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Abstract
We discuss different ways in which we can define interfaces to data, going beyond standard view
definitions. One is based on specifying a query, and asking for the views within a class that give the
minimal information that suffice to support the query. Another is based on specifying which instances
should be indistinguishable to users via the interface.

1. Introduction

How can we define an interface to a relational structure? In databases, a standard means is via
views – declarative queries whose output is made available to users as another structure: in the
case of relational database queries, a table. A huge amount of study has gone into the properties
of views and view languages. See e.g. [1].

There are other mechanisms for interfacing with data that differ from views. At certain times
in the past, defining more flexible notions of “datasource capabilities” – one aspect of how
queries can interface with a data source – represented quite a hot topic in data management [2].
One kind of data interface that has received continued attention are access methods [3, 4, 5, 6, 7].
Access methods give a functional interface allowing a user to look up matching rows in a table,
providing as input a subset of the attributes. They restrict access in a mannar orthogonal to
views, but one can add to their expressiveness by combining them with integrity constraints [8]
or with views [9]. Or one can limit the expressiveness further by adding number restrictions on
access outputs [10]. Cautis et. al [11] give an intriguing formalism for defining “infinite sets of
views”, an interface limitation that is incomparable to access restrictions.

Since this kind of research has diminished over the last few years, in this article we want to
overview a couple projects that might stimulate new thinking about interfaces to data beyond
views, and how one might measure the expressiveness of interfaces. This will be based on work
published previously [12], and also connected to work that is about to appear [13].

2. Distributed schemas and classical views

We first review some standard definitions in relational databases [14]. A schema consists of a
finite set of relation names, each with an associated arity (a non-negative number). An instance
of a schema is an assignment of each relation name 𝑅 in the schema of arity 𝑛 to a collection
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(finite or infinite) of 𝑛-tuples of elements. We will often use ℐ for a generic instance. The active
domain of an instance ℐ , denoted adom(ℐ), is the set of elements occurring in some tuple of
some ℐ(𝑅).

An 𝑛-ary query is a function from instances of a fixed schema 𝒮 to 𝑛-tuples. We assume the
usual semantics for active-domain first-order logic, given by a relation ℐ |= 𝛾 for 𝛾 a sentence.
A Conjunctive Query (CQ) is a logical formula of the form ∃y.

⋀︀
𝑖𝐴𝑖 where 𝐴𝑖 are atoms over the

schema. A Union of CQs (UCQ) is a disjunction of CQs where the free variables of each disjunct
are the same. UCQs can be extended to relational algebra, the standard algebraic presentation
of first-order relational queries: queries are build up from symbols for each relation name by
union, difference, selection, and product [14]. Relational algebra queries can be expressed in
first-order logic. Unlike arbitrary first-order logic formulas, whose truth value may depend on
an additional “universe” for the range of quantification, relational algebra queries are domain
independent: the output on an instance depends on the interpretation of each relation symbol.
A view is just a pairing of an 𝑛-ary query with an 𝑛-ary relation that names its output. Based
on the kind of query, we can talk about a CQ view, a relational algebra view, etc.

We now come to some definitions that are specific to distributed query processing or data
integration. A distributed schema (d-schema) 𝒮 consists of a finite set of sources Srcs, with each
source s associated with a local schema 𝒮s.

A query over a d-schema is simply a query over the relations occurring in some local schema.
A distributed view (d-view) assigns to each local schema a set of views over that schema. Thus a
d-view describes an interface where each local source exports some information.

Example 1. We have a d-schema consisting of two sources, a data source representing pa-
pers submitted to VLDB VLDB(paperid, title, authorid, authorname) and another source with
relation SIGMOD with the same attributes, containing papers submitted to SIGMOD.

A trivial 𝑑-view might export the entire content of each relation. Another 𝑑-view might have
the VLDB source export the projection on paperid, and the SIGMOD source export authorids.
Note that a query giving the intersection of VLDB and SIGMOD is not a d-view, since a d-view
consists of views that are local to a source. ▷

3. Minimal information interfaces

We are ready to look at our first non-standard means of defining an interface, from [12]. Rather
than having the data designer explicitly provide views, the idea is that they only specify a
query, and then ask for the minimal information views (within a certain class) that can support
answering that query. This is particularly interesting in the distributed setting. We want to
formalize the notion of a set of views being useful for answering a query, and having minimal
information among those that are useful. We use Segoufin and Vianu’s notion of determinacy,
later developed jointly with Nash [15].

