
cKdtree: a Compact Kdtree for Spatial Data⋆

Gilberto Gutiérrez1, Rodrigo Torres-Avilés2 and Mónica Caniupán2,*

1Departamento Ciencias de la Computación y Tecnologías de Información, Universidad del Bío-Bío, Chillán, Chile
2Departamento Sistemas de Información, Universidad del Bío-Bío, Concepción, Chile

Abstract
We introduce cKd-tree, a compact data structure designed to represent a Kd-tree index efficiently. The
structure cKd-tree is essentially an encoding of the spiral code sequence of points within an implicit Kd-
tree (iKd-tree) using Directly Addressable Codes (DACs). The unique feature of cKd-tree lies in its ability
to perform spiral encoding and decoding of points by relying solely on knowledge of their parent points
within the iKd-tree. This inherent property, combined with DACs’ direct access capability to sequence
elements, enables cKd-tree to traverse and explore the tree while decoding only the nodes relevant
to queries. We compare cKd-tree with iKd-tree and 𝑘2-tree data structures evaluating compression
efficiency and execution time of point queries and the range queries. cKd-tree achieves a compression ratio
comparable to that of 𝑘2-tree, approximately 70%, demonstrating heightened efficiency, particularly in
scenarios characterized by sparse data. Additionally, 𝑘2-tree exhibits superior performance in querying
individual points, whereas cKd-tree outperforms in the context of aggregate data queries, such as range
queries.

Keywords
Compression, indices, spatial data, spatial points, spatial queries

1. Introduction

Several multidimensional data structures have been devised for the storage and efficient querying
of set of points in both primary and secondary memory. Noteworthy among these structures
are the Kd-tree [1] and Quadtree [2], which enable the execution of single and aggregate
queries without necessitating a full scan of the entire dataset. A Kd-tree is a hierarchical
structure (binary tree), designed for recursive division of multi-dimensional space [1]. Within
this structure, each node contains data representing a 𝑑-dimensional point in the space. When
dealing with static sets, data structures can be focused on implementing query operations,
which do not alter set size. This results in more cost-effective implementations in terms of
storage, as the algorithm proposed in [3] for a static Kd-tree. This static Kd-tree is implicitly
stored in an array, without using pointers, making it occupy less storage while maintaining
navigation efficiency comparable to its dynamic counterpart.

AMW 2024: 16th Alberto Mendelzon International Workshop on Foundations of Data Management, September 30th–
October 4th, 2024, Mexico City, Mexico
⋆

This work was funded by ANID Grant 1230647, ALBA group code 2130591 GI/VC, Project INES I+D 22-14 and
Project 2130520 IF/R.

*Corresponding author.
$ ggutierr@ubiobio.cl (G. Gutiérrez); rtorres@ubiobio.cl (R. Torres-Avilés); mcaniupan@ubiobio.cl (M. Caniupán)
� 0000-0001-6059-1453 (G. Gutiérrez); 0000-0001-8286-3712 (R. Torres-Avilés); 0000-0003-1543-2378 (M. Caniupán)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ggutierr@ubiobio.cl
mailto:rtorres@ubiobio.cl
mailto:mcaniupan@ubiobio.cl
https://orcid.org/0000-0001-6059-1453
https://orcid.org/0000-0001-8286-3712
https://orcid.org/0000-0003-1543-2378
https://creativecommons.org/licenses/by/4.0

p7 p35 4

p

p

p

p

p6

2 1

3p6p

7p

2
4

5

p1

p

p

0 1 2 3 4 5 6 7 9 10 11 12 13

0

1

2

3

4

5

6

7

8

9

12

8

10

11

13

R

p

1

2

3

4

5

q

r

p

1 2 3 4 5 6 X

Y

a) b) c)

Figure 1: a) iKd-tree representation for a set of points 𝑆. b) Partition generated by the iKd-tree for the
points from 𝑆. c) Spiral encoding of a set of points in N2.

We refer to a balanced Kd-tree represented in an array as iKd-tree [4]. The construction process
of iKd-tree is described in [3]. As an illustration, Figure 1 represents an iKd-tree constructed from
a set of points 𝑆 = ⟨𝑝1(8, 6), 𝑝2(4, 7), 𝑝3(10, 3), 𝑝5(2, 11), 𝑝6(5, 3), 𝑝4(12, 8), 𝑝7(2, 5)⟩ with a
resulting arrangement stored in array 𝑄 = [(2, 5), (4, 7), (2, 11), (5, 3), (10, 3), (8, 6), (12, 8)].
The algorithm ensures the creation of a balanced binary tree, with a tree depth of log2(𝑛), as
depicted in Figure 1a). Navigating or exploring the iKd-tree is straightforward. Generally, the
position of the root node within the subtree, defined by the initial positions 𝑙𝑖 and final positions
𝑙𝑠 of array 𝑄, is situated at position

⌊︀
𝑙𝑖+𝑙𝑠
2

⌋︀
.

