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Abstract
With the improvement of computing power and the availability of large datasets, deep learning models based

on CNNs can achieve excellent performance in facial expression recognition tasks. However, when the model

makes a prediction, it is difficult to understand what is the basis for the prediction of the model and which

facial features contribute to the classification. This paper introduces a pipeline for explainable facial expression

analysis, combining Grad-CAM heatmaps, OpenFace Action Unit (AU) detection, and GPT-4 for natural language

explanations. The process aligns saliency maps with facial landmarks and uses a weighted approach to merge AU

intensities with activation regions. Explanations describe facial movements driving the classification, tailored

for non-expert audiences. The system enhances transparency and fosters user trust, as validated through user

studies. Future work aims to reduce the computational cost, integrating image captioning with large language

models for streamlined explanations.
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1. Introduction

Facial expressions are configurations of different micro-movements in the face that are used to infer a

person’s emotional state. Ekman and Friesen’s facial action coding system (FACS) was the first widely

used and empirically validated approach to classifying a person’s emotional state from their facial

expressions [1]. Ekman [2] identified six basic emotions: happiness, surprise, sadness, fear, disgust, and

anger. In particular, the Facial Action Coding System (FACS) defines Action Units (AUs) that correspond

to a specific movement of facial muscles, allowing the description of facial expressions in a detailed,

objective, and anatomically accurate manner. In the last years, several methods have been developed

for automatic Facial Expression Recognition (FER) that can successfully recognize these emotions [3].

Due to the important role of emotions in human communications and social interaction, the ability

to perform FER automatically through Computer Vision techniques paves the way for the successful

development of many applications in the field of human-computer interaction and affective computing.

To cope with FER in real-time human-computer interaction, in recent years there has been active

research exploiting deep learning models [4] with several recent works utilizing Convolutional Neural

Networks (CNNs) for feature extraction and face expression recognition [5]. Starting from the first

CNN-based models that won the Facial Expression Recognition Challenge in 2013 [6, 7], the deep

learning approach quickly spreads to dominate the current literature on FER [8] with state-of-the-art

architectures such as VGG [9], Inception-V3 [10], ResNet [11] and Vision Transformer (ViT) [12] as the

top runners.

Inspired by the process of attention that occurs in human vision, some researchers have started to

develop attention mechanisms for CNNs to improve FER accuracy. These mechanisms allow models to

focus on salient facial regions and improve robustness to challenges such as occlusions and irrelevant
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background information [13, 14, 15, 16]. A notable trend is the adoption of modular attention mecha-

nisms, such as Bottleneck Attention Modules (BAM) [17], and Convolutional Block Attention Modules

(CBAM) [18]. These modules, originally used in general image classification tasks (e.g., CIFAR-10,

ImageNet), have been successfully adapted to FER, as shown in [19, 20, 21]. Visual attention is especially

useful in automatic FER since it allows to better understand the model behavior by emphasizing which

parts of the face are considered significant for the recognition of a specific facial expression.

A lot of recent work focuses on the construction of sophisticated models based on CNNs that can

not only recognize the facial expression but also focus attention on the regions of the face that most

influence it and visualize them as a saliency map or an attention weight matrix [16, 22]. This can help to

explain the black box behavior of the neural networks that traditionally accept the whole input image

and provide unexplainable decisions as output.

At the state of the art, explainability methods are manifold, e.g. LIME is an interpretability method

used to explain the predictions of machine learning models in the context of images. A further model is

SHAP[23] which, again speaking of images, focuses on how each pixel (or group of pixels) contributes

to the model decision.

Speaking of methods for explainability, Grad-CAM[24] has been designed to provide visual explana-

tions of decisions made by CNN models, improving the transparency and reliability of their predictions.

It uses gradients flowing in the last convolutional layer of a network to generate a location map that

highlights important regions of an image for the prediction of a specific concept.

A combination of attention methods and Grad-CAM is discussed in the paper by Shuai Xu et al.[25]

Specifically, they leveraged Grad-CAM within the attention mechanisms to guide the model in focusing

on the foreground object while avoiding irrelevant data (e.g., the background), thus enabling the model

to distinguish between very similar classes.

