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Abstract
Communication in Multi-Agent Reinforcement Learning (MARL) has the potential to improve the
performance of cooperating agents, especially in complex robotic domains under partial observability.
However, a transparent interpretation of the learned communication policy is crucial for trustability
and safety. In this paper, we use tools from explainable artificial intelligence to investigate the impact of
communication in a benchmark MARL setting, involving collision avoidance among multiple agents.
Our preliminary tests show that the role of communication cannot be evidenced solely by looking at the
state-action policy map; instead, causal discovery on the state and communication spaces highlights the
latent behavioural impact of messages passed among agents, indirectly affecting the actual actions for
more efficient collision avoidance.

Keywords
Multi-Agent Reinforcement Learning, Communication in MARL, Explainable AI, Causal Discovery

1. Introduction

Reinforcement Learning (RL) is an established methodology to achieve agent autonomy in
complex scenarios, including robotics [1]. Indeed, given the model of interaction with the
environment (the transition map) and the reward attained in consequence of executing specific
actions in particular conditions (states), a RL algorithm automatically learns the best policy, i.e.,
state-action map, to fulfill the task at the highest cumulative reward (return). The advent of Deep
Neural Networks (DNNs) has enhanced the learning of complex policies for the most challenging
tasks, shifting towards Deep RL (DRL). This has also paved the way towards DRL applied in
multi-agent settings (Multi-Agent RL, MARL) [2, 3], where the best task strategy does not solely
depend on the individual policies, but rather on the inter-agent coordination. Inspired from
biology and human behaviour, an emerging problem in MARL is the inter-agent communication
[4, 5], i.e., learning and deploying an efficient mechanism for information sharing among agents,
with the goal to enhance coordination and improve the individual and global task performance.
While several approaches have been studied and compared, one fundamental question rises
when deploying communicating MARL agents in the real world, e.g., on real robots interacting
with humans: what is the meaning of the learned communication policy? Answering this question
is fundamental for the transparency and interpretability of the MARL application, which in
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Figure 1: a) The simple spread domain, with agents 0, 1 and 2 moving towards black dot targets; b) the
RIAL architecture for communication in MARL (in [4], 𝑢 and 𝑜 are actions and state, resp.).

turn are essential for trustability and social acceptance, as well for proper monitoring of the
autonomous systems [6].
In this paper, we address the problem of explaining MARL communication. We consider a

benchmark domain for MARL, simple spread1, where 3 robotic agents must coordinate to reach
3 separate targets (Figure 1a). We design different communication protocols, both hardcoded
and learned in the MARL pipeline. We then investigate the impact of different communication
strategies on MARL performance, both from a quantitative perspective (i.e., evaluating the
achieved return) and exploiting eXplainable Artificial Intelligence (XAI) techniques, including
relevant feature analysis via Integrated Gradients (IG) and causal discovery, already employed
for complex system explanation and monitoring [7, 8]. In this way, we want to analyze the
meaning of messages passed among agents, and how specific parts of information affect the
overall performance observed by standard RL metrics, as the return.

2. Background

We now provide the relevant background about MARL and related communication strategies,
and XAI methods adopted in this paper, i.e., IG and causal discovery.

2.1. Multi-Agent Reinforcement Learning

We frame the problem of single-agent RL as a Markov Decision Process (MDP) ⟨𝑆, 𝐴, 𝑇 , 𝑅, 𝛾⟩,
where 𝑆 is the state space; 𝐴 is the action space; 𝑇 ∶ 𝑆 ×𝐴 → 𝑆 is the transition function mapping
state 𝑠𝑡 and action 𝑎𝑡 at time 𝑡 to the state at 𝑡+1 (assuming a discretization of the time dimension);
𝛾 ∈ R is the discount factor; 𝑅 ∶ 𝑆 × 𝐴 × 𝑆 → R is the reward map, assigning a real number to
incentivize / penalize the agent for executing 𝑎𝑡 at 𝑠𝑡, with a corresponding next state determined
from 𝑇. The goal of RL is to compute a policy map 𝜋 ∶ 𝑆 → 𝐴, prescribing the best 𝑎𝑡 to be
performed at 𝑠𝑡, in order to maximize the expected value of the return ∑∞

𝑡=1 𝛾 𝑡−1𝑅(𝑠𝑡, 𝑎𝑡, 𝑠′𝑡 ).
In the MARL setting with 𝑁 agents, we assume that each agent 𝑖 has access to a state

space 𝑆 𝑖 such that ⟨𝑆1, … , 𝑆𝑁⟩ = 𝐴; similarly, each agent can pick an action from 𝐴𝑖 such that