In this work, we introduce a compact version of the Kd-tree designed for storing a set of
static points 𝑆 ⊆ N2, named the cKd-tree. We focused our attention on the Kd-tree given its
prominence as one of the most widely employed structures for indexing spatial and geometric
data [5].

2. Related Work

The BSP-tree, very similar to the Kd-tree, is a multidimensional data structure that shares the
concept of recursively partitioning space using 𝑑− 1 dimensional hyperplanes. These hyper-
planes in the BSP-tree need not be iso-oriented. In contrast to the Kd-tree, where partitions
alternate between different dimensions, the BSP-tree adapts its partitions based on the distribu-
tion of objects within the space or subspace. Another important data structure is the Quad-tree
[6]. This structure, like the Kd-tree, employs recursive division of space or subspace through
iso-oriented hyperplanes. However, a key distinction lies in the fact that each internal node of
the Quad-tree typically has 2𝑑 children. Unlike Kd-trees, these structures are predominantly
designed for dynamic object sets and are commonly implemented using pointers.

Over the past few decades, there has been a pronounced surge in the exploration and devel-
opment of compact data structures (CDS). These structures compress static data, minimizing
storage requirements and facilitating data processing without the need for prior decompression
allowing the processing of data directly in main memory.

Compact data structures offer an alternative for representing points, exemplified by the
𝑘2-tree [7]. In this structure, points are derived from a binary matrix 𝐴, where a point 𝑝(𝑥, 𝑦) in

the set is symbolized by a stored value of 1 in the cell 𝐴[𝑥, 𝑦]. The 𝑘2-tree allows to store static
sets of points without relying on pointers, making it a foundational structure for comparative
analysis in our study. This compact data structure has been used in diverse scenarios such as,
graph representations [7], raster data [8], and points in N2 [9].

3. Our Proposal: The cKdtree

cKd-tree is built upon the implicit version of a Kd-tree and leverages spiral encoding to represent
a set of points in a multidimensional (𝑑-dimensional) space. Moreover, cKd-tree employs DACs
encoding for a sequence of integers [10]. This dual encoding approach enables the structure to
store information more efficiently.

The spiral encoding method involves assigning a positive integer to a point 𝑝 in N2 based
on another point 𝑞. Formally, considering points 𝑝(𝑥, 𝑦) and 𝑞(𝑥, 𝑦) from the set 𝑆 ⊆ 𝑋 × 𝑌 ,
for 𝑋,𝑌 ⊆ N with dimensions |𝑋| and |𝑌 |, the spiral encoding of 𝑞 with respect to 𝑝 is denoted
as a function 𝑠𝐶𝑜𝑑𝑒𝑝 : N2 → {0, . . . , |𝑋| · |𝑌 |}. In this representation, 𝑠𝐶𝑜𝑑𝑒𝑝(𝑞) represents
the distance, measured in the number of cells, from the cell of 𝑝 to the cell of 𝑞 following a
spiral path with the origin at 𝑝 (cell 0). Figure 1c) illustrates the spiral paths used to encode
points 𝑞 and 𝑟 starting from the reference point 𝑝. In this example, 𝑠𝐶𝑜𝑑𝑒𝑝(𝑞) is equal to 10,
and 𝑠𝐶𝑜𝑑𝑒𝑝(𝑟) is equal to 22. The function 𝑠𝐷𝑒𝑐𝑜𝑑𝑒𝑝(𝑞) : {0, . . . , |𝑋| · |𝑌 |} → N2 facilitates
retrieving the coordinates of a point 𝑞 from its spiral code with respect to the point 𝑝.

The acronym DACs [10] stands for Directly Addressable Codes, which represent a variable-
length encoding of sequences of non-negative integers, typically arrays. This method divides
the binary representation of the integers of the array into blocks of 𝑏 bits, adding a bit in the
most significant bit of the chunk, set to 0 when the chunk holds the most significant bits of the
integer, and 1 otherwise. Then, the chunks of size 𝑏 + 1 are grouped together, in order, and
each group is called a level. With this construction, DACs keeps direct access to any element
of the encoded sequence without the need of any sampling method, therefore without using
asymptotically any extra space.