From this foundation, we developed an XFERa (eXplainable Facial Emotion Recognition, sec: 2), a

system that integrates a CNN-based FER and BAM attention mechanism, to which is added a process

of analysis of the AUs, hot landmarks and Grad-CAM for the extrapolation of relevant data and the

creation of the prompt and finally, a LLMs is used to generate an explanation that is easy to interpret.

2. XFERa: eXplainable Facial Emotion Recogniton

XFERa (eXplainable Facial Emotion Recogniton) is the name of the proposed system for explainable

emotion recognition. The developed CNN model is based on the state-of-the-art ResNet50 architecture

[11] pre-trained on the VGGFace2 dataset [26]. The architecture has been improved using the Bottleneck

Attention Module (BAM) [17], which adds attention mechanisms that allow the network to focus on the

most informative parts of the feature maps to classify the emotion as one of the following: happiness,

surprise, anger, sadness, fear, disgust, and neutrality. In particular, we placed three BAMs at the end of

the first three bottlenecks of the model.

Face detection is performed using the Python library detector Dlib [27]. The region encompassing

the entire face is detected and cropped with dimensions of 224x224 to be compatible with the input

size accepted by the CNN. For training the model, we used the RAF-DB, a large-scale facial expression

dataset created in 2017. It comprises approximately 30,000 different facial images collected from the

internet, each labeled by around 40 annotators through crowd-sourcing. RAF-DB captures a wide range

of variations in factors such as age, gender, ethnicity, head pose, lighting conditions, and occlusions

(e.g., glasses, facial hair, or self-occlusion). Additionally, many images have been modified with filters

and special effects, adding to the dataset’s diversity. For this study, we used a streamlined version of

RAF-DB consisting of 15,339 images, all of which were horizontally aligned along the eye axis. This

version is divided into a training set with 12,271 images and a validation set with 3,068 images, with

each image annotated according to seven emotion categories, as in the previous dataset.

The training phase has been carried out for a maximum of 100 epochs with the Adam optimizer, a

learning rate of 1𝑒−5
, and a batch size of 64. A learning rate reduction strategy has been adopted, by

decreasing the learning rate by a factor of 10 every 5 epochs without accuracy improvement. These



Table 1
Accuracy of the model on the RAF-DB dataset.

Emotion Precision Recall F1-score
Anger 0.86 0.80 0.83

Disgust 0.66 0.59 0.62
Fear 0.77 0.69 0.73

Happiness 0.95 0.95 0.95
Neutral 0.83 0.88 0.85
Sadness 0.83 0.87 0.85
Surprise 0.90 0.80 0.85

hyperparameter values were obtained empirically by carrying out several training runs with different

values.

The analysis of the accuracy of the trained model shows a good performance since the average

accuracy is 87.45%.

2.1. Proposed Pipeline

After developing the model, a pipeline was defined consisting of these steps:

1. Analysis of heatmaps: Grad-CAM was used to generate heat maps that highlight regions of

interest.

2. Action Unit (AU) detection: identification of AUs in input data.

3. Unification of results: the Grad-CAM heat map and the extracted AUs are merged according to

a weighted combination process.

4. Interpretation system: GPT-4[28] was utilized to provide a coherent and detailed interpretation

of the findings.

As detailed in lines 2-4 of Algorithm 1, we analyze the region of interest identified by the model by

assessing the alignment between the focus area and the theoretical landmarks associated with the

corresponding emotion. This is achieved using Grad-CAM.

For instance, if the model classifies the image with the emotion ’happiness’, the Grad-CAM heatmap

should ideally highlight areas corresponding to key facial features associated with happiness, such as

the raised cheekbones and the crow’s feet around the eyes, which are typically activated during this

emotion.

In lines 11-23 of Algorithm 1, we focused on analyzing and extracting AUs. OpenFace[29] was

selected as the tool due to its high performance and open-source nature. OpenFace provides confidence

scores for AU recognition on a scale from 0 to 5, where higher values indicate greater confidence in the

system’s detection of the presence or absence of a specific AU. To locate the activation points of the

AUs, the landmarks were defined using a 68-point standardized system derived from the FACS system

(see Table 2).

