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Abstract
Knowledge graphs (KGs) are highly incomplete. As a result, researchers have proposed mostly machine-
learning-based methods for knowledge graph completion (KGC), which is the task of predicting missing
links from the information kept in the KG. Geometric KG embedding models (gKGEs) have demonstrated
strong KGC results while providing the ability to respect major characteristics of KGs, typically rep-
resented in the form of logical rules by the data management community. However, for strong KGC
performance, most gKGEs require high embedding dimensionalities or complex embedding spaces, severely
restricting their time and space efficiency. This work addresses these challenges by proposing SpeedE, a
lightweight Euclidean gKGE that (1) respects a set of core logical rules relevant to the data management
community; (2) outperforms state-of-the-art gKGEs, particularly on YAGO3-10 and WN18RR; and (3)
greatly boosts their efficiency, in particular requiring only a quarter of the parameters and a fifth of
the training time of the state-of-the-art ExpressivE model on WN18RR to achieve competitive KGC
performance. This extended abstract is based on our recently published NAACL 2024 paper [1].
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1. Introduction

Geometric knowledge graph embedding models (gKGEs) represent entities and relations of a
knowledge graph (KG) as geometric shapes in the semantic vector space. gKGEs achieved
promising performance on knowledge graph completion (KGC) and knowledge-driven applica-
tions [2, 3]; while allowing for an intuitive geometric interpretation of their captured patterns
[4, 5, 6]. Recently, gKGEs with increasingly more complex embedding spaces were explored
[7, 8, 9]. However, more complex embedding spaces typically require more costly operations or
more parameters, lowering their time and space efficiency compared to Euclidean gKGEs [10].
Even more, most gKGEs require high-dimensional embeddings to reach good KGC performance,
increasing their time and space requirements [11, 10]. Thus, the need for (1) complex embedding
spaces and (2) high-dimensional embeddings lowers the efficiency of gKGEs, hindering their
application in resource-constrained environments, especially in mobile smart devices [7, 8, 10].

Challenge and Methodology. Although there has been much work on scalable gKGEs, any
such work has focused exclusively on either reducing the embedding dimensionality [12, 11, 13]
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or using simpler embedding spaces [14, 15, 6], thus addressing only one side of the efficiency
problem. Facing these challenges, this work aims to design a Euclidean gKGE that performs
well on KGC under low-dimensional conditions, reducing its storage requirements, inference,
and training time. To reach this goal, we analyze ExpressivE [6], an Euclidean gKGE that has
shown promising performance on KGC under high-dimensional conditions.
Contribution. Based on ExpressivE, we propose the lightweight SpeedE model that (1)

halves ExpressivE’s inference time and (2) significantly improves its KGC performance. We
evaluate SpeedE on the three standard KGC benchmarks, WN18RR, FB15k-237, and YAGO3-10,
finding that it (3) is competitive with SotA gKGEs on FB15k-237 and even outperforms them
significantly on WN18RR and YAGO3-10. Moreover, we find that (4) on WN18RR SpeedE
requires solely a fourth of ExpressivE’s number of parameters and solely a fifth of its training
time to reach the same KGC performance (see Table 2 in Section 4).

2. Preliminaries

KGs can be viewed as sets of triples 𝑟𝑖(𝑒ℎ, 𝑒𝑡) over a finite set of relations 𝑟𝑖 ∈ R and entities
𝑒ℎ, 𝑒𝑡 ∈ E. Given a triple 𝑟𝑖(𝑒ℎ, 𝑒𝑡), 𝑒ℎ is called its head and 𝑒𝑡 its tail. Henceforth, we use the
standard definition of capturing rules [7, 16, 6], which intuitively states that a KGE captures a
rule if there is a parameter set such that the KGE captures the rule exactly (i.e., it predicts any
logically inferrable triple) and exclusively (i.e., it does not capture any undesired rule).

