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Abstract

This paper presents a One-Shot Learning framework able to process a RGB-D video of a human task demonstration
and to perform it on a robot manipulator. Learning from a single human demonstration is one of the most
interesting challenges in robotics. The aim is to allow a robot to reproduce operator’s activities after observing
how they are performed just once. Although the work presented in this paper focuses on specific manipulation
tasks, the proposed method can be extended to multi-stage operations carried out in different fields, both domestic
and industrial. In the proposed approach, the demonstration is first segmented into primitives, which are then
mapped into robot actions to be executed by a manipulator. This work also aims to ensure that the learning
process is carried out rapidly. The paper provides an overview of the overall framework and illustrates the system
at work in a use case.
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1. Introduction

This paper introduces a one-shot learning framework capable of processing RGB-D video of a human
task demonstration involving known objects and replicating the task using a robotic manipulator.
One-shot learning allows a robot to imitate tasks or activities after only a single observation. This
problem is both relevant and challenging, as it offers the advantage of quickly acquiring new skills,
while requiring effective use of prior knowledge to generalize from just one example. In robotics,
one-shot learning represents a significant leap forward, in that it allows robots to quickly and efficiently
learn tasks that would otherwise require extensive training, mirroring the adaptive learning process of
humans.

In this work, we propose a novel framework that exploits real-time object detection and assumptions
about manipulation actions to both segments human demonstrations and flexibly reproduce observed
tasks. Specifically, in the proposed approach, a RGB-D recorded human demonstration is firstly seg-
mented and then associated to action primitives, which are composed and adapted to be reproduced
by a robotic manipulator acting on the same target. The framework employs Yolo-based 3D object
segmentation, alongside human feature tracking (including key hand trajectories and gaze detection),
to monitor human-object interactions, enabling the isolation, interpretation, and replication of action
primitives. While our current proposal focuses on basic manipulation capabilities (e.g., grasp, drop,
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carry, etc.), the framework is intended to incrementally observe and reproduce multi-step operations
across various domains, both domestic and industrial.

2. Overview of related work

In the field of collaborative robotics, significant research efforts aim to enhance our understanding
of environmental interactions and object manipulation, aspiring to replicate human dexterity. Many
studies highlight the integration of advanced perception tools, such as computer vision, which em-
power robots to interpret their surroundings with precision [1]. Additionally, there is an increasing
focus on developing algorithms that mimic human proficiency in grasping and manipulating various
objects, addressing challenges like handling diverse shapes [2, 3]. Techniques such as learning from
demonstrations [4, 5], and reinforcement learning [6, 7] are also employed to promote more natural
human-robot interactions during task learning. Collectively [8], these advancements enable robots to
better understand their environment and skillfully manage objects, approaching human-like abilities.

One prominent robotic technique is reinforcement learning (RL), where robots autonomously develop
control strategies through iterative experimentation. Lobbezoo et al. [9] combine traditional control
methods with RL in both virtual and physical environments, advocating for RL in conventional industrial
tasks such as reaching, grasping, and placing. In contrast to typical methods where robots identify
and perform grasps, Kalashnikov et al. [10] propose a vision-based, closed-loop control system. In this
approach, the robot continuously refines its grasp strategy based on new sensory data, optimising its
success rates. To tackle the challenge of identifying optimal grasp locations, Mahler et al. [11] utilised
a synthetic dataset containing a wide range of point clouds, grasps, and analytical metrics to train a
predictive model for grasp success. Similarly, Guo et al. [12] developed a dataset featuring real-world
manipulable objects, providing detailed pose information and affordance predictions. Another notable
approach utilises a multi-stage grasp detection algorithm for Kinova robots in cluttered environments
[13].

In the area of robot learning from demonstrations, some studies focus on gesture recognition through
human skeletal data, leveraging neural networks and Markov models [14]. Others examine human
demonstrations across various contexts [15], promoting imitation learning frameworks [16] or kines-
thetic teaching of structured tasks [17]. A specialised approach explores robot eye-hand coordination
[18], where robots extract task-relevant information from human videos to guide real-time actions.
By integrating human demonstration data with RL, San et al. [19] advocate for continuous robot-
environment interaction to enhance skill acquisition. Similarly, Kamali et al. [20] utilise virtual reality to
guide robotic actions through hand gestures. Cabi et al. [21] develop policies for diverse manipulation
tasks using a variety of techniques, incorporating human preferences to refine task rewards.