The bilateral arrangement of the landmarks reflects the symmetry of the human face, allowing a

comparative analysis between the two sides to detect any asymmetries, wich is useful in the inter-

pretation of expressions. This design exploits two distinct mappings, one exploiting this symmetry

to define distinct sets of landmarks on each side, allowing verification of separate activations. The

second defines correlations between basic emotions and their muscular manifestations through specific

combinations of AU. This mapping is particularly sophisticated as it takes into account the different

intensities and variations of each emotion. For example, anger is analyzed through six distinct groups of

AU combinations, ranging from the most intense expression (characterized by a complex combination of

AU04, AU05, AU07, AU10, AU22, AU23, and AU25/26) to more subtle manifestations such as restrained

anger (identified by the combination AU17+AU24).

Before merging the information obtained from OpenFace and the heatmap, an intermediate step

was performed to calculate the "hot" landmarks within the heatmap. In this step, the facial heatmap



Table 2
Association between action units and landmarks.

Emotion Action Unit Facial Landmarks

Angry 4 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
5 37, 38, 39, 40, 43, 44, 45, 46
7 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
23 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68

Disgust 9 28, 29, 30, 31, 32, 33, 34, 35, 36
15 49, 50, 54, 55, 56, 61, 60, 65
17 8, 9, 10, 56, 57, 58, 59, 60

Fear 1 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
2 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
4 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
5 37, 38, 39, 40, 43, 44, 45, 46
7 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48
20 7, 8, 9, 10, 11, 49, 55, 56, 57, 58, 59, 60
26 49, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68

Happy 6 37, 40, 41, 42, 43, 46, 47, 48
12 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68

Sad 1 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
4 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
15 49, 50, 54, 55, 56, 61, 60, 65

Surprise 1 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
2 18, 19, 20, 21, 22, 23, 24, 25, 26, 27
5 37, 38, 39, 40, 43, 44, 45, 46
26 49, 50, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68

was resized and aligned with the facial coordinates to ensure an accurate correspondence between

the activation areas and the landmarks, as some activations could potentially fall outside the original

cropped region.

After aligning the heatmap, a dynamic threshold is computed based on the mean and standard

deviation of the activation values in the facial region. The threshold is then used to identify "hot" pixels,

those with values exceeding the calculated limit. For each landmark, the value of the corresponding

pixel in the heatmap is evaluated against the threshold. If the pixel value exceeds the threshold, the

landmark is classified as "hot" and added to a dedicated list.

During this process, an overlay image is dynamically updated to provide a visual representation of

the analysis. Hot landmarks are highlighted in red, while non-active (or "cold") landmarks are shown in

blue, visually emphasizing the most active regions of the face.

As detailed in lines 24-29 of Algorithm 1, AU information and hot landmarks are combined using a

weighted approach. For each detected AU, a combined score is computed considering both the intensity

measured by OpenFace and the activation detected in the heatmap. Specifically, if the intensity of an

AU exceeds a predefined threshold (e.g., 0.3), the heatmap activation is analyzed for the landmarks

associated with that AU. If the heatmap exhibits significant activation (e.g., at least 50% of the associated

landmarks are classified as "hot"), the combined score is incremented by a value proportional to the

average activation intensity of the heatmap for those landmarks. The decision to apply a threshold for

AU activation and to use a weighted combination of data was motivated by the need to balance accuracy

and sensitivity, ensuring that only genuinely significant AUs contribute to the final interpretation.

Finally, in lines 30-34 of Algorithm 1, several methodologies were tried to generate the textual

explanation, with a preference for using GPT-4 for this phase. The model has been configured specifically

to describe facial-generated movements in a language accessible to an audience with low technical

knowledge, rather than explaining the identified emotion. When the recognized emotion is ‘Neutral’,

the prompt is formulated in a simple and direct way. Otherwise, the system analyzes the active AUs

located in the ‘hot zones’ of the face, i.e., the areas of highest activation identified by the neural network.



Figure 1: Example of the output obtained after performing all the steps of the pipeline

These AUs are described in the prompt to highlight relevant facial movements. In addition, the prompt

includes a description of the AUs considered typical of the recognized emotion.