Definition 1. Two d-instances 𝒟 and 𝒟′ are indistinguishable by a d-view 𝒱 (or just 𝒱-
indistinguishable) if 𝑉 (𝒟) = 𝑉 (𝒟′) for each view 𝑉 ∈ 𝒱 .



Since each view𝑉 ∈ 𝒱s is defined only using relation names occurring in𝒱s, we can equivalently
say that 𝒟1 and 𝒟2 are 𝒱-indistinguishable if 𝑉 (𝒟s

1) = 𝑉 (𝒟s
2) for each 𝑉 ∈ 𝒱s for each source

s.

Definition 2. A d-view 𝒱 determines a query 𝑄 at a d-instance 𝒟 if 𝑄(𝒟′) = 𝑄(𝒟) for each
𝒟′ that is 𝒱-indistinguishable from 𝒟.

The d-view 𝒱 is useful for 𝑄 if 𝒱 determines 𝑄 on every d-instance (for short, just “𝒱 determines
𝑄”).

We are now ready to formalize the idea of a d-view that is useful for 𝑄 but reveals as little as
possible:

Definition 3 (Minimally informative useful views). Given a class of views 𝒞 and a query
𝑄, we say that a d-view 𝒱 is a minimally informative useful d-view for 𝑄 within 𝒞 if 𝒱 is useful
for 𝑄 and, for any other d-view 𝒱 ′ useful for 𝑄 based on views in 𝒞, 𝒱 ′ determines the view
definition of each view in 𝒱 .

Example 2. Returning to Ex. 1, consider a query 𝑄 asking if there is a title and author name
common to SIGMOD and VLDB, a possible double-submission:

∃paperid title authorid authorname authorid′ paperid′

VLDB(paperid, title, authorid, authorname)∧
SIGMOD(paperid′, title, authorid′, authorname)

Obviously there are many useful 𝑑-views for 𝑄: we could export all information from each
source, which be more than sufficient to answer 𝑄. But intuitively there is an obvious candidate
for the minimally informative useful view. From the VLDB source we should export

∃ authorid authorname

VLDB(paperid, title, authorid, authorname)

and similarly for SIGMOD. That is, to minimally support the query 𝑄 that joins across sources,
we should project out everything but the variables that cross sources.

This is called the canonical d-view of 𝑄 with respect to the distributed schema. It will follow
from the results mentioned in the next section that this really is the minimally-informative d-
view for this example. From minimally-informativeness, it follows that if the interface designers
want to support this double-submission query with any d-view, they will need to reveal all the
paper titles submitted to each conference. ▷

All of these definitions can be additionally parameterized by integrity constraints Σ. Given
d-instance 𝒟 satisfying Σ and a d-view 𝒱 , 𝒱 determines a query 𝑄 over the d-schema at 𝒟
relative to Σ if: for every 𝒟′ satisfying Σ that is 𝒱-indistinguishable from 𝒟, 𝑄(𝒟′) = 𝑄(𝒟).
We say that 𝒱 is useful for a query 𝑄 relative to Σ if it determines 𝑄 on every d-instance
satisfying Σ. In the results in the next section we will assume that any integrity constraints are
traditional database constraints, like Tuple-Generating Dependencies [14]. In the distributed
schema setting, our positive results will usually assume that constraints are local: each constraint
involves relations on a single source.



4. Results on interfaces via minimally informative views

We now present some results from [12] concerning when minimally informative views exist.

Theorem 3. [Minimally informative d-views exist] [12] For any query 𝑄, there are minimally
informative d-views. The same holds in the presence of local constraints.

The minimally informative d-view is not given constructively, but rather is defined via a
Myhill-Nerode style equivalence, which we will discuss further in Section 5. Of course if 𝑄 is
an arbitrary query, we cannot say much about what the minimally informative views are. But
in the case where 𝑄 is a CQ, we can get a very simple minimally informative view.

Theorem 4. [Minimally informative relational algebra d-views exist for CQs] [12] For any con-
junctive query 𝑄, there are minimally informative d-views, computable from 𝑄 and expressible in
relational algebra. The same holds in the presence of local constraints.

Notice here that we mentioned relational algebra, rather than CQ or UCQ. Surprisingly, we
may need to use relational algebra features beyond UCQs:

Theorem 5. [12] There are CQs 𝑄 where the minimally informative d-views are not CQs or even
UCQs.

Thus in particular there are queries where the minimally informative d-view is not the canonical
d-view.

