𝑒 = (𝑣1, 𝑣2, 𝑤), a new instance of Filter stage, 𝐹 (𝑣1), is spawned and added to DP_Kruskal
between the last filter and 𝐺𝑒𝑛. The edge 𝑒 = (𝑣1, 𝑣2, 𝑤) is stored in the local memory of
𝐹 (𝑣1). Besides, whenever op = mst, it passes the MST that arrives by the graph channel to
the output stage 𝑂.

Output (𝑂): When an event mst arrives to this stage, it outputs the MST𝐺.

So, back to Example 1, when the request to insert edge (𝑎, 𝑏, 2) of 𝐺 arrives to 𝐼 it is passed
through the event channel of the pipeline. Since there are no filters yet, it arrives to the generator
that creates the first filter with root 𝑎. Afterwards, a request to insert edge (𝑎, 𝑒, 1) arrives to
𝐼 , it follows the same procedure as edge (𝑎, 𝑏, 2) but this edge passes first through filter 𝐹𝑎

that keeps it. The request to insert edge (𝑏, 𝑐, 1) provokes the creation of a new filter and the
algorithm goes on in this way until all the edges are inserted. Afterwards, the request for the
MST traverse the filters keeping the trees listed in Example 1. The first steps of this evolution
are shown in Figure 2. As we have already observed, the order in which the edge insertion
requests arrive into the input stream determines the configuration of the pipeline and may
affect the efficiency of the algorithm.

3. Experimental Results

In order to evaluate the performance of DP_Kruskal we have implemented it in Golang
1.20 (https://golang.org/). All the programs are available at the GitHub repository and
the details of the implementation can be found in [23, 24]. We have experimented with two
different types of dynamic graphs: random graphs generated by ourselves and real graphs taken
from the repository:https://DynGraphLab.github.io/ [4].

As is standard in parallel applications [25], in all our experiments, we recorded the elapsed
wall-clock time 𝑇 (𝑘, 𝑛,𝑚)—the time elapsed from the start of the execution of DP_Kruskal by
the first processor until its end by the last processor—for a graph with 𝑛 vertices and 𝑚 edges
using 𝑘 processors. Notably, all experiments assumed no prior knowledge of the incoming
graph, unlike the classic fully dynamic model where the number of vertices is known in advance,
allowing ad-hoc optimizations.

https://golang.org/
https://github.com/danielbenedi6/MasterThesis
https://DynGraphLab.github.io/
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Figure 2: First two steps on the creation of the dynamic pipeline of the graph 𝐺 shown in Figure 1.

Static graphs: We generated random graphs where each edge has a probability 𝑝 of being
present, as introduced by Gilbert [26]. Instead of visiting every edge individually, we used
Batagelj’s method [27], which involves generating a random number to determine how many
edges to skip based on the probability 𝑝. For each combination of nodes (103, 2 ·103, 104, 5 ·104)
and edge probability (0.10, 0.25, 0.50, 0.75, 0.9), 20 random graphs were generated. In evaluat-
ing the performance of DP_Kruskal and Filter_Kruskal on random graphs, the experimen-
tal results reveal significant insights into the scalability and efficiency of these algorithms. By
examining the speed-up achieved with an increasing number of cores, as illustrated in Figure 3,
we observe that DP_Kruskal consistently demonstrates superior parallel performance com-
pared to Filter_Kruskal. For instance, in graphs with varying sizes and densities —such as
𝐺(𝑛 = 1000, 𝑝 = 0.25), 𝐺(𝑛 = 5000, 𝑝 = 0.75), and 𝐺(𝑛 = 10000, 𝑝 = 0.90)— DP_Kruskal
exhibits substantial speed-ups across all configurations. Notably, DP_Kruskal with a logarith-
mic number of roots per filter (DP_Kruskal_log) achieves near-linear speed-up and almost a
perfect efficiency (Figure 4) as the number of cores increases, highlighting its effectiveness in
leveraging parallelism. In contrast, while Filter_Kruskal also benefits from parallel execu-
tion, its performance gains are comparatively modest, particularly for larger and denser graphs.
It is worth noting that the performances of DP_Kruskal_log and DP_Kruskal_const are
very similar. This is because for very large graphs as the ones in the experiments the exact
value of log(𝑛) is so close (and equal in some cases) to the chosen constant value to appreciate
any significant difference. In order to observe a substantial difference in performance 𝑛 should
have be much huger.

These results underscore the efficiency of the DP_Kruskal architecture in distributing
computational workload and minimizing synchronization overhead, thereby making it a highly
scalable solution for computing MST in parallel environments.