Although it can be used a fixed block size 𝑏 for DACs, it is possible to choose a different block
size at each level 𝑙 (𝑏𝑙). This flexibility can be advantageous to achieve specific goals, such as
optimizing compression.

A cKd-tree is represented as a tuple ⟨𝑆𝑒𝑞, 𝑝⟩, where 𝑆𝑒𝑞 is a sequence of integers encoded
using DACs, representing an iKd-tree, and 𝑝 ∈ 𝑆 denotes the root of the tree with 𝑆 ⊆ N2 a set
of points. The sequence 𝑆𝑒𝑞 is derived from the DACs encoding through a spiral codification of
the points in the iKd-tree.

The algorithms for the construction of the cKd-tree together with the algorithms for process-
ing queries on sets of points are presented in [11]. We addressed two fundamental queries. The
point query which determines whether a given point 𝑞 is part of the set of points represented
by the cKd-tree, and the range query that retrieves all points stored in the cKd-tree within the
bounds of the specified iso-oriented rectangle for the query range.

a)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

C
o

m
p

re
s
s
 (

%
)

Density (%)

k2−tree (U)
cKd−tree (U)

k2−tree (G)
cKd−tree (G)

b)

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

C
o

m
p

re
s
s
 (

%
)

Density (%)

k2−tree (U)
cKd−tree (U)

k2−tree (G)
cKd−tree (G)

Figure 2: Data Compression Percentages on space of size 16, 384× 16, 384 and 32, 768× 327, 68.

4. Experiments

We compare cKd-tree against iKd-tree and 𝑘2-tree, with the latter being known for its efficiency
in compression and query execution. The iKd-tree and cKd-tree structures were implemented
in C++, while we utilized the 𝑘2-tree implementation from [12]1.

We utilized synthetic two-dimensional datasets comprising points. The dataset sizes ranged
from 250, 000 to 100, 000, 000, distributed according to both Uniform and Gaussian distributions
in space. The datasets were generated within spaces (matrices) of dimensions 214 × 214 and
215 × 215.

Figure 2 shows the compression percentages for both cKd-tree and 𝑘2-tree compact data
structures in two space scenarios (sizes 16, 384× 16, 384 and 32, 768× 32, 768, respectively).
The structures exhibit competitive compression percentages ranging from approximately 18%
to 90%. Both structures improve the compression performance when density increases. At
higher densities (≥ 12) and for Gaussian distribution (G in the charts), 𝑘2-tree marginally
outperforms cKd-tree. Conversely, at lower densities (≤ 6), cKd-tree outpaces 𝑘2-tree. The
enhanced compression performance of cKd-tree can be attributed to the spatial proximity of
points. In such scenarios, the resulting spiral codes of the points are generally smaller, leading
to a highly compressible sequence of integers by DACs.

Figure 3 a) and b) displays the execution times of three structures in solving the point query
for Uniform and Gaussian distributions of points. As expected, 𝑘2-tree outperforms cKd-tree by
a significant margin (about 200 times faster), and iKd-tree also performs faster (11 times) than
cKd-tree. The advantage of 𝑘2-tree is attributed to its 𝑂(log2𝑚) query execution time for one
point, while iKd-tree avoids the cost of decompressing points stored with DACs.

Figure 3 c) and d) illustrates the execution times of range query over a matrix of size 32, 768×
32, 768 for the range of 3, 276× 3, 276 over Uniform and Gaussian distribution. Notably, cKd-
tree significantly outperforms 𝑘2-tree achieving a speedup of approximately 4.7 times. And,
as expected, iKd-tree outperforms cKd-tree in range query, albeit to a lesser extent, with an
average speedup of about 3 times for range queries of size 3, 276× 3, 276. For the Gaussian
distribution 𝑘2-tree has better results, but it is still outperformed by cKd-tree, in a lesser extend.
The improved performance of 𝑘2-tree in this distribution is attributed to its optimal operation

1Available at https://github.com/simongog/sdsl-lite

https://github.com/simongog/sdsl-lite

a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Density (%)

cKD−tree
iKD−tree
k2−tree

b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Density (%)

cKD−tree
iKD−tree
k2−tree

c)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Density (%)

cKD−tree
iKD−tree
k2−tree

d)

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7 8 9 10

T
im

e
 (

m
s
)

Density (%)

cKD−tree
iKD−tree
k2−tree

Figure 3: Point query and Range query performance on a 32, 768 × 32, 768 matrix. a) Point query
with Uniform distribution, b) Point query with Gaussian distribution, c) Range query with Uniform
distribution and d) Range query with Gaussian distribution.

when points are concentrated in specific areas of space. This characteristic makes 𝑘2-tree
sensitive to point distribution, whereas both iKd-tree and cKd-tree exhibit similar behavior
across different distributions.