Differently from these methods, in this paper, we address the challenge of rapid one-shot learning [22,
23, 24]. In particular, we are interested in learning structured robotic manipulation tasks, demonstrated
through a single human demonstration captured by an RGB-D camera. In this respect, similarly to [22],
the proposed approach focuses on quickly adapting the human demonstration to enable direct task
replication, without the need for detailed or complex object models. This ensures broad adaptability
while avoiding the extensive training typically required by reinforcement learning (RL) methods [25] or
behavior cloning methods on a data-set of tasks [24, 26]. However, in contrast with [22], our approach
introduces a novel method that leverages object and action segmentation from RGB-D video, allowing
us to isolate and replicate manipulation primitives inferred from the demonstration.

3. Methodology

The proposed system is based on two main stages: activity recording and processing, task reproduction.
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Figure 1: Scheme of the proposed system.

3.1. Activity recording and processing

In the first stage of the proposed pipeline we collect and process a RGB-D video capturing a human
activity demonstration. The video is segmented to isolate primitive actions using several features, such
as the proximity of the user’s hands to relevant objects, the speed of hand movements, and the direction
of the user’s gaze. The segmentation process is outlined in Figure 1. Initially, RGB frames are analyzed
to perform object segmentation and extract key points from the user’s hands and face. Depth maps,
combined with filters, are then used to derive 3D trajectories of the hand and face points, as well as
the 3D centroids of detected objects. The orientation of the user’s gaze is subsequently evaluated to
identify potential target objects, which are then exploited to segment the human demonstration and
isolate candidate primitive actions as interpretation of those segments. The primitive actions are finally
classified based on the motion of the associated objects.

The action segmentation process introduced above relies on the proximity and velocity of the
operator’s hand relative to the detected objects in the scene, with additional reinforcement from the
operator’s gaze direction. More specifically, segmentation is based on three thresholds u1, ug, and us.
These thresholds are used to determine the operator’s intention to interact with objects in the 3D space
through specific primitive manipulation actions. The first threshold, w1, defines the maximum distance
between the operator’s hand and the centroid of a detected object for an interaction to be considered. If
multiple objects fall within this distance, potential interactions are prioritized by proximity. The second
threshold, us9, specifies the maximum hand speed allowed for an interaction to be considered with a
nearby object. The third threshold, us, sets the maximum allowable angle between the operator’s gaze
direction and a proximal object to consider a plausible intention to interact. The underlying assumption
is that the user gaze should be directed towards the target of a manipulation action. For each primitive



action extracted by the segmentation process, the system tracks and records key positions of the hand
trajectory with respect to the centroid of the objects participating in the action.

The overall pipeline described above is built on object segmentation, hand detection/tracking, and
gaze direction monitoring. Additional details about these modules are provided below.

Object segmentation is performed using YOLOv8 [27] that exploits a deep convolutional neural
network architecture to process images similar to the one of YOLO [28], enhanced with additional layers
and a special branch to predict segmentation masks. The output of this module includes bounding
boxes, object classes, class probabilities, and segmentation masks.

Hand points detection and tracking are based on the MediaPipe Hand Landmarker [29], which operates
in real-time by first using a palm detection model to locate the hand and then predicting 21 key landmarks
on the hand, including finger joints, tips, and the wrist. While this method efficiently tracks multiple
hands and is optimized for gesture recognition, augmented reality (AR), and interactive applications,
we found that the 3D coordinates returned by this model did not yield satisfactory results within our
framework. Therefore, as we use a depth camera, we found it more reliable to directly leverage the
depth information provided by the RGB-D camera.

Gaze orientation estimation is achieved using MediaPipe’s FaceMesh [30], a real-time facial landmark
tracking technology that detects 468 key points on the face using a standard camera. FaceMesh detects
the face, maps 2D landmarks, and estimates 3D coordinates for each point. Though it provides high
efficiency for facial feature tracking, FaceMesh does not directly return the center of the eyes. Thus,
interpolation is used to calculate this point. To determine the direction of the gaze, a vector is computed
between the center of the forehead and the eyes, giving a normal vector for the gaze direction. The
distance from the RGB-D camera to each facial point is used to construct the 3D model of the face.

