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Abstract
In this work, we investigate the interaction between text, visual, and task attention models during the learning
and execution of structured tasks expressed in natural language. In this direction, we propose an architecture that
leverages and combines different attention models at multiple levels. Firstly, a multi-modal attention mechanism
is introduced, enabling the agent to map objects in the environment to the words in the given mission, expressed
in natural language, to effectively perform the required task. Secondly, an additional attention mechanism is
introduced to direct the agent’s textual attention to the parts of the sentence relevant to the subtasks yet to be
completed. The agent is trained in MiniGrid environments using the Proximal Policy Optimization algorithm,
and its performance is evaluated by comparing the proposed architecture with a baseline that excludes attention
mechanisms. In addition, an ablation study is conducted on the attention module for task attention.
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1. Introduction

This work introduces a novel approach to improving robot task learning and execution by integrating
text-visual and task-attention models. Attention mechanisms, extensively studied in cognitive neuro-
science and widely adopted in artificial intelligence, have proven effective in improving performance
and training efficiency, particularly in machine learning. For example, transformers in natural language
processing (NLP) have revolutionized the field by enabling models to contextually weigh word relevance,
capturing long-range dependencies in text. In this paper, we explore the interaction between text-visual
and task attention models within a reinforcement learning framework, where robots are tasked with
completing missions specified by natural language instructions. We focus on a language-conditioned
reinforcement learning setting, where joint observation and textual representations are used to enhance
policy generalization and transferability to novel environments. Here, mission goals are defined textu-
ally, and the robotic agent is trained first to develop an attention model that maps task-related words to
the corresponding visual features, and second, in the case of composite tasks, to mask those same words
when the task they describe is completed, focusing attention on the ones that are still relevant. This
model supports the agent’s ability to focus on objects relevant to the mission, improving task learning
and execution.

Over the years, various attention models, inspired by neuroscience, have been proposed in machine
learning, with applications in image and video classification [1, 2], translation [3, 4], and question
answering [5, 6]. In reinforcement learning, the use of attention mechanisms to highlight visual
features relevant to the task is proposed in works such as [7], which introduces the Deep Attention
Recurrent Q-Network (DARQN), or [8], where a soft-attention mechanism is used in combination with
a Deep Q-Network [9]. In other works, different attention mechanisms, such as multi-attention in
[10] or self-attention in [11, 12], are used to improve navigation or to learn relationships between
entities in a reinforcement learning context. Some studies have explored attention mechanisms that
combine different input sources, as seen in [13], where query vectors are generated from the output
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of an LSTM layer, while key and value vectors are derived from the encoding of visual observations.
In language-conditioned reinforcement learning, several works have investigated the use of natural
language to define goals, such as in [14, 15, 16], also using gated attention mechanisms, such as in [17],
and combining images and text in attention calculations [18]. Our approach aligns with multi-modal
attention as in [18], but with a different aim: we focus on mapping task-related words to observed
environmental features, creating attention maps that enhance both performance and interpretability,
and, at a higher level, considering only the relevant words based on the tasks completed. The framework
introduced here extends that of [19], where text and visual attention models are combined. In this
work, we further develop the approach to show how task attention and structured tasks can also be
incorporated using a similar method.
Our proposed framework, which integrates combined attention mechanisms, is trained using the

Proximal Policy Optimization (PPO) [20] algorithm in BabyAI [21] environments, a platform based on
MiniGrid [22] that enables the creation of grid-based environments with objects, obstacles, and rooms,
where tasks can be defined in natural language using a synthetic language called Baby language. We
detail the architecture and learning process, highlighting the interaction between textual and visual
attention models, as well as the process of suppressing words related to completed tasks. The approach
is evaluated against a baseline lacking attention mechanisms. Experimental results confirm the efficacy
of our approach, demonstrating its advantages in both performance and behavior transparency.

2. Multi-modal Attention and Language Grounding

We address a robot task learning problem where goals are given in natural language. Our approach
uses multi-modal attention mechanisms to align observed features with the words describing the task.
This method has two objectives: to improve both task learning and execution while grounding each
word to relevant visual features (such as object properties like color) through per-word attention maps.
Additionally, it enhances transparency by aligning the attention on text and features with the task at
hand. The architecture is end-to-end, with both task execution and attention map learning driven solely
by environmental rewards. The environments are based on MiniGrid and are goal-augmented Partially
Observable Markov Decision Processes (POMDPs).

