
The 𝑅3 Metric: Measuring Performance of Link
Prioritization during Traversal-based Query Processing
Ruben Eschauzier1, Ruben Taelman1 and Ruben Verborgh1

1IDLab, Department of Electronics and Information Systems, Ghent University – imec

Abstract
The decentralization envisioned for the current centralized web requires querying approaches capable of accessing
multiple small data sources while complying with legal constraints related to personal data, such as licenses
and the GDPR. Link Traversal-based Query Processing (LTQP) is a querying approach designed for highly
decentralized environments that satisfies these legal requirements. An important optimization avenue in LTQP
is the order in which links are dereferenced, which involves prioritizing links to query-relevant documents.
However, assessing and comparing the algorithmic performance of these systems is challenging due to various
compounding factors during query execution. Therefore, researchers need an implementation-agnostic and
deterministic metric that accurately measures the marginal effectiveness of link prioritization algorithms in LTQP
engines. In this paper, we motivate the need for accurately measuring link prioritization performance, define and
test such a metric, and outline the challenges and potential extensions of the proposed metric. Our findings show
that the proposed metric highlights differences in link prioritization performance depending on the queried data
fragmentation strategy. The proposed metric allows for evaluating link prioritization performance and enables
easily assessing the effectiveness of future link prioritization algorithms.

Keywords
Link Traversal, Link Prioritization, Query Optimization

1. Introduction

Currently, web user data is stored in centralized data silos, which restricts innovation and poses privacy
concerns [1] Decentralized efforts like Solid distribute user data across multiple personal data stores,
which are highly personal and permissioned, requiring a querying approach that effectively handles
decentralized and permissioned data.

Link Traversal-based Query Processing (LTQP) is an integrated querying approach designed to meet
these requirements [2]. Starting from seed data sources, the LTQP query engine dynamically discovers
new data sources by following hyperlinks found in previously discovered sources.

However, LTQP is currently slower compared to centralized alternatives. An optimization avenue
is link prioritization, where the engine dynamically determines the order in which links should be
dereferenced based on their expected relevance to the query [3, 4].

To optimize LTQP prioritization strategies, researchers need insights into the marginal performance
of proposed algorithms and the theoretically optimal performance these strategies can achieve.

Previous studies have used metrics like result arrival times, total execution time, and other arrival
time-based metrics [5] to assess prioritization strategies [3, 4, 6]. These measures fail to capture how
close implemented prioritization approaches are to the theoretically optimal strategy. Additionally,
these metrics fall short when comparing different engine implementations and environments due to
unrelated differences that may skew link prioritization performance results:

• Programming Languages: Different languages can substantially affect engine performance [7],
hindering purely time-based comparisons of algorithms.

AMW 2024: 16th Alberto Mendelzon International Workshop on Foundations of Data Management, September 30th–October 4th,
2024, Mexico City, Mexico
Envelope-Open ruben.eschauzier@ugent.be (R. Eschauzier); ruben.taelman@ugent.be (R. Taelman); ruben.verborgh@ugent.be
(R. Verborgh)
GLOBE https://www.rubensworks.net/ (R. Taelman); https://ruben.verborgh.org/ (R. Verborgh)
Orcid 0000-0002-6475-806X (R. Eschauzier); 0000-0001-5118-256X (R. Taelman); 0000-0002-8596-222X (R. Verborgh)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ruben.eschauzier@ugent.be
mailto:ruben.taelman@ugent.be
mailto:ruben.verborgh@ugent.be
https://www.rubensworks.net/
https://ruben.verborgh.org/
https://orcid.org/0000-0002-6475-806X
https://orcid.org/0000-0001-5118-256X
https://orcid.org/0000-0002-8596-222X
https://creativecommons.org/licenses/by/4.0/deed.en

• Dereferencing Overhead: Network communication times vary widely [8, 9], introducing
significant noise into execution times, even for comparisons of the same engine.

• Orthogonal Optimization Strategies: Different query optimization [10] strategies might create
differences in performance independent of prioritization strategies.

This leads to our research questions: How can we compare the marginal algorithmic performance of
prioritization algorithms in an implementation-agnostic manner and How can we define an Oracle baseline
that represents optimal prioritization performance?