3. Min_SpeedE and SpeedE

Min_SpeedE and SpeedE are Euclidean gKGEs based on ExpressivE [6]. Similarly to Pavlović
and Sallinger [6], Min_SpeedE embeds entities 𝑒ℎ ∈ E via vectors eh ∈ ℝ𝑑 and relations 𝑟𝑗 ∈ R
via hyper-parallelograms in ℝ2𝑑. In contrast to ExpressivE, which parameterizes a hyper-
parallelogram of a relation 𝑟𝑗 with three vectors, Min_SpeedE solely uses a scalar width parameter
𝑤 and two vectors: a slope vector sj ∈ ℝ2𝑑 representing the slopes of its boundaries and a center
vector cj ∈ ℝ2𝑑 representing its center. The main difference betweenMin_SpeedE and ExpressivE
is that Min_SpeedE uses a constant width parameter 𝑤, thereby, halving ExpressivE’s inference
time, as we shall see soon. At an intuitive level, a triple 𝑟𝑗(𝑒ℎ, 𝑒𝑡) is captured to be true by
a Min_SpeedE embedding if the concatenation of its head and tail embeddings is within 𝑟𝑗’s
hyper-parallelogram. Formally, this means that a triple 𝑟𝑗(𝑒ℎ, 𝑒𝑡) is true if the following is satisfied:

(eht − cj − sj ⊙ eth)|.| ⪯ wj (1)

Where exy ∶= (ex||ey) ∈ ℝ2𝑑 with || representing concatenation and 𝑒𝑥, 𝑒𝑦 ∈ E. Furthermore,
the inequality uses the following operators: the element-wise less or equal operator ⪯, the
element-wise absolute value x|.| of a vector x, and the element-wise (i.e., Hadamard) product ⊙.
Scoring. SpeedE further enhances Min_SpeedE by adding the following two carefully

designed scalar parameters to each relation embedding: (1) the inside distance slope 𝑠𝑖𝑗 ∈ [0, 1]
and (2) the outside distance slope 𝑠𝑜𝑗 with 𝑠𝑖𝑗 ≤ 𝑠𝑜𝑗 . Let 𝑚𝑖

𝑗 ∶= 2𝑠𝑖𝑗𝑤 + 1, 𝑚𝑜
𝑗 ∶= 2𝑠𝑜𝑗 𝑤 + 1, and



𝑘𝑗 ∶= 𝑚𝑜
𝑗 (𝑚

𝑜
𝑗 − 1)/2 − (𝑚𝑖

𝑗 − 1)/(2𝑚𝑖
𝑗), then SpeedE defines the following distance function:

𝐷(ℎ, 𝑟𝑗, 𝑡) = {
𝜏rj(h,t) ⊘ 𝑚𝑖

𝑗, if 𝜏rj(h,t) ⪯ 𝑤
𝜏rj(h,t) ⊙ 𝑚𝑜

𝑗 − 𝑘𝑗, otherwise
(2)

The distance function is separated into two piece-wise linear functions: (1) the inside distance
𝐷𝑖(ℎ, 𝑟𝑗, 𝑡) = 𝜏rj(h,t)⊘𝑚𝑖

𝑗 for triples that are captured to be true (i.e., 𝜏rj(h,t) ⪯ 𝑤) and (2) the outside
distance 𝐷𝑜(ℎ, 𝑟𝑗, 𝑡) = 𝜏rj(h,t) ⊙ 𝑚𝑜

𝑗 − 𝑘𝑗 for triples that are captured to be false (i.e., 𝜏rj(h,t) ̸⪯𝑤).
Based on this function, SpeedE defines the score as 𝑠(ℎ, 𝑟𝑗, 𝑡) = −||𝐷(ℎ, 𝑟𝑗, 𝑡)||2. The intuition
of 𝑠𝑖𝑗 and 𝑠𝑜𝑗 is that they control the slopes of the respective linear inside and outside distance
functions. However, without any constraints on 𝑠𝑖𝑗 and 𝑠𝑜𝑗 , SpeedE would lose ExpressivE’s
intuitive geometric interpretation [6] as 𝑠𝑖𝑗 and 𝑠

𝑜
𝑗 could be chosen in such a way that distances of

embeddings within the hyper-parallelogram are larger than those outside. By constraining these
parameters to 𝑠𝑖𝑗 ∈ [0, 1] and 𝑠𝑖𝑗 ≤ 𝑠𝑜𝑗 , we preserve lower distances within hyper-parallelograms
than outside and, thereby, the intuitive geometric interpretation of our embeddings.