The basic primitives are fixed: grasping (TAKE), moving (MOVE OVER), waiting (WAIT) and releasing
(RELEASE). The activities are decomposed into several primitives. Users can record the activities at
different speeds, although there are thresholds for correct detection.

3.2. Task reproduction

Once the human demonstration has been segmented and processed, the interpreted manipulation task
is to be reproduced by a robot manipulator operating in the same workspace. The robotic platform is
assumed to be a manipulator equipped with a gripper.

For ease of demonstration, it is assumed that the robot and the human are positioned opposite each
other in the workspace. Consequently, the trajectories and points collected during task segmentation
must first be mirrored and then adapted for the robot’s execution. Mirroring is achieved by applying a
180-degree transformation to the objects’ axes and the hand interaction points relative to the camera
and base marker, both of which are in the same plane as the table where the actions occur.

To enable rapid task reproduction, the robotic system executes the sequence of detected manipulation
actions step-by-step, operating on the target objects as demonstrated by the human. The robot first
segments the scene using YOLOvVS8 to detect and locate task-relevant objects before deploying the
demonstrated actions. Given the 3D locations of the objects, key points from the human hand trajectory
- such as the wrist, index finger, and thumb - are mapped to reproduce the trajectory of the robot’s
end-effector and gripper movements relative to the target object. For instance, to replicate object
grasping, the robot’s end-effector follows the trajectory of the human hand to reach the pose necessary
for approaching the object, followed by a grasp movement, where the gripper motion is adapted from
the recorded motion of the human’s index finger and thumb. If the task involves multiple steps or
objects, the system continuously monitors the execution of each manipulation action and the status of
the target object until the task is completed.

4. Experimentation

Experiments were conducted using a Kuka IIWA 7 robot, a Real Sense D415 camera, an i7 server with
an RTX 3060 GPU and ROS 2 software. Human demonstrations were recorded and processed offline,



with a processing time of approximately 1 minute for a 15-second video. During the execution phase,
the system receives the task to be performed and begins by segmenting the objects using YOLOvVS.
Once segmentation is completed, the system retreives each detected primitive action of the task and
executes them by leveraging the key points and trajectories associated with the segmented actions.

Figure 2 illustrate the overall system in action, where a person demonstrates picking up a bottle
of water and placing it on top of a small bowl. During this one-shot task demonstration, the system
identifies two action primitives (Figure 2, second column) involving two target objects (the bottle and
the bowl). The robot is then able to rapidly and flexibly reproduce the demonstrated task (Figure 2,
second column), regardless of the objects’ positions in the workspace, as it learns the relationships
between the hand and the objects for each action segment. In this scenario, we observed reliable and
precise task reproduction, with an error margin of = 1cm during execution. Additional tasks such
as grasping, carrying, placing, and pouring were also tested, yielding satisfactory results. However,
challenges remain during task demonstration, particularly with depth camera precision and estimation
errors when fingers are occluded, which need to be addressed to ensure more robust task detection. As
for task replication, we currently assume a clear workspace where obstacles and potential collisions are
neglected for simplicity. Future work will focus on developing methods that can handle more complex
tasks and environments with obstacles in flexible and reliable manner.
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Figure 2: Action demonstration and task reproduction: The operator picks up a bottle and places it
over a bowl. During the demonstration, primitive actions are segmented and categorized (left and
center). During execution, the manipulator leverages the hand-object relationships captured during the
demonstration to flexibly reproduce the sequence of actions (right).

In our experiments we have used a robot controller implementing obstacle-free movement of the
end-effector toward the desired pose in the robot’s operational space. The processing of the vision is the
most computationally expensive part, both for the segmentation and for the execution itself. However,
the processing of a new activity is carried out in a few minutes and its execution in the robot is carried
out in a few seconds since only the processing of the first frame is required.



5. Conclusions

This work presents a system capable of learning multi-step tasks from human demonstrations and
reproducing them on a robot manipulator. Operating under a one-shot learning paradigm, the system
aims to enable rapid, flexible, and reliable reproduction of typical manipulation tasks across a dataset
of known objects. Currently, the system is being tested on tasks such as picking, carrying, placing,
and pouring, performed by a robot manipulator equipped with a gripper. Initial results are promising;
however, several challenges remain, particularly in scaling and generalizing task interpretation and
reproduction for more complex manipulation scenarios.
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