2.1. System Architecture

Our proposed system takes the agent’s observed features 𝑂 and the natural language mission 𝑔, as
input, and generates the corresponding policy by utilizing task-relevant attention maps. We define
�̃� = 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔(𝑂) as the encoding of the observation, and �̃� = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑔) as the embedding of the
task tokens. Building on the scaled dot-product attention mechanism with query, key, and value from
[4], we compute the attention matrix as:

𝐴 = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) (1)

where 𝑄 and 𝐾 are, respectively, the projection of the task embedding and the observation encoding
onto a space of dimension 𝑑𝑘. Each row of the matrix 𝐴 highlights the cells related to the corresponding
word in the portion of the grid observed by the agent (see Figure 1). To adjust the signal in relevant
positions of the observed feature map based on mission words, we propose an alternative to directly
multiplying 𝐴 by a value matrix (as in [4]). Our goal is to derive attention weights for individual words
based on the agent’s observations, identifying which words are most salient for the grid portion being
observed. To achieve this, we compute the Shannon entropy, 𝐻, on the rows of matrix 𝐴 and, to obtain
the attention weights for individual words, we apply the softmax to the negated entropy vector:

𝑤 = softmax([
−𝐻(𝐴1)

⋮
−𝐻(𝐴𝑚)

]) (2)



Finally, the attention map 𝑀 is obtained by calculating the weighted sum of the 𝑚 rows of matrix 𝐴
using the weights 𝑤. This map is then applied to each feature map of �̃� to produce 𝐹, highlighting only
the cells corresponding to elements mentioned in the mission text. The filtered feature maps are then
passed through an LSTM layer, allowing the agent to function in a partially observable environment,
and the output is concatenated with the output of a GRU recurrent layer that processes the mission text.
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Figure 1: Snapshot of the grid scenario (left) with the associated per-word attention maps (Top right) and the
word weights 𝑤 (Bottom right). The per-word maps are agent-centric with the agent positioned in the middle of
the right side, facing left, with the positions of objects relative to the agent mirrored along the vertical axis. In
this case, the agent must complete the task described by the phrase ”go to the grey ball”.
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Figure 2: System architecture. The Text-Visual Module is first trained with simple tasks to ground words in
visual features. Then, the Task Attention Module is trained to manage attention shifts during the execution of
structured tasks. In the single-task case, where the Task Attention Module is not used, we assume the word
mask 𝛼 to be a vector of all ones.

2.2. Training

Agents were trained in a customized 8×8 room environment without internal walls, containing four
randomly selected and colored objects. For each task, the goal was to reach or pick up one object, with



the other three serving as distractors. Observations were encoded as a 7×7 grid with three channels,
representing the agent’s field of view, where each grid cell was a tuple (object id, object color, object state).
The reward is set to the default for MiniGrid environments: it’s a value between 0 and 1 based on the
number of steps taken to complete the task, and it’s given at the end of the episode. The ”done” action
was used to signal task completion, such as reaching or picking up the target object. We compare the
effectiveness of the multi-modal attention system against a baseline that lacks attention mechanisms.
In the baseline, the attention map generation is removed, and the convolutional network encoding is
directly passed to the LSTM network, with its output concatenated with the text encoding from the
GRU network (see Figure 2). In the experiments conducted, the model without attention mechanisms
converges to a lower reward value and shows significant instability compared to the attention-based
model.

2.3. Evaluation

The proposed framework is compared to a no-attention setup across environments of varying sizes and
object counts to test robustness in more challenging settings. These larger environments, with additional
distractors and a limited field of view, pose greater challenges. The experimental results highlight the
robustness of the multi-modal attention agent, which experiences a much smaller performance drop as
distractors increase. During testing, the models are evaluated with a number of objects ranging from
4 to 12 and in rooms with dimensions of 8×8, 10×10, and 12×12. As the number of objects increases
and across rooms of different sizes, the model with the proposed attentional mechanisms consistently
maintains an average reward between 0.8 and 0.9 and a success rate between 90% and 100%. In contrast,
the baseline model without attentional mechanisms experiences a drastic performance drop: while
it achieves an average reward between 0.8 and 0.85 and a success rate between 90% and 96% with 4
objects across different room sizes, its performance significantly degrades as the number of distractors
increases, reaching an average reward between 0.5 and 0.6 and a success rate between 55% and 70%
with 12 objects.