1https://pettingzoo.farama.org/environments/mpe/simple_spread/
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⟨𝐴1, … , 𝐴𝑁⟩ = 𝐴; 𝑅, 𝛾 , 𝑇 remain unchanged. In this way, each agent has partial observabiliy of
the environment, but still all agents should coordinate to compute the best global policy towards
the maximization of the cumulative shared reward. It is then fundamental for the agents to
communicate; however, it is highly domain-dependent, and in general far from trivial, to design
themessages and methodologies for effective communication [4]. An interesting approach is then
to learn the best communication policy 𝜋𝑚 ∶ 𝑆 → 𝑀, 𝑀 being the set of available communication
actions 𝑚𝑡 at time 𝑡.

2.2. Explainable AI

XAI aims at providing explanations about AI algorithms to a targeted audience, according to
their needs and knowledge in relation to a specific domain of application [9]. In this paper,
we focus on two main XAI methodologies: causal discovery from time series and Integrated
Gradients (IG) to explain the input / output relations in DNNs.

2.2.1. Causal discovery

Consider a multi-variate time series 𝑋 = {𝑋 𝑗}𝑗=1,…𝑁 composed of 𝑁 time series, and denote as

𝑋 𝑗
= {𝑥 𝑗1, … 𝑥 𝑗𝑇} the sequence of observations of variable 𝑋 𝑗 for 𝑇 time steps. The goal of causal

discovery is to identify directed causal links between variables in 𝑋. More specifically, causal
links are determined according to the measure of Conditional Mutual Information (CMI), which
is defined for random variables 𝑋, 𝑌 , 𝑍 as:

𝐼(𝑋; 𝑌∣𝑍) = ∭𝑝(𝑥, 𝑦 , 𝑧) log 𝑝(𝑥, 𝑦∣𝑧)
𝑝(𝑥∣𝑧)𝑝(𝑦∣𝑧)𝑑𝑥𝑑𝑦𝑑𝑧

where 𝑝(⋅∣⋅) and 𝑝(⋅, ⋅) denote the conditional and joint probability distributions, respectively.
From the above definiton, it can be easily shown that variables 𝑋 and 𝑌 are conditionally
independent under 𝑍, denoted as 𝑋 ⫫ 𝑌∣𝑍, iff 𝐼(𝑋; 𝑌∣𝑍) = 0. In other words, 𝑋 and 𝑌 have no
mutual causal influence, assuming that 𝑍 holds. On the other hand, 𝑋 and 𝑌 may conditionally
depend on 𝑍.

2.2.2. Integrated Gradients (IG)

Consider a DNN 𝑓𝜃 ∶ R𝑛 → [0, 1]𝑚, 𝜃 being the set of parameters, 𝑛, 𝑚 the input and output
dimensions, respectively. Let 𝑥 ∈ R𝑛 be a generic input to 𝑓𝜃, and 𝑥′ ∈ R𝑛 be a baseline input, s.t.
𝑓𝜃(𝑥′) = 1

𝑚 ⋅ 1𝑚 (i.e., a neutral input for the DNN).
IG [10] is defined as:

𝐼𝐺(𝑥) = (𝑥 − 𝑥
′) ⋅

𝑞
∑
𝑘=1

𝜕𝑓𝜃 (𝑥′ + 𝑘
𝑞 ⋅ (𝑥 − 𝑥′))
𝜕𝑥

⋅ 1
𝑞

which is the path integral2 of the gradients of 𝑓𝜃 along the straight line (in R𝑛) from 𝑥 to 𝑥′.
For each input dimension 𝑖 < 𝑛, IG measures its attribution to 𝑓𝜃(𝑥), i.e., the contribution 𝑥𝑖 in
determining 𝑓𝜃(𝑥).
2Approximated via 𝑞 discretization steps.
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Figure 2: a) The return under different communication protocols; b) IG results with Learnable protocol
for actions left, right, down, up.

3. Methodology

We consider a MARL setting based on deep deterministic policy gradient [11]. The simple
spread domain (Figure 1a) is described as a MDP, where each agent observes the following
continuous state-variables: i) 𝑥 − 𝑦 velocities 𝑃𝑣 = ⟨𝑃𝑣𝑥, 𝑃𝑣𝑦⟩; ii) coordinates 𝑃 = ⟨𝑃𝑥, 𝑃𝑦⟩; iii)
landmark (target) coordinates 𝐿 = ⟨𝑙𝑥, 𝑙𝑦⟩; iv) coordinates of other agents 𝐴 = ⟨𝑎𝑥, 𝑎𝑦⟩. The
continuous action space, for each agent, consists of 4 directional forces in [0, 1], resulting in up
/ left / down / right motions.