5. Conclusions

We present a novel compact data structure named cKd-tree designed for representing an implicit
static Kd-tree. Through experimental evaluations against 𝑘2-tree and iKd-tree, our findings
reveal that cKd-tree achieves compression rates ranging from 45% to 77% depending on the
density. The percentage of compression is higher when the density increases.

In terms of execution time for point queries, cKd-tree exhibits a slower performance compared
to 𝑘2-tree, as expected. However, cKd-tree showcases superior execution times for range queries,
significantly outperforming 𝑘2-tree, especially in scenarios with Uniform distribution where
cKd-tree is approximately 4.7 times faster. This continues to widen with increasing data density.

cKd-tree extends the versatility of Kd-tree by providing a competitive alternative, enabling the
direct implementation of these algorithms in a compact form. As evidenced by our experiments,
cKd-tree exhibits superior performance compared to 𝑘2-tree, particularly when querying aggre-
gate data. This suggests its potential for enabling faster execution on more intricate queries,
including but not limited to 𝐾 nearest neighbors and Pareto set calculations.

References

[1] J. L. Bentley, Multidimensional binary search trees used for associative searching, Com-
mun. ACM 18 (1975) 509–517. URL: https://doi.org/10.1145/361002.361007. doi:10.1145/
361002.361007.

[2] H. Samet, The quadtree and related hierarchical data structures, ACM Comput. Surv.
16 (1984) 187–260. URL: https://doi.org/10.1145/356924.356930. doi:10.1145/356924.
356930.

[3] R. A. Brown, Building a balanced 𝑘-d tree in 𝑜(𝑘𝑛 log 𝑛) time, Journal of Computer
Graphics Techniques (JCGT) 4 (2015) 50–68. URL: http://jcgt.org/published/0004/01/03/.

[4] C. SanJuan-Contreras, G. Gutiérrez, M. A. Martínez-Prieto, D. Seco, cbik: A space-efficient
data structure for spatial keyword queries, IEEE Access PP (2020) 1–1. doi:10.1109/
ACCESS.2020.2997258.

[5] V. Gaede, O. Günther, Multidimensional access methods, ACM Computing Surveys
30 (1998) 170–231. URL: https://doi.org/10.1145/280277.280279. doi:10.1145/280277.
280279.

[6] H. Samet, The quadtree and related hierarchical data structures, ACM Computing Surveys
(CSUR) 16 (1984) 187–260.

[7] N. Brisaboa, S. Ladra, G. Navarro, Compact representation of web graphs with extended
functionality, Information Systems 39 (2014) 152–174.

[8] S. Ladra, J. R. Paramá, F. Silva Coira, Scalable and queryable compressed storage structure
for raster data, Information Systems (2017) 179–204.

[9] J. Castro, M. Romero, G. Gutiérrez, M. Caniupán, C. Quijada-Fuentes, Efficient computation
of the convex hull on sets of points stored in a k-tree compact data structure, Knowledge
and Information Systems 62 (2020). doi:10.1007/s10115-020-01486-9.

[10] N. Brisaboa, S. Ladra, G. Navarro, Dacs: Bringing direct access to variable-length codes,
Information Processing and Management 49 (2013) 392–404.

[11] G. Gutiérrez, R. Torres-Avilés, M. Caniupán, ckd-tree: A compact kd-tree, IEEE Access 12
(2024) 28666–28676. doi:10.1109/ACCESS.2024.3365054.

[12] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: Plug and play with succinct
data structures, in: 13th International Symposium on Experimental Algorithms, (SEA
2014), 2014, pp. 326–337.

https://doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
https://doi.org/10.1145/356924.356930
http://dx.doi.org/10.1145/356924.356930
http://dx.doi.org/10.1145/356924.356930
http://jcgt.org/published/0004/01/03/
http://dx.doi.org/10.1109/ACCESS.2020.2997258
http://dx.doi.org/10.1109/ACCESS.2020.2997258
https://doi.org/10.1145/280277.280279
http://dx.doi.org/10.1145/280277.280279
http://dx.doi.org/10.1145/280277.280279
http://dx.doi.org/10.1007/s10115-020-01486-9
http://dx.doi.org/10.1109/ACCESS.2024.3365054

	1 Introduction
	2 Related Work
	3 Our Proposal: The cKdtree
	4 Experiments
	5 Conclusions