In this paper, we introduce the metric: Relevant Retrieval Ratio (𝑅3), pronounced r-cubed. This
metric allows for straightforward observation of the algorithmic performance of prioritization ap-
proaches, independent of implementations, and provides a benchmark against the theoretically optimal
prioritization strategy.

2. Existing Metrics

Existing LTQP and federated querying metrics [11] are insufficient for measuring the marginal algorith-
mic performance of link prioritization algorithms:

• Query execution time: Prioritization algorithms are unlikely to improve total query execution
time [4, 3]. However, Link prioritization can improve [4, 3] arrival times of the first 𝑘 results.
However, the arrival times are influenced by both prioritization strategies and other unrelated
engine optimizations, obscuring the prioritization algorithm’s effect.

• Diefficiency Metrics: Diefficiency metrics measure the continuous efficiency of query engines
by reflecting the density of produced results over a given time interval [5]. This is in contrast to
measuring the first 𝑘 arrival times, which only measures engine performance at discrete points.
However, the same limitations remain, as these metrics are based on result arrival times.

• Number of HTTP Requests: For federated query engines, the number of HTTP requests
represents the efficiency of source selection and join planning during query execution [12, 13].
Federated engines often query SPARQL endpoints, allowing them to delegate parts of the query
execution to the server [14]. In contrast, in LTQP, the engine uses HTTP requests to download
documents, so the number of requests corresponds to the number of dereferenced documents.
Thus, the number of HTTP requests measures the engine’s ability to prune irrelevant links.
However, it does not indicate the effectiveness of prioritization algorithms, which reorder link
dereference order, rather than pruning links.

The metric proposed in this paper complements existing metrics by measuring the marginal perfor-
mance of link prioritization algorithms rather than the overall performance of the LTQP system.

3. Relevant Retrieval Ratio

The subweb [15] traversed during LTQP can be represented as a directed graph, where an edge from
document A to document B indicates that a URI pointing to document B was first discovered in the
data obtained from document A. Figure 1 shows an example of such a directed graph.

During LTQP query execution, an optimal link dereference order that finds all documents needed
to answer a query exists, as shown in the right-most directed graph in Figure 1. This theoretical
optimum can be considered an oracle link prioritization algorithm with perfect information on the
location of query-relevant documents. The optimal path can always be achieved, as the oracle only
uses links between documents that an engine could also use. An engine should strive to achieve a
traversal path close to this optimal path. As such, we use the ratio between the optimal traversal path
length and the actual traversal path length during query execution to evaluate the performance of
link prioritization algorithms. The optimal traversal path is defined as the shortest path needed to
dereference all documents required for the complete query result and is determined retrospectively.

Traversed node Relevant document Seed document

Breadth-first Depth-first Optimal

Figure 1: An example subweb [15] showing the differences in traversal paths between breadth-first and depth-
first methods, as well as the optimal traversal path.

Given the length of the optimal traversal path and the actual traversal path, we define the 𝑅3 metric
as

𝑅3 =
|𝑇𝑂|
|𝑇𝐸|

, |𝑇𝑂|, |𝑇𝐸| > 0 (1)

where |𝑇𝐸| is the length of the engine traversal path and |𝑇𝑂| is the length of the optimal path. In
this definition, a higher value is better, with 𝑅3 = 1 indicating optimal algorithmic link prioritization
performance. Note that when |𝑇𝑂| = 0 or |𝑇𝐸| = 0, our query has no results and the notion of optimal
link prioritization does not exist. When an engine performs poorly, resulting in smaller differences in
the metric’s values, taking the log2 can help visualize relative differences.

Using the 𝑅3 metric, we can compare the algorithmic efficiency of the two traversal algorithms in our
example. Using breadth-first search, the path to dereference the query-relevant document contains six
nodes, while the optimal traversal order contains two. Thus, the 𝑅3 metric for breadth-first traversal
equals 0.33. Depth-first visits only three nodes, yielding an 𝑅3 value of 0.67. From this analysis, we can
conclude that depth-first traversal outperforms breadth-first traversal on this subweb.

To find the optimal traversal path to dereference all query-relevant documents, we notice that it
is equivalent to solving the directed Steiner tree problem [16] on our directed graph, with the query-
relevant documents serving as terminals. As such, we can use existing Steiner tree solvers to efficiently
find our optimal traversal path.