3. Structured Tasks and Task Attention

To extend the agent’s ability to learn and execute structured tasks expressed in more elaborate mission
sentences (e.g., ”A and B”, ”C before D”, and ”E after F”). Preliminary experiments were conducted on a
potential extension of the proposed single-task architecture to achieve a higher-level form of attention,
this time focused on task execution monitoring. This additional component of the architecture, which
extends the framework introduced in [19], is highlighted in the dotted purple box in Figure 2. To train
the agent on multiple sub-tasks, we begin with weights from single-task training and use a reduced
learning rate. In addition, we introduce a Task Attention Module. This module masks sub-sentences
corresponding to sub-tasks already accomplished (e.g., in ”before and after” tasks). At time 𝑡, it generates
a mask to apply to the word weight vector 𝑤, directing the agent’s focus to the tasks relevant at that
step. During training, we employ two learning rates: a lower rate for the pre-trained network and
a higher one for the Task Attention Module. In this work, we combine ”go to” and ”pick up” tasks
using connectors like ”and”, ”before”, and ”after”, a feature already available in MiniGrid environments.
However, we customized the environment to limit combinations to two tasks of these types with the
specified connectors. The custom environment for this second phase provides, at each step 𝑡, a binary
vector 𝑐𝑡 indicating task completion status, with 1 in position 𝑖 if task 𝑖 is completed, 0 otherwise.

3.1. Task Attention Module

The task attention module takes as input the weighted sum of the mission word embeddings and the
vector 𝑐𝑡. These inputs enable the module to generate a mask for mission words related to pending
tasks. The module outputs a vector of 𝑚 values between 0 and 1, which are multiplied by the weight
vector 𝑤. In this way, words related to a completed task will be ”inhibited”, bringing the weight to 0



or close to 0, thus making the corresponding attention map irrelevant. In the experiments, the Task
Attention Module is implemented as a fully connected neural network with ReLU activations and a
sigmoid activation in the last layer with 𝑚 neurons.
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Figure 3: Snapshot of the environment and the word weights 𝑤 for an ”and” task before picking up the red box
(in row (a)) and after picking up the red box (in row (b)). As can be observed, the weights for the words related to
the first task, that is, picking up the red box, are set to zero after its completion.

3.2. Training

This module is integrated into the architecture, as shown in Figure 2, and is trained with PPO using
the reward from the environment. In this setting, training was carried out in 10𝑥10 environments. To
enhance training stability and quality, we calculate a task attention loss function, 𝐿𝑇𝐴, with the output
from the Task Attention Module and the ground truth masks, obtained during the buffer filling phase.
It is added to the general PPO loss, with a negative sign, so that it is minimized during training.

3.3. Evaluation

Preliminary experiments in a 10×10 environment demonstrated the benefits of the proposed architecture
with the Task Attention Module, both in enhancing performance and reducing training time. Across
structured tasks involving conjunctions and temporal relations (”and”, ”before”, ”after”), the model
consistently achieved success rates above 90%, compared to about 70% for versions without the mod-
ule—whether using only text-visual attention or no attention mechanisms. Moreover, attention-based
models stabilized performance in significantly fewer training steps, with the Task Attention Module
reaching optimal results within 2 million steps, while other models required longer training and still



underperformed. These findings confirm the effectiveness of the Task Attention Module, with further
analysis and detailed evaluations planned for future work.

4. Conclusions

We introduced a novel task learning approach where agents, guided by natural language instructions,
exploit multi-modal attention mechanisms to align the relevance of mission words with observed
features while focusing the agent’s attention on task-relevant features during the execution. In the
proposed method, the agent is trained in two steps. Firstly, the system is trained with simple tasks to
generate per-word attention maps, grounding mission words, and their relevance in environmental
observations. In a second phase, we address structured tasks by training a task attention mechanism to
suppress words related to already accomplished subtasks, disregarding their textual and visual relevance.
We tested the approach in MiniGrid environments to assess its feasibility and performance in simple use
cases. The experimental evaluation showed promising results for both single-task and structured task
scenarios. Further experiments are already underway with alternative architectures to improve stability
and generalize the approach to more complex scenarios. In future work, we aim to investigate the
integration of more refined executive attention mechanisms [23, 24, 25], while assessing the scalability
of the approach in incrementally structured tasks.
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