4. Theoretical & Empirical Results

A gKGE’s inference capability is analyzed by studying which logical rules it captures. The set of
core logical rules, commonly studied in the gKGE literature [7, 16, 6], consists of (1) symmetry
𝑟1(𝑋 , 𝑌 ) ⇒ 𝑟1(𝑌 , 𝑋), (2) anti-symmetry 𝑟1(𝑋 , 𝑌 )∧𝑟1(𝑌 , 𝑋) ⇒ ⊥, (3) inversion 𝑟1(𝑋 , 𝑌 ) ⇔ 𝑟2(𝑌 , 𝑋),
(4) composition 𝑟1(𝑋 , 𝑌 ) ∧ 𝑟2(𝑌 , 𝑍) ⇒ 𝑟3(𝑋 , 𝑍), (5) hierarchy 𝑟1(𝑋 , 𝑌 ) ⇒ 𝑟2(𝑋 , 𝑌 ), (6) intersection
𝑟1(𝑋 , 𝑌 ) ∧ 𝑟2(𝑋 , 𝑌 ) ⇒ 𝑟3(𝑋 , 𝑌 ), and (7) mutual exclusion 𝑟1(𝑋 , 𝑌 ) ∧ 𝑟2(𝑋 , 𝑌 ) ⇒ ⊥. Surprisingly,
we find in Theorem 4.1 that SpeedE still captures all core logical rules (see [1], Appendix H).

Theorem 4.1. SpeedE captures the set of core logical rules.

Inference Time. The most costly operations during inference are operations on vectors. Thus,
we can estimate ExpressivE’s and SpeedE’s inference time by counting the number of vector
operations necessary for computing a triple’s score: By reducing the width vector to a scalar,
many operations reduce from a vector to a scalar operation. In particular, ExpressivE needs
15, whereas SpeedE needs solely 8 vector operations to compute a triple’s score. In [1], we
empirically measure the inference time of SpeedE, ExpressivE, RotH, and AttH under the same
parameter configurations on each benchmark, finding that SpeedE halves ExpressivE’s inference
time as expected and even solely requires about a sixth of RotH’s and AttH’s inference time.

KGC Results. Following [11], we evaluate each gKGE’s performance under low dimension-
alities with 𝑑 = 32. Table 1 reports their MRR and H@1 scores (for the complete results, see [1]).
It reveals that on YAGO3-10 — the largest benchmark — SpeedE outperforms any SotA gKGE by
a relative difference of 7% on H@1, providing strong evidence for SpeedE’s scalability to large
KGs. Furthermore, it shows that our enhanced SpeedE model is competitive with SotA gKGEs
on FB15k-237 and even outperforms any competing gKGE on WN18RR by a large margin.

Convergence Time & Model Size. To quantify the convergence time, we measure for each
gKGE the time to reach a validation MRR score of 0.490, i.e., approximately 1% less than the
worst reportedMRR score of Table 2. As outlined in Table 2, SpeedE converges already after 6𝑚𝑖𝑛.



Table 1
Low-dimensional (𝑑 = 32) KGC results of SotA gKGEs on WN18RR, FB15k-237, and YAGO3-10.

Model WN18RR FB15k-237 YAGO3-10

MRR H@1 MRR H@1 MRR H@1

Eu
cl
id
ea
n SpeedE .493 .446 .320 .227 .413 .332

Min_SpeedE .485 .442 .319 .226 .410 .328
ExpressivE .485 .442 .298 .208 .333 .257
TuckER [10] .428 .401 .306 .223 - -

N
on

-E
uc
lid

.

RefH [11] .447 .408 .312 .224 .381 .302
RotH [11] .472 .428 .314 .223 .393 .307
AttH [11] .466 .419 .324 .236 .397 .310
ConE [13] .471 .436 - - - -

Table 2
Dimensionality, MRR, convergence time, and number of parameters of SotA gKGE’s on WN18RR.

Model Dim. MRR Conv. Time #Parameters

SpeedE 50 .500 6min 2M
ExpressivE 200 .500 31min 8M
ConE 500 .496 1.5h 20M
RotH 500 .496 2h 21M

Thus, while keeping strong KGC performance on WN18RR, SpeedE speeds up ExpressivE’s
convergence time by a factor of 5, ConE’s by 15, and RotH’s by 20. Furthermore, the table shows
that SpeedE (𝑑 = 50) needs solely a quarter of ExpressivE’s (𝑑 = 200) and a tenth of ConE’s and
RotH’s (𝑑 = 500) parameters to achieve a similar or slightly better KGC performance.

5. Conclusion

In this work, we introduce SpeedE, a lightweight gKGE that (1) captures the set of core logical
rules, (2) is competitive with SotA gKGEs, even significantly outperforming them on YAGO3-10
and WN18RR, and (3) dramatically increases the efficiency of current gKGEs, needing solely
a fifth of the training time and a fourth of the number of parameters of the SotA ExpressivE
model on WN18RR to reach the same KGC performance. To facilitate the reproducibility of our
results and the use of our model, we provide SpeedE’s code in a public GitHub repository1.
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