4. Results

Our experiment uses the Discover queries from the SolidBench benchmark [3]. To track the required
information for computing the metric during query execution, we use the query engine Comunica [17].
To compute the optimal path, we will use a heuristic Steiner tree solver [18] to speed up computations.
Although an exact solver would be ideal, it significantly increases computational complexity for large
subwebs [19, 20].

Our experiments compare depth and breadth-first prioritization [4] using 𝑅3 and time until the final
query result. We aim to validate the substantiated assumption that Discover queries do not benefit from
improved link prioritization [21].

Table 1 shows the computed metrics per template instantiation and the difference in the log2 of
the metric value. We find that either method can outperform the other based on the used template.
Furthermore, there is a significant difference in performance depending on the template instantiation,
likely due to the different fragmentation strategies used in SolidBench [3]. Some pods store query-
relevant data in a single file, while others fragment these into directories, complicating optimal traversal.

The differences in prioritization performance are not observed in time until the last result; the Pearson
correlation coefficients between 𝑅3 and time until the last result are -0.042 and 0.201 for depth and
breadth-first, respectively. These low correlations suggest a weak link between 𝑅3 and query execution
time, possibly caused by noise in execution time.

Using the 𝑅3, we confirm our previous paper [21] by computing a metric value instead of an engine-
specific in-depth analysis of the query execution progress.

Table 1
The 𝑅3 for depth and breadth-first prioritization (DF, BF), separated by query template and instantiation. D1.2 =
template one, instantiation two.

Query DF BF Δ log2(𝑅
3) Query DF BF Δ log2(𝑅

3)

D1.0 0.23 0.08 1.617 D5.0 0.13 0.15 -0.134
D1.1 0.50 0.50 0.000 D5.1 0.50 0.50 0.000
D1.2 0.50 0.50 0.000 D5.2 0.33 0.67 -1.000
D1.3 0.75 0.75 0.000 D5.3 0.04 0.03 0.250
D1.4 0.18 0.18 0.000 D5.4 0.18 0.16 0.196

D2.0 0.50 0.51 -0.031 D6.0 0.53 0.53 0.000
D2.1 0.50 0.67 -0.415 D6.1 0.40 0.40 0.000
D2.2 0.50 0.67 -0.415 D6.2 0.40 0.40 0.000
D2.3 0.90 0.90 0.000 D6.3 0.13 0.13 0.000
D2.4 0.44 0.56 -0.349 D6.4 0.73 0.46 0.690

D3.0 0.50 0.48 0.074 D7.0 0.05 0.05 0.000
D3.1 0.91 0.95 -0.058 D7.1 0.40 0.40 0.000
D3.2 0.93 0.93 -0.000 D7.2 0.40 0.40 0.000
D3.3 0.62 0.62 0.000 D7.3 0.15 0.15 0.000
D3.4 0.61 0.61 0.000 D7.4 0.06 0.03 0.955

D4.0 0.09 0.06 0.520 D8.0 0.45 0.64 -0.500
D4.1 0.44 0.44 0.000 D8.1 - - -
D4.2 0.50 0.44 0.170 D8.2 0.47 1.00 -1.100
D4.3 0.03 0.03 0.000 D8.3 - - -
D4.4 0.11 0.11 0.000 D8.4 0.36 0.43 -0.263

5. Conclusion

The current definition and implementation of the Relevant Retrieval Ratio (𝑅3) have several limitations.
First, due to the computational complexity of the Steiner tree problem for graphs and the lack of readily
available exact solvers that work on directed graphs, our implementations use heuristics, thus leading
to potentially suboptimal traversal path lengths. Second, the metric can not be computed when a query
produces no results, either due to a timeout or no results existing for the query. Finally, our metric uses
theoretically optimal paths. In practice, document dereference times can vary, making the theoretically
optimal path potentially suboptimal. In future work, more extensive benchmarking of the metric is
required to validate its effectiveness in measuring prioritization performance. Furthermore, a new
metric that includes a penalty term for HTTP request time would account for real-world uncertainties
in LTQP scenarios. Finally, an 𝑅3 metric for the first 𝑘 results can be defined.

6. Acknowledgments

This research was supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF project
VV023/10). Ruben Taelman is a postdoctoral researcher at the Research Foundation – Flanders (FWO).