Real graphs: We compare DP_Kruskal and Filter_Kruskal on realistic dynamic graphs
(from https://DynGraphLab.github.io/ [4]) to evaluate their performance in maintaining
the minimum spanning tree (MST) after each edge insertion or deletion. For each operation,
we request an update of the MST to assess how efficiently the algorithms handle dynamic

https://DynGraphLab.github.io/
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Figure 3: Speed-up comparison of DP_Kruskal and Filter_Kruskal

Dataset Filter_Kruskal DP_Kruskal

as-caida 1h 30min 1h 19min
movielens10m 1h 39min 1h 20min
simplewiki 17h 8min 11h 29min

Table 1
Real dynamic graphs. Execution time comparison in single core set-up

changes. In order to not assume any prior knowledge of the input graphs, in the forthcoming
experiments, we consider only the DP_Kruskal_const version of our algorithm. Nevertheless,
since this version presented the best performance for static graphs we can expect a similar
performance for real ones.

In Table 1, we observe that DP_Kruskal effectively maintains the MST across various
datasets. This table highlights the execution times for different graph sizes and densities,
illustrating how DP_Kruskal consistently outperforms Filter_Kruskal.

Figure 5 further demonstrates the scalability and efficiency of DP_Kruskal in a parallel
processing environment. By leveraging the parallelism capabilities inherent in its design,
DP_Kruskal achieves significant speed-ups, especially as the number of processing cores
increases. This figure clearly shows that DP_Kruskal scales well with the addition of more
cores, maintaining its performance advantage over Filter_Kruskal even as the computational
load grows.

These results underscore the robustness and efficiency of DP_Kruskal in real-world scenar-
ios, where dynamic updates to the MST are frequent and computational resources need to be
optimally utilized. The combination of effective maintenance of the MST and superior scala-
bility in parallel environments makes DP_Kruskal a compelling choice for handling dynamic
graph problems in various applications.

Experiments were run at the cluster of the RDLab-UPC (https://rdlab.cs.upc.edu/)
on different nodes with the processors Intel(R) Xeon(R) CPU X5675 @ 3.07GHz and 12 cores,
Intel(R) Xeon(R) CPU X5670 @ 2.93GHz and 12 cores, Intel(R) Xeon(R) CPU X5660 @ 2.80GHz
and 12 cores, Intel(R) Xeon(R) CPU X5550 @ 2.67GHz and 8 cores, and Intel(R) Xeon(R) CPU
E5-2450 @ 2.50GHz and 16 cores. The configuration used for submitting jobs was up to 16GB
of RAM and a maximum number of cores depending on the experiment. The same job was
executed 10 times and the average was reported. The timeout was 24 hours.

https://rdlab.cs.upc.edu/
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Figure 4: Efficiency comparison of DP_Kruskal and Filter_Kruskal

4. Final Remarks

We have studied the suitability of the DP_Kruskal model of computation to obtain the MST of
fully dynamic graphs. To do so, we proposed an algorithm based on Kruskal’s MST algorithm
and implement it in the Go programming language –in order to take advantage of its built-in
communication channels which allow to deal with dynamic pipelines in a very natural way.

We have conducted a series of preliminary experiments using two kinds of source data: a
wide variety of random graphs and real graphs trying to cover a huge range of possible graph
topologies and sizes. The results of these experiments show that our algorithm is competitive
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Figure 5: Real dynamic graphs. Comparison of speed-ups in a multicore set-up

specially for the case of dense graphs of any size. We have also observed that our algorithm is
scalable and highly parallelisable; in particular in our experiments (i) for graphs from 5 · 104
edges up our algorithm has better performance metrics than the Filter-Kruskal algorithm and
(ii) it seems that at least up to 16 cores it improves consistently its efficiency and speed up in
both random and real graphs.

As future work, we plan to conduct further experiments according to the following guidelines:
(i) To compare our algorithm against better baselines, specifically againts its unique (up to our
knowledge) competitor in massive parallel computation (the MapReduce based algorithm [21])
although our algorithm has no restrictions on the number of updates, (ii) to evaluate other –apart
from Kruskal’s– MST algorithms and their adaptations to the DP_Kruskal model and compare
the different algorithms among them, (iii) to evaluate the suitability of the programming
language and consider other possibilities of implementation that allow the spawn of tasks,
(iv) in order to study the scalability and real applicability of our model, we plan to conduct
more exhaustive experiments with bigger real datasets and benchmarks, (v) finally, since there
are also various dynamic graph models such as insertions-only algorithms, deletions-only
algorithms, offline dynamic algorithms, algorithms with vertex insertions and deletions, kinetic
algorithms and temporal algorithms, algorithms with a limit on the number of allowed queries,
algorithms for the sliding-windows model, and algorithms for sensitivity problems (also called
emergency planning or fault-tolerant algorithms) among others; it would be interesting to test
the adaptability of our proposal to these approaches.
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