We assume the Reinforced Inter-Agent Learning (RIAL) [4] communication protocol is em-
ployed (Figure 1b). In RIAL, the communication action 𝑚𝑖

𝑡 from agent 𝑖 at time 𝑡 is passed to
all other agents as an additional observation (state) input. Hence, we can define the MDP
⟨ ̄𝑆, �̄�, 𝑇 , 𝑅, 𝛾⟩, where ̄𝑆 = 𝑆 ⋃𝑀 and �̄� = 𝐴⋃𝑀.

Our goal is to investigate the meaning of the communication policy 𝜋𝑚, i.e., the impact of the
communication actions on MARL performance. To this aim, we first apply IG to the trained
policy network 𝜋, in order to identify the impact of 𝑚𝑖

𝑡 on 𝑎𝑗𝑡 , 𝑗 ≠ 𝑖. This quantifies the direct
impact of the communication strategy on MARL.

Then, we discover causal relations between time series from ̄𝑆, generated applying the trained
policy 𝜋 in inference. This study evidences the latent impact of the communication strategy, i.e.,
how 𝜋𝑚 influences the general behaviour of the agent (e.g., its intentions), rather than merely its
actions. We adopt state-of-the-art PCMCI+ algorithm [12] for causal discovery, which is sound
and complete under the assumptions of causal Markovianity and sufficiency, and faithfulness.

4. Experiments

We consider 3 different communication policies: i) Closest Target (CT), where 𝑚𝑖
𝑡 is the closest

landmark to 𝑖-th agent; ii) Intent, where 𝑚𝑖
𝑡 is the action selected by agent 𝑖; iii) Learnable, where

𝜋𝑚 is trained together with 𝜋, resulting in 𝑚𝑖
𝑡 ∈ R𝑁−1 (in our case R𝑁−1

= R2).



Figure 3: Causal graph for the Learnable communication protocol (only links involving 𝑚𝑡 are reported
for simplicity).

We first report the training performance (over 5 random seeds) with the different communi-
cation strategies in Figure 2a, where Base denotes no communication, i.e., 𝜋𝑚 ≡ 0. We notice
that all MARL policies have large negative drops after the stabilization of the training process.
This derives from the non-stationarity of MARL, under the assumption of partial observability
from each agent. However, the Learnable protocol results in the smallest negative peak in the
return trend. This suggests that each agent can learn to communicate useful messages to the
others, resulting in more robust performance of MARL.

We first try to understand the role of communication in the Learnable protocol via IG analysis.
Figure 2b shows the attributions of state features for all actions (see the legend in the caption;
we only report one agent for compactness). It is evident that the communication actions (𝐶1,…3)
do not have significant attribution on the actions chosen by the agent, which in turn depend
mostly on its velocity 𝑉𝑥,𝑦 and the position of target 𝐿0.
We then employ causal discovery with the Learnable protocol to show latent connections

between variables in ̄𝑆. Figure 3 shows the causal graph derived from PCMCI+3, where nodes are
variables, edges denote their causal relations, and the color map represents the corresponding
CMI value. We observe that a causal link is identified among communication variables of
different agents, denoting the tight interaction strategy between agents. Interestingly, the
communications between agents 0 and 1 affect each other’s position and velocity, as it is visible
in Figure 1a, which shows that the two agents decide to reach two targets close to each other,
hence they learn to communicate to safely avoid collisions.

3We employ the implementation from https://github.com/jakobrunge/tigramite
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5. Conclusion

In this paper, we exploited different XAI strategies, particularly integrated gradients and causal
discovery, to explain the role of communication in MARL with DNNs. We studied a benchmark
multi-robot navigation problem, the simple-spread domain. Among different communication
protocols, including pre-defined messages based on prior task knowledge, the agents achieve
the best performance when they can learn the communication protocol, reducing the negative
impact of non-stationarity in MARL. Under the Learnable communication protocol, IG detects
state-action relations in the policy network, but does not highlight an impact of communication
messages. On the contrary, causal discovery evidences the role of communication among close
agents in the map, in order to exchange mutual position and velocity information and avoid
collisions. In the future, we will extend our study to more complex and real-world robotic
MARL domains.
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