Example 6. Suppose we have two sources one with ternary relation 𝑅, the other with unary
relation 𝑆. Consider the conjunctive query 𝑄:

∃𝑥1, 𝑥2, 𝑦.𝑅(𝑥1, 𝑥2, 𝑦) ∧𝑅(𝑦, 𝑥2, 𝑥1) ∧ 𝑆(𝑥1) ∧ 𝑆(𝑥2)

The canonical view at the 𝑅 source is {𝑥1, 𝑥2|∃𝑦.𝑅(𝑥1, 𝑥2, 𝑦) ∧𝑅(𝑦, 𝑥2, 𝑥1)} and at the 𝑆
source it is {𝑥1, 𝑥2|𝑆(𝑥1) ∧ 𝑆(𝑥2)}: these are the “obvious” views to support the query. But
they are not the minimally informative views!

Consider the views formed by replacing the view on 𝑅 with the view exporting the pairs
𝑥1, 𝑥2 such that

(∃𝑦.𝑅(𝑥1, 𝑥2, 𝑦) ∧𝑅(𝑦, 𝑥2, 𝑥1)) ∨ (∃𝑦.𝑅(𝑥2, 𝑥1, 𝑦) ∧𝑅(𝑦, 𝑥1, 𝑥2))

We reveal to an external user that either the pair 𝑥1, 𝑥2 or its reverse satisfies a certain pattern.
This is strictly less informative than the canonical views, which reveal which of the two cases
holds. But the reader can check that it is sufficient to answer the query 𝑄. ▷

What about d-views that are minimally informative within the class of CQs? These always
exist as well, and it turns out that after minimizing 𝑄 (removing redundant conjuncts), they are
indeed the canonical ones:

Theorem 7 (Minimally informative CQ views exist). [12] Let 𝑄 a CQ that has no redun-
dant conjuncts. Then the canonical d-view of 𝑄 is minimally informative useful within the class of
CQ views. The same holds in the presence of local constraints.



Finally, notice that in Theorem 3 we required any integrity constraints to be local. Arguably
the simplest kind of non-local constraint is a replication constraint, saying that a relation 𝑅1 in
source 𝑑1 is identical to a relation 𝑅2 in source 𝑑2.

Theorem 8. [12] There is a CQ 𝑄 and a single replication constraint where no minimally infor-
mative d-view exists.

[12] shows that a weaker notion of minimally informative view exists in the presence of
replication constraints, based on the “amount of disclosure”.

5. Indistinguishability relations

We now look at another way to define interfaces to data, based very roughly on work in [13].
An indistinguishabiity relation is an equivalence relation on instances of a schema. Clearly any
kind of classical view gives an indistinguishability relation: two instances are indistinguishable
if the views produce the same output. But it is natural to allow a data designer to define an
interface by simply declaring which pairs of databases should be indistinguishable, and then
let the system develop a method of querying – e.g. through translation to appropriate views.
Indistinguishability relations play a role in [12], where often views are constructed implicitly
via indistinguishability. For example, in the proof of Theorem 3 from the previous section, what
one actually shows is:

Theorem 9. For any query 𝑄 over a d-schema, there are minimally informative d-views, with
each view given implicitly by an indistinguishability relation.

This is what we referred to in the last section when we said that the minimally informative
views are given by a Myhill-Nerode style equivalence relation. We sketch the argument, since
it gives the idea of how to implicitly define a view via an indistinguishability relation. For a
source s in a d-schema, an s-context is an instance for each source other than s. Given a source
s and a query 𝑄, we say two s-instances ℐ, ℐ ′ are (s, 𝑄)-equivalent if for any s-context 𝐶 ,

(ℐ, 𝐶) |= 𝑄 ⇔ (ℐ ′, 𝐶) |= 𝑄

We say two d-instances 𝒟 and 𝒟′ are globally 𝑄-equivalent if for each source 𝑠, the restrictions
of 𝒟 and 𝒟′ over source 𝑠, are (s, 𝑄)-equivalent.

Global 𝑄-equivalence is clearly an indistinguishability relation. It is also not difficult to see
that the corresponding d-view is a minimally informative useful d-view for 𝑄 within the class
of all views:

Now let us return to indistinguishability relations in general. It is particularly interesting to
look at indistinguishability relations defined by logical sentences. For a schema 𝒮 , let 𝒮2 denote
the vocabulary with two copies of each relation 𝑅 in 𝒮 , denoted 𝑅 and 𝑅′. Thus an instance
for 𝒮2 is a pair of instances for 𝒮 , one using the primed relations and one using the unprimed
relations. We write such a pair as (ℐ1, ℐ2). Thus 𝒮2 is the natural vocabulary for describing
relationships between structures.