The prompt used is as follows:

SYSTEM:
You are a facial expression analysis system that detected this ’{emotion}’,
do not explain the emotion. You are speaking to an audience completely
unaware of the topic and they need a brief explanation of why the
emotion occurred.
Perform this task through the Action Units detected in the salient areas.

USER:
The expression has been classified as ’{emotion}’.
It is important to note that the neural network focused on areas of the
face where the following facial movements
were detected: {’, ’.join(hot_descriptions)}.

An example of the data output proposed by this pipeline is presented in the following figure:1

2.2. Obtained results

The model was tested using an out-of-domain dataset, allowing a better analysis of its performance by

observing how it adapts to a new context with data it has never encountered before.

It was chosen to test the model on the KDEF (Karolinska Directed Emotional Faces) [30] dataset as it

provides a standardized representation of emotional expressions, with high-quality images including

frontal angles and uniform illumination.

The results obtained show an overall accuracy of 65.85% on the first part of the dataset consisting of

490 images, a result which, although acceptable, highlights some significant criticalities in the ability to

distinguish certain emotions.

The results show that the errors focus mainly on negative emotions such as anger, disgust, fear, and

sadness. For example, anger is often confused with fear and sadness, whereas fear tends to be confused

with Anger or Sadness. Likewise, Sadness is frequently classified as anger, fear, or neutral. In contrast,

positive emotions, such as Happiness and Surprise, appear to be the best ranked.

The analysis of saliency maps for other emotions confirms the general trend: for anger, models tend

to give importance to the open mouth, a frequent feature in training datasets. For disgust, the nose,

mouth, and chin are correctly highlighted, showing a good alignment with the defined AUs. Fear, on

the other hand, shows greater variability, with attention maps focused on the eyes and mouth.



Algorithm 1 Pipeline for Natural Language Explanation Generation

1: function BuildExplanation(image)

2: 𝑒𝑚𝑜𝑡𝑖𝑜𝑛← emotion recognized by the classification model

3: 𝑔𝑟𝑎𝑑_𝑐𝑎𝑚_𝑚𝑎𝑝← Grad-CAM heatmap of 𝑖𝑚𝑎𝑔𝑒
4: 𝑓𝑎𝑐𝑒_𝑐𝑟𝑜𝑝← crop of 𝑔𝑟𝑎𝑑_𝑐𝑎𝑚_𝑚𝑎𝑝 focusing on the face

5: 𝑎𝑢𝑠← set of action units (AUs) associated with 𝑒𝑚𝑜𝑡𝑖𝑜𝑛
6: 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠← 𝑓𝑎𝑐𝑖𝑎𝑙_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠(𝑓𝑎𝑐𝑒_𝑐𝑟𝑜𝑝)
7: 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑎𝑢𝑠← ∅
8: 𝑎𝑙𝑖𝑔𝑛𝑒𝑑_ℎ𝑒𝑎𝑡𝑚𝑎𝑝← 𝑎𝑙𝑖𝑔𝑛_ℎ𝑒𝑎𝑡𝑚𝑎𝑝(𝑔𝑟𝑎𝑑_𝑐𝑎𝑚_𝑚𝑎𝑝, 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠)
9: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑← 𝑚𝑒𝑎𝑛(𝑎𝑙𝑖𝑔𝑛𝑒𝑑_ℎ𝑒𝑎𝑡𝑚𝑎𝑝) + 𝑠𝑡𝑑(𝑎𝑙𝑖𝑔𝑛𝑒𝑑_ℎ𝑒𝑎𝑡𝑚𝑎𝑝)