References

[1] R. Verborgh, A data ecosystem fosters sustainable innovation, 2020.
[2] R. Verborgh, The web’s data triad, 2024. URL: https://ruben.verborgh.org/blog/2024/05/30/

the-webs-data-triad/.
[3] R. Taelman, R. Verborgh, Link traversal query processing over decentralized environments with

structural assumptions, in: International Semantic Web Conference, Springer, 2023, pp. 3–22.
[4] O. Hartig, M. T. Özsu, Walking without a map: Ranking-based traversal for querying linked data,

in: The Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe, Japan,
October 17–21, 2016, Proceedings, Part I 15, Springer, 2016, pp. 305–324.

[5] M. Acosta, M.-E. Vidal, Y. Sure-Vetter, Diefficiency metrics: measuring the continuous efficiency
of query processing approaches, in: The Semantic Web–ISWC 2017: 16th International Semantic
Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II 16, Springer, 2017, pp.
3–19.

[6] J. Hanski, R. Taelman, R. Verborgh, Observations on bloom filters for traversal-based query
execution over solid pods (2024).

[7] M. Fourment, M. R. Gillings, A comparison of common programming languages used in bioinfor-
matics, BMC bioinformatics 9 (2008) 1–9.

[8] M. Christiansen, K. Jeffay, D. Ott, F. D. Smith, Tuning red for web traffic, ACM SIGCOMM
Computer Communication Review 30 (2000) 139–150.

[9] K. KOBAYASHI, T. KATAYAMA, Analysis and evaluation of packet delay variance in the internet,
IEICE transactions on communications 85 (2002) 35–42.

[10] O. Hartig, Zero-knowledge query planning for an iterator implementation of link traversal based
query execution, in: Extended Semantic Web Conference, Springer, 2011, pp. 154–169.

[11] G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus, C. Buil-Aranda, Benchmarking federated
sparql query engines: Are existing testbeds enough?, in: The Semantic Web–ISWC 2012: 11th
International Semantic Web Conference, Boston, MA, USA, November 11-15, 2012, Proceedings,
Part II 11, Springer, 2012, pp. 313–324.

[12] P. Peng, Q. Ge, L. Zou, M. T. Özsu, Z. Xu, D. Zhao, Optimizing multi-query evaluation in federated
rdf systems, IEEE Transactions on Knowledge and Data Engineering 33 (2019) 1692–1707.

[13] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, T. Tran, Fedbench: A benchmark suite for
federated semantic data query processing, in: The Semantic Web–ISWC 2011: 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I 10, Springer,
2011, pp. 585–600.

[14] A. Schwarte, P. Haase, K. Hose, R. Schenkel, M. Schmidt, Fedx: Optimization techniques for
federated query processing on linked data, in: The Semantic Web–ISWC 2011: 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I 10, Springer,
2011, pp. 601–616.

[15] O. Hartig, J.-C. Freytag, Foundations of traversal based query execution over linked data, in:
Proceedings of the 23rd ACM conference on Hypertext and social media, 2012, pp. 43–52.

[16] L. Zosin, S. Khuller, On directed steiner trees, in: SODA, volume 2, 2002, pp. 59–63.
[17] R. Taelman, J. Van Herwegen, M. Vander Sande, R. Verborgh, Comunica: a modular sparql

query engine for the web, in: The Semantic Web–ISWC 2018: 17th International Semantic Web
Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part II 17, Springer, 2018, pp.
239–255.

[18] D. Watel, M.-A. Weisser, A practical greedy approximation for the directed steiner tree problem,
Journal of Combinatorial Optimization 32 (2016) 1327–1370.

[19] F. K. Hwang, D. S. Richards, Steiner tree problems, Networks 22 (1992) 55–89.
[20] A. Lucas, Ising formulations of many np problems, Frontiers in physics 2 (2014) 74887.
[21] R. Eschauzier, R. Taelman, R. Verborgh, How does the link queue evolve during traversal-based

query processing? (2023).

https://ruben.verborgh.org/blog/2024/05/30/the-webs-data-triad/
https://ruben.verborgh.org/blog/2024/05/30/the-webs-data-triad/

	1 Introduction
	2 Existing Metrics
	3 Relevant Retrieval Ratio
	4 Results
	5 Conclusion
	6 Acknowledgments