Definition 4. Let 𝜂 be a domain independent first-order logic sentence over 𝒮2. We say that 𝜂 is
a first-order logic indistinguishability relation if

• 𝜂 defines a transitive relationship on pairs of instances: for any instances ℐ1, ℐ2, ℐ3
(ℐ1, ℐ2) |= 𝜂, and (ℐ2, ℐ3) |= 𝜂 implies (ℐ1, ℐ3) |= 𝜂

• 𝜂 is commutative: (ℐ1, ℐ2) |= 𝜂 if and only if (ℐ2, ℐ1) |= 𝜂.
• 𝜂 is reflexive: for all ℐ1, (ℐ1, ℐ1) |= 𝜂

We can similarly relativize this to constraints Σ on 𝒮 : 𝜂 need only define an equivalence relation
on structures satisfying Σ. We can look at indistinguishability relations over all instances for Σ, or
deal with sentences 𝜂 that define an indistinguishability relation only on finite instances.

The results in [13] do not restrict to the finite case, and have several other deviations from
the formalism as we present it here. But as we explain below, many of the results apply to the
setting of finite instances.

5.1. Indistinguishability relations and relational/nested relational views

We mentioned that the obvious way to get an indistingushability relation is via views. And
if we use relational algebra views, we get a first-order logic indistinguishability relation. Let
Γ = {𝛾1 . . . 𝛾𝑛} be a finite set of relational algebra views, or equivalently, active domain
formulas. We let 𝜂Γ be the ℐ2 sentence

⋀︀
𝑖 ∀x [𝛾𝑖(x) ↔ 𝛾′𝑖(x)]. Here, for any domain-

independent logical formula 𝜙 over 𝒮 . 𝜙′ is the formula formed by priming every relation. For
any such Γ, 𝜂Γ is a first-order logic indistinguishability relation. We call this a relational algebra
view indistinguishability relation. We now describe a generalization of the notion of relational
algebra view to nested relations. We refer here to the notion of nested set in database theory
[16, 17, 18], and we can consider views given by the nested relational calculus. We will not
need the exact definitions of nested relational calculus here. The observation is that agreement
on nested relational views is expressible as a first-order logic sentence over 𝒮2: even though
we are dealing with nested sets, we do not need “higher order logic” for the corresponding
indistinguishability relation.

Example 10. Let schema 𝒮 consist of binary relation 𝑅. Consider the 𝒮2 sentence:

∀𝑥 ∃𝑥′ ∀𝑦. [𝑅(𝑥, 𝑦) ↔ 𝑅′(𝑥′, 𝑦)]∧
∀𝑥′ ∃𝑥 ∀𝑦. [𝑅(𝑥, 𝑦) ↔ 𝑅′(𝑥′, 𝑦)]

This is a first-order logic indistinguishability relation. It states that every adjacency set of an
element in one instance is the adjacency set of a (possibly different) element in the other set.
Informally, the family of adjacency sets in the instances are the same.

If schema 𝒮 consists of a ternary relation 𝑇 (𝑥, 𝑦, 𝑧), in any instance ℐ containing 𝑥 and 𝑦,
we can let 𝐴ℐ(𝑥, 𝑦) be the 𝑧’s such that 𝑇 (𝑥, 𝑦, 𝑧) holds in ℐ . We let 𝐴ℐ(𝑥) be the set of sets
𝐴ℐ(𝑥, 𝑦) as 𝑦 ranges over nodes in ℐ , for a given 𝑥 in ℐ . And we let 𝐴ℐ be the set of sets of sets
𝐴ℐ(𝑥) as 𝑥 ranges over nodes in ℐ . Then there is a first-order logic indistinguishability relation
corresponding to preserving the nested set 𝐴ℐ . ▷



In general, a 𝑘-nested view indistinguishability relation is given by a 𝑘-partitioned formula;
this an active domain first-order formula in which the free variables are partitioned into 𝑘 sets.
We write such formulas 𝛾(x1; . . . ;x𝑘). In the binary relation example above, the partitioned
formula is just 𝑅(𝑥; 𝑦), while in the ternary example it is 𝑇 (𝑥; 𝑦; 𝑧). The definition of the nested
set and the equivalence relation corresponding to 𝛾(x1; . . . ;x𝑘) is given by induction on 𝑘,
generalizing the example.

What kinds of first-order logic indistinguishability relations are there beyond nested relational
views? Over infinite models, it is easy to arrive at logic-based indistinguishability relations that
are not nested views.

Example 11. Let our vocabulary have binary relations < and let Σ state that < is a dense linear
order. Let 𝜂 be the sentence over 𝒮2 stating:

[∀𝑥𝑦𝑧. 𝑥 < 𝑦 < 𝑧 →
∃𝑢𝑣. 𝑢 <′ 𝑦 <′ 𝑣 ∧ (∀𝑞. 𝑢 <′ 𝑞 <′ 𝑣 → 𝑥 < 𝑞 < 𝑧)]∧

[∀𝑥𝑦𝑧. 𝑥 <′ 𝑦 <′ 𝑧 →
∃𝑢𝑣. 𝑢 < 𝑦 < 𝑣 ∧ (∀𝑞. 𝑢 < 𝑞 < 𝑣 → 𝑥 <′ 𝑞 <′ 𝑧)]

𝜂 says that every open interval (𝑥, 𝑦) in one dataset is the union of open intervals (𝑢, 𝑣) in the
other dataset, and vice versa. Then 𝜂 is a logic-based indistinguishability relation. One can
show that it is not a 𝑘-nested view for any 𝑘.

▷

Note that we made use of an infinite linear order here.
The following natural question is open:

Question 1. Is there a set of first-order integrity constraints and a first-order indistinguishability
relation that is not given by a 𝑘-nested relation view over finite structures?

A negative answer would be a kind of semantics-to syntax or preservation theorem over
finite structures, and only a few such results are known [19].

5.2. Some results

We present some of the results from [13] that could be interesting in the database context,
warning the reader that the terminology and the formalism here does not match that in [13],
which uses classical model theory as a framework.

It is not so difficult to show that the indistinguishability relations based on nested relational
views form a strict hierarchy:

Proposition 1. [13] For every 𝑛 there are (𝑛+ 1) nested view indistinguishability relations that
are not given by 𝑛 nested view indistinguishability relations.



For separation, we could use generalizations of the adjacency-based equivalence relation in
Example 10: the set of adjacency sets of a binary relation, the set of sets of adjacency sets of a
ternary relation, etc.

In [13] this is argued explicitly for general 𝑛 only over infinite structures, but in the finite is
illustrated in the case of 2 vs. 1. To prove the separation, one uses dense structures. In fact, one
can show that this is necessary:

Theorem 12. [13] If 𝐶 is a class of sparse finite structures (e.g. graphs excluding a minor) then
every equivalence relation given by a 𝑘-nested view indistinguishability relation is equivalent to
one given by a relational algebra view indistinguishability relation.

Example 13. Let us to the adjacency-based indistinguishability relation, the first one in Example
10. Suppose the datasources are restricted to be finite trees, where 𝑅 is the child relation. We
can see that the only way two trees can have the same adjacency sets is if they are identical!
Thus, over trees, this equivalence relation is presented by a relational algebra view. ▷

If we consider the 𝒮2 sentence corresponding to a relational algebra view indistinguishability
relation, we only need a block of universal quantifiers that cross the two instances: it is of the
form ∀𝑥 [𝜙(x) ↔ 𝜙′(x)], where 𝜙 concerns only the unprimed instance and 𝜙′ the primed
instance. Call such indistinguishability relations Π1. In contrast, if we look at nested view
indistinguishability, we see at least three quantifier blocks ∀x ∃y ∀z (. . .). In the first example
within Example 10, the pattern was ∀𝑥 ∃𝑥′ ∀𝑦. In the second example, which involved ternary
relation 𝑇 and sets of sets of sets, there would be an additional alternation of universal and
existential. The following result (which is shown looking at indistinguishability over both finite
and infinite structures), shows that the jump from one block to at least three blocks is essential:

Theorem 14. [13] Suppose an indistinguishability relation is given by a Π2 sentence: of the form
∀𝑥1 . . . ∃𝑦1 . . .. Then it is given by a Π1 indistinguishability relation.

Although the canonical example of Π1 relations are those given by relational algebra views,
it is shown that there is an indistinguishability relation that is Π1 that is not given by relational
algebra vievws. As with Question 1, we do not know if Π1 corresponds to relational algebra
when only finite structures are considered.

6. Conclusion

The goal in this short article is to point to some work related to the expressiveness of mechanisms
for interfacing with datasources. It is striking that the notion of interface design and the notion
of indistinguishability appear so frequently in areas of computer science – see, for example
[20] for a short survey on the latter – but relatively infrequently in the discussion of data
management interfaces.

The particular formalizations we summarize are meant to be just examples of a broader set
of questions. What are the different ways of defining datasource interfaces, and how can we
compare their expressiveness? How can we answer queries against non-traditional interfaces
like indistinguishability relations? What kind of disclosure vs. privacy trade-offs can we achieve
with different kinds of interfaces?
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