10: ℎ𝑜𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠← ∅
11: for each 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ∈ 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 do
12: (𝑥, 𝑦)← 𝑔𝑒𝑡_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠(𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘)
13: if 𝑔𝑒𝑡_𝑝𝑖𝑥𝑒𝑙(𝑎𝑙𝑖𝑔𝑛𝑒𝑑_ℎ𝑒𝑎𝑡𝑚𝑎𝑝, 𝑥, 𝑦) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
14: ℎ𝑜𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠← ℎ𝑜𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 ∪ {𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘}
15: end if
16: end for
17: for each 𝑎𝑢 ∈ 𝑎𝑢𝑠 do
18: 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠← 𝑔𝑒𝑡_𝑎𝑢_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠(𝑎𝑢)
19: 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠← ℎ𝑜𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 ∩ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠
20: if |𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠| ≥ (|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠| × 0.7) then
21: 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑎𝑢𝑠← 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑎𝑢𝑠 ∪ {𝑎𝑢}
22: end if
23: end for
24: for each 𝑎𝑢 ∈ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑎𝑢𝑠 do
25: ℎ𝑒𝑎𝑡𝑚𝑎𝑝_𝑠𝑐𝑜𝑟𝑒← 𝑎𝑣𝑔_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(ℎ𝑜𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 ∩ 𝑔𝑒𝑡_𝑎𝑢_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠(𝑎𝑢))
26: if 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒(𝑎𝑢) ≥ 0.3 ∧ ℎ𝑒𝑎𝑡𝑚𝑎𝑝_𝑠𝑐𝑜𝑟𝑒 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
27: 𝑓𝑖𝑛𝑎𝑙_𝑠𝑐𝑜𝑟𝑒(𝑎𝑢)← 𝑐𝑜𝑚𝑏𝑖𝑛𝑒(𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒(𝑎𝑢), ℎ𝑒𝑎𝑡𝑚𝑎𝑝_𝑠𝑐𝑜𝑟𝑒)
28: end if
29: end for
30: if 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 = “𝑁𝑒𝑢𝑡𝑟𝑎𝑙′′ then
31: 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑛𝑒𝑢𝑡𝑟𝑎𝑙_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛()
32: else
33: 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑_𝑎𝑢𝑠, ℎ𝑜𝑡_𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠)
34: end if
35: return 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
36: end function

This consistency between the model’s attention maps and the facial regions is defined by FACS.

However, in cases of misclassification, the attention network appears to be dispersed or concentrated

on less significant areas, especially for negative emotions.

To assess the quality of the pipeline performance and explanations, a questionnaire was administered.

Participants were asked to evaluate the images misclassified by the model, focusing on whether these

images appeared ambiguous even to a human observer. Additionally, the questionnaire aimed to

determine the level of satisfaction with the explanations provided by the system, examining whether

they were clear, coherent, and helpful in understanding the model’s decision-making process. This

approach ensured a more comprehensive evaluation of both the system’s interpretability and its ability

to handle challenging cases.

To ensure a representative evaluation, the sample consisted of 22 participants aged between 20 and

80 years old, encompassing a diverse range of perspectives and experiences. The questionnaire was

organized into two main sections:

∙ In the first section, as previously mentioned, participants were presented with images and asked

to rank which image, among the seven main emotions, they found most representative. This task

aimed to evaluate the degree of ambiguity in the images.

∙ In the second part, participants were shown examples of the model’s outputs, including saliency



maps and AU-based explanations. They were asked to rate, on a scale from 1 to 5, how much

these explanations enhanced their confidence in the model’s decisions.

The results indicated that a significant portion of responses for each image was distributed across

different emotions, highlighting that the images were indeed ambiguous, even for human observers,

confirming the ambiguity of the model on those images.

Regarding the second questionnaire item, we found that confidence in the model’s decisions reached

the maximum score of 5 for 77% of the participants in a context with explanations. Only a small

percentage (around 13.6%) gave a score of 3, suggesting a moderate perception of the usefulness of

the explanations, while the majority perceived a significant improvement in reliability due to the

information provided.

3. Conclusion and Future Work

This study demonstrates how, in human-machine interaction, the use of explainability techniques can

help people develop greater trust in the machine. This goal was achieved through the development of a

pipeline that integrates several highly effective techniques.

The results of the questionnaire support this trend: 77% of participants assigned the highest level

of trust to the pipeline, highlighting the effectiveness of the provided explanations in improving both

understanding and perceived reliability of the system.

On the other hand, regarding the classification model, as previously discussed, its performance

significantly decreases when dealing with ambiguous images, which are challenging to interpret even