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Abstract 
This article examines a model compensation of systematic errors in the measurements of two three-
dimensional radars observing a group of objects. This model is based on the recursive estimation of 
systematic errors using the least squares method for radar measurement parameters. The issue of estimating 
and compensating systematic errors in azimuth, distance, and elevation when operating with two sensors 
is considered, based on the use of the Kalman filter. The next development stage involves creating a 
combinatorial algorithm for compensating systematic errors in the observation of a group of objects by a 
group of radars. It is assumed that the observed section of object movement is linear with constant speed. 
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1. Introduction 

The classical approach to estimating systematic errors (SE) involves increasing the dimensionality 
of the system's state vector by including the vector of systematic errors into the state vector. This is 
achieved by implementing the Kalman filter with augmented states (ASKF). The problem with this 
approach is that including the states of all observed objects in one ASKF filter may be 
computationally unfeasible. Additionally, numerical issues may arise during the implementation of 
such an algorithm, mainly for poorly conditioned systems. Friedland [1] proposed the idea of 
implementing two parallel filters of lower order instead of using the ASKF algorithm. Alouani, Rice, 
and Blair [2] argued that algebraic simplifications might be too restrictive in practice. An indirect 
proof of this is that all practical implementations of reduced-order filters are suboptimal. Van Doorn 
and Blom [3] obtained an exact solution to the Kalman filter problem with augmented states (ASKF) 
but then divided the equations, applying certain approximations (simplifications) to make the 
implementation of such an algorithm computationally feasible. A similar approach is used in [4, 5]  
to separate the state estimation filter and the systematic error estimation filter at the cost of reducing 
the accuracy of the obtained estimates. 

Lin, Kirubarajan, and Bar-Shalom [6] managed to obtain an exact solution to the problem of 
estimating systematic errors for two (or more) sensors. 

They demonstrated that the computation of systematic errors in dynamics can be ensured based 
on the state estimates of objects from local filters. This is achieved by manipulating the estimates of 
local filters in such a way that they provide pseudo-measurements of systematic errors and an 
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additive white noise with zero mean and easily computable covariance [7-8]. The results of statistical 
modeling confirm a significant increase in accuracy with a root mean square (RMS) error 
compensation of 60-80% compared to the widely used decoupled Kalman filter. Moreover, the 
developed algorithm is statistically efficient. The obtained estimation of systematic errors turns the 
Cramer-Rao Lower Bound (CRLB) inequality into an equality [9-16]. The variance of the estimate is 
the smallest possible, meaning it is, in a certain sense, better than all others. The next section presents 
a model for forming radar measurements that contain systematic errors. 

2. Model of constant systematic sensor errors 

Consider M sensors (M = 2) measuring distance, azimuth, and elevation for N objects simultaneously. 
It is assumed that the coordinates of each sensor are precisely known. The model for radar 
measurements with constant systematic errors in a polar coordinate system for the -th sensor at 
time tj is as follows 

𝒛𝑖
𝑝
(𝑡𝑗) = [

𝐷𝑖(𝑡𝑗)

𝐴𝑖(𝑡𝑗)

𝐵𝑖(𝑡𝑗)

], (1) 

where Di  distance, Ai  azimuth, Bi  elevation angle: 

𝐷𝑖(𝑡𝑗) = 𝐷𝑖
𝑡(𝑡𝑗) + 𝑏𝑖

𝐷(𝑡𝑗) + 𝑤𝑖
𝐷(𝑡𝑗) 

𝑤𝐴𝑖(𝑡𝑗) = 𝐴𝑖
𝑡(𝑡𝑗) + 𝑏𝑖

𝐴(𝑡𝑗) + 𝑤𝑖
𝐴(𝑡𝑗) 

𝐵𝑖(𝑡𝑗) = 𝐵𝑖
𝑡(𝑡𝑗) + 𝑏𝑖

𝐵(𝑡𝑗) + 𝑤𝑖
𝐵(𝑡𝑗). 

 

(2) 

Let 𝐷𝑖
𝑡(𝑡𝑗), 𝐴𝑖

𝑡(𝑡𝑗) and 𝐵𝑖
𝑡(𝑡𝑗) denote the true distance, azimuth, and elevation angle, respectively. 

𝑏𝑖
𝐷(𝑡𝑗) , 𝑏𝑖

𝐴(𝑡𝑗) , 𝑏𝑖
𝐵(𝑡𝑗)  

𝑤𝑖
𝐷(𝑡𝑗), 𝑤𝑖

𝐴(𝑡𝑗) and 𝑤𝑖
𝐵(𝑡𝑗) 𝜎𝐷

2, 𝜎𝐴
2, 𝜎𝐵

2, which 
are considered mutually independent of each other. Let us denote the vector of systematic errors of 
the i-th sensor at time tj: 

𝛽𝑖(𝑡𝑗) ≜ [

𝑏𝑖
𝐷(𝑡𝑗)

𝑏𝑖
𝐴(𝑡𝑗)

𝑏𝑖
𝐵(𝑡𝑗)

]. (3) 

Then, 

𝒛𝑖
𝑝
(𝑡𝑗) = [

𝐷𝑖
𝑡(𝑡𝑗)

𝐴𝑖
𝑡(𝑡𝑗)

𝐵𝑖
𝑡(𝑡𝑗)

] + 𝛽𝑖(𝑡𝑗) + [

𝑤𝑖
𝐷(𝑡𝑗)

𝑤𝑖
𝐴(𝑡𝑗)

𝑤𝑖
𝐵(𝑡𝑗)

]. (4) 

After recalculating the measurements from a polar coordinate system to a rectangular one, the 
measurement equations of the i-th sensor take the form 

𝒛𝑖(𝑡𝑗) = 𝐻𝑖(𝑡𝑗)𝒙(𝑡𝑗) + 𝐽𝑖(𝑡𝑗)𝛽𝑖(𝑡𝑗) + 𝑤𝑖(𝑡𝑗), (5) 

where 𝒙(𝑡𝑗) ≜ [𝑥(𝑡𝑗)  �̇�(𝑡𝑗)  𝑦(𝑡𝑗)  �̇�(𝑡𝑗)  𝑧(𝑡𝑗)  �̇�(𝑡𝑗)]
′
 − state vector of the observed object; 

𝐻𝑖(𝑡𝑗) − measurement matrix, 
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𝐽𝑖(𝑡𝑗) − is a nonlinear function of conversion from the true distance, azimuth, and elevation 
angle. Using the measured (or estimated) distance �̂�𝑖(𝑡𝑗), azimuth �̂�𝑖(𝑡𝑗), elevation angle �̂�𝑖(𝑡𝑗) 
from the i-th sensor, the matrix 𝐽𝑖(𝑡𝑗) in (5) can be calculated as 

𝐽𝑖(𝑡𝑗) = [

𝑐𝑜𝑠(�̂�) 𝑠𝑖𝑛(�̂�) �̂� 𝑐𝑜𝑠(�̂�) 𝑐𝑜𝑠(�̂�) −�̂� 𝑠𝑖𝑛(�̂�) 𝑠𝑖𝑛(�̂�)

𝑐𝑜𝑠(�̂�) 𝑐𝑜𝑠(�̂�) −�̂� 𝑐𝑜𝑠(�̂�) 𝑠𝑖𝑛(�̂�) −�̂� 𝑐𝑜𝑠(�̂�) 𝑠𝑖𝑛(�̂�)

𝑠𝑖𝑛(�̂�) 0 �̂� 𝑐𝑜𝑠(�̂�)

] (6) 

the time index (tj) at the measurements is omitted for simplification of the expression. 
𝑤𝑖(𝑡𝑗) measurement noise with a covariance matrix in a rectangular coordinate system 

𝑅𝑖(𝑡𝑗) = 𝐽𝑖(𝑡𝑗) ⋅ 𝑑𝑖𝑎𝑔[𝜎𝐷
2, 𝜎𝐴

2, 𝜎𝐵
2] ⋅ (𝐽𝑖(𝑡𝑗))

′
. (7) 

3. Dynamic system model used  

Let's take the following dynamic equation of motion as a model of object movement 

𝒙(𝑘 + 1) = 𝐹(𝑘)𝒙(𝑘) + 𝜐(𝑘), (8) 

where /𝐹(𝑘) − transition matrix of the system 

𝐹(𝑘) =

[
 
 
 
 
 
1 𝛥𝑡 0 0 0 0
0 1 0 0 0 0
0 0 1 𝛥𝑡 0 0
0 0 0 1 0 0
0 0 0 0 1 𝛥𝑡
0 0 0 0 0 1 ]

 
 
 
 
 

 , (9) 

𝜐(𝑘)   −   white noise in a process model with zero mathematical expectation and covariance 
matrix Q(k). 

It is assumed that the velocity in the x, y, z directions does not change over a short period of time, 
.  

Measurement equation of the i-th sensor without taking into account systematic errors 

𝒛𝑖(𝑘) = 𝐻𝑖(𝑘)𝒙(𝑘) + 𝑤𝑖(𝑘) . (10) 

Note the difference in equations (5) and (10). In equation (10), there is no term for systematic 
sensor errors. In order to account for and estimate the systematic errors of the sensors, it is obviously 
necessary to use a sensor measurement model as in equation (5). 

3.1. The vector of pseudo-measurements of systematic errors  

In this section, we will derive expressions for the pseudo-measurements of systematic errors for the 
case of M=2 sensors. It is assumed that systematic errors are unknown constants. According to the 
adopted model of sensor measurements (5) and the model of object movement (8), we write the 
equation of measurements of sensor 1 on k+1 measurements 

𝒛1(𝑘 + 1) = 𝐻1(𝑘 + 1)𝐹(𝑘)𝒙(𝑘) + 𝐻1(𝑘 + 1)𝜐(𝑘) + 𝐽1(𝑘 + 1)𝛽1(𝑘 + 1) + 𝑤1(𝑘 + 1). (11) 

By analogy, the measurement of sensor 2 at the moment of k+1 
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𝒛2(𝑘 + 1) = 𝐻2(𝑘 + 1)𝐹(𝑘)𝒙(𝑘) + 𝐻2(𝑘 + 1)𝜐(𝑘) + 𝐽2(𝑘 + 1)𝛽2(𝑘 + 1) + 𝑤2(𝑘 + 1). (12) 

Note that the true state vector x(k) and the process noise (k) in equations (11) and (12) are the 
same. The measurement matrices H1 and H2 are the same for both sensors. Accordingly, we define 
the vector of pseudo-measurements of systematic errors zb as subtraction z1 z2 

𝒛𝑏(𝑘 + 1) ≜ 𝒛1(𝑘 + 1) − 𝒛2(𝑘 + 1). (13) 

Then 

𝒛𝑏(𝑘 + 1) = 𝐽1(𝑘 + 1)𝛽1(𝑘 + 1) + 𝑤1(𝑘 + 1) − 𝐽2(𝑘 + 1)𝛽2(𝑘 + 1) − 𝑤2(𝑘 + 1). (14) 

Hence, we obtain the equation of the pseudo-measurement vector of systematic sensor errors 

𝒛𝑏(𝑘 + 1) = 𝐻(𝑘 + 1)𝒃(𝑘 + 1) + �̃�(𝑘 + 1), (15) 

where the pseudo-measurement matrix H(k+1), the systematic error vector b(k+1) and the pseudo-
measurement noise �̃�(𝑘 + 1) are defined as 

𝐻(𝑘 + 1) = [𝐽1(𝑘 + 1),   − 𝐽2(𝑘 + 1)]. (16) 

𝒃(𝑘 + 1) ≜ [
𝛽1(𝑘 + 1)

𝛽2(𝑘 + 1)
]. (17) 

�̃�(𝑘 + 1) ≜ 𝑤1(𝑘 + 1) − 𝑤2(𝑘 + 1). (18) 

The noise of pseudo-measurements �̃�  is white with zero mathematical expectation and 
covariance matrix 

𝑅(𝑘 + 1) = 𝑅1(𝑘 + 1) + 𝑅2(𝑘 + 1). (19) 

The white noise property in (18) is the key to an accurate solution to the problem of estimating 
systematic errors - no simplifications (approximations) are required. Note that no approximations 
were made at all in deriving (15)-(19). This means that this method, unlike [8, 9, 10], is accurate. 

3.2. Recursive estimation of systematic errors 

If the parameters of the vector of systematic errors b(k) are modeled (correspond to unknown 
constants), then a recursive least-squares method based on the equation of the vector of pseudo-
measurements of systematic errors (15) can be used to estimate them. The implementation of the 
recursive method for updating the systematics estimate is written as follows, at time k for each 
observed object t = 1,...,N: 

1. Obtain a new pseudo-measurement 𝒛𝑏,𝑡(𝑘) = 𝐻𝑡(𝑘)𝒃(𝑘) + �̃�𝑡(𝑘), the measurement matrix 
𝐻𝑡(𝑘), using expression (16) and the measurement noise covariance matrix 𝑅 𝑡(𝑘), using (19).  

2. Calculate the gain matrix and the residual vector: 

𝐺𝑡(𝑘) = 𝛴𝑡−1(𝑘)𝐻𝑡(𝑘)′[𝐻𝑡(𝑘)𝛴𝑡−1(𝑘)𝐻𝑡(𝑘)′ + 𝑅  𝑡(𝑘)]−1, (20) 

𝑟𝑡(𝑘) = 𝒛𝑏,𝑡(𝑘) − 𝐻𝑡(𝑘)�̂�𝑡−1(𝑘). (21) 

3. Update the estimate of the systematic error vector and its covariance matrix: 

�̂�𝑡(𝑘) = �̂�𝑡−1(𝑘) + 𝐺𝑡(𝑘)𝑟𝑡(𝑘), (22) 
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𝛴𝑡(𝑘) = 𝛴𝑡−1(𝑘) − 𝛴𝑡−1(𝑘)𝐻𝑡(𝑘)′[𝐻𝑡(𝑘)𝛴𝑡−1(𝑘)𝐻𝑡(𝑘)′ + 𝑅  𝑡(𝑘)]−1𝐻𝑡(𝑘)𝛴𝑡−1(𝑘). (23) 

4. When the update with the latest pseudo-measurement is performed, we get the final adjusted 
estimate 

�̂�0(𝑘 + 1) ≜ �̂�𝑁(𝑘), (24) 

𝛴0(𝑘 + 1) ≜ 𝛴𝑁(𝑘). (25) 

4. Results of the modeling 

4.1. Description of scenarios for research 

For the research, a scenario was created where two radars are used as measurement tools, with a 
data update period of 4 seconds. The parameters of the standard deviations of the sensors (RMS): 

Distance error   = 50 m; 
Azimuth error  degrees; 
Elevation angle error  degrees. 
The scenario includes 11 individual objects moving on different courses, at different altitudes and 

speeds: 
 airplane, moving at a speed of 936 km/h; course 281 degrees at an altitude of 11 

km. 
 helicopter, moving at a speed of 150 km/h; course 180 degrees at an altitude of 0.5 

km. 
 helicopter, moving at a speed of 150 km/h; course 258 degrees at an altitude of 1.5 

km. 
 airplane, moving at a speed of 800 km/h; course 176 degrees at an altitude of 11 

km. 
 airplane, moving at a speed of 1000 km/h; course 250 degrees at an altitude of 10 

km. 
 airplane, moving at a speed of 700 km/h; course 60 degrees at an altitude of 3.5 km. 
 airplane, moving at a speed of 1000 km/h; course 300 degrees at an altitude of 10 

km. 
 airplane, moving at a speed of 800 km/h; course 270 degrees at an altitude of 4 km. 
 airplane, moving at a speed of 800 km/h; course 90 degrees at an altitude of 4 km. 
 helicopter, moving at a speed of 50 km/h; course 230 degrees at an altitude of 2.5 

km. 
 airplane, moving at a speed of 900 km/h; course 240 degrees at an altitude of 1 km. 

The overall view of the scenario is presented in fig. 1. 

 
Figure 1: scenario  
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Data on the initial position, characteristics, and motion parameters of objects are presented in fig. 
2. 

 

Figure 2: Table with data on the initial parameters of object movement. 

Research was conducted for identical object behavior, while modeling different systematic errors 
in sensor operations and various radar placements. The Monte Carlo method was used to obtain 
statistically stable results for estimating systematic sensor errors. Simulations were conducted for 
100 repetitions for each of the studied scenarios. 

4.2. The impact of systematic errors in distance, azimuth, and elevation angle, 
each corresponding to a specific standard deviation of a sensor 

The study investigates how systematic errors in distance, azimuth, and elevation angle present in 
the measurements of one of the radars affect the accuracy of the obtained estimation of these 
systematic errors. For this study, in the scenario described in section 4.1, the following systematic 
errors were added  

Systematic distance error = 50 m; 
Systematic azimuth error = -0.30 degrees; 
Systematic elevation angle error = 0.30 degrees. 
The distance between platforms was also varied in the scenario: 1 km, 2 km, 3 km, 5 km, 10 km, 

15 km. Thus, a group of 6 scenarios was considered.  
In one variant, processing was conducted without compensation for systematic errors, and in the 

second variant, processing was conducted with compensation for systematic errors. After simulating 
the processing process for 600 seconds, the following comparative graphs were constructed over 100 
repetitions (fig. 3 - fig. 5). The dashed line on the graphs shows the residual systematic errors for the 
processing variant without compensation for systematic errors at a distance of 15 km between 
platforms. Other distance variants between platforms are not shown as they differ insignificantly. 
The solid line shows the residual systematic errors for the processing variant with compensation for 
systematic errors and at different distances between platforms. 

Fig. 3 shows the graph of the residual systematic azimuth error estimation relative to the input 
standard deviation of the sensors. As seen from the graphs, the accuracy of estimating and 
compensating for the systematic azimuth error in measurements increases with the distance between 
radars. For a baseline distance between radars of more than 3 km, the residual systematic azimuth 
error does not exceed 15% relative to the corresponding root mean square deviation of the azimuth 
measurement. 

Fig. 4 shows the graph of the residual systematic distance error estimation relative to the input 
standard deviation of the sensors. From the graphs, it is seen that for radars located more than 3 km 
apart, the accuracy of systematic distance error estimation converges to 25%-30% relative to its 
standard deviation. 

Fig. 5 shows the graph of the residual systematic elevation angle error estimation relative to the 
input standard deviation of the sensors. Analysis of the graphs showed that the accuracy of 
estimating and compensating for the systematic elevation angle error in measurements also increases 
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with the distance between radars. For a baseline distance between radars of more than 3 km, the 
residual systematic elevation angle error does not exceed 25% relative to its corresponding root mean 
square deviation. 

 

 
Figure 3: Residual systematic azimuth error relative to the input standard deviation of the sensors. 

 

 

Figure 4: Residual systematic distance error relative to the input standard deviation of the sensors. 

 

 

Figure 5: Residual systematic elevation angle error relative to the input standard deviation of the 
sensors. 
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4.3. The impact of systematic azimuth errors corresponding to one nominal 
RMS of the sensor 

In this subsection, research is presented for the case where a systematic error is present only in the 
azimuth measurements of one of the radars. The accuracy of determining this systematic azimuth 
error is assessed, as well as the impact of the systematic error compensation algorithm on the 
accuracy of determining other parameters (distance and elevation angle), in which systematic error 

the scenario described in section 4.1: Systematic azimuth error = -0.30 degrees. The distance between 
platforms was also varied: 1 km, 2 km, 3 km, 5 km, 10 km, 15 km. Thus, a group of 6 scenarios was 
considered. In one variant, processing was performed without systematic error compensation; in the 
second variant, processing was performed with systematic error compensation. After modeling the 
processing for 600 seconds, and with 100 repetitions, the following comparative graphs were 
constructed (fig. 6  fig. 8). The dashed line on the graphs represents the residual systematic errors 
for the processing variant without systematic compensation at a distance of 15 km between 
platforms. The solid line represents the residual systematic errors for the processing variant with 
systematic compensation and at different distances between platforms. Fig. 6 shows the graph of the 
residual azimuth systematic error relative to the input standard deviation of the sensors. 

As seen in the figure, the accuracy of estimating and compensating for systematic error in 
azimuth measurements increases with the distance between radars. For a baseline distance between 
radars greater than 3 km, the residual systematic azimuth error does not exceed 15% relative to its 
root mean square deviation. 

 

 
Figure 6: Residual systematic azimuth error relative to the input RMS of the sensors. 

Fig. 7 shows a graph of the estimation of residual systematic distance error relative to the input 
RMS of sensors. According to the graphs, it is evident that despite the systematic error in distance 
not being modeled (equal to 0 m), the compensation algorithm estimated it at about 20% relative to 
the RMS for radars spaced more than 3 km apart and about 40% for radars spaced 1 and 2 km apart. 
This may lead to corresponding errors in distance measurements. 

In fig. 8, a graph of the estimation of the residual systematic error of the elevation angle relative 
to the input standard deviation of the sensors is shown. The analysis of the figure revealed that in 
this case, a similar situation arose as with the distance. The systematic error in the elevation angle 
was not modeled (equaled 0 degrees). However, when the compensation algorithm was applied, it 
was estimated at about 25% relative to the RMS for radars spaced more than 3 km apart. For a distance 
between radars of 2 km, the systematic estimation of the elevation angle was calculated at about 40%. 
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Figure 7: Residual systematic distance error relative to the input RMS of sensors. 

 

 
Figure 8: Residual systematic error of the angle of elevation relative to the input RMS of the sensors. 

Conclusions: 

1. The main features and advantages of this approach: 
• obtained solution is accurate, requiring no approximations or simplifications, except for the 

linearization of nonlinear measurements; 
• algorithm is implemented recursively, making it computationally efficient and applicable for 

real-time systematic error estimation; 
• statistical modeling results confirm that the developed algorithm is statistically efficient; 
• with a baseline distance between radars of at least 5 km, the accuracy of systematic error 

estimates in angular parameters of azimuth and elevation is no less than 15% of the RMS 
errors of the sensors, and for distance, no worse than 30% of the RMS error in distance 
determination. 

2. The main factors affecting the accuracy of the algorithm: 
• ratio of systematic error magnitudes to the nominal RMS of the sensors; 
• number of observed objects used for systematic estimation; 
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• geometric factor of object placement - whether objects are distributed or concentrated in a 
single group (cluster); 

• distance from the radar to the observed objects. 

3. The minimum number of objects required for systematic estimation should be no less than 
two objects. As the number of objects increases, the accuracy of the algorithm improves. 

4. A situation where the objects used for systematic error estimation are located far from each 
other is more favorable than when objects are located in a single cluster. 

5. When the algorithm estimates systematic errors in cases where some radar measurements 
lack systematic error, the algorithm may erroneously identify its presence. This can lead to 
the introduction of additional errors to these measurements when compensating for 
systematic measurement errors. However, as statistical studies have shown, for a baseline 
distance between radars greater than 3 km, the error that may be added does not exceed 20% 
of the RMS of the sensors. At the same time, the existing systematic error is compensated at 
a level of 80%. In our opinion, this is an acceptable result. 

Declaration on Generative AI 

The authors have not employed any Generative AI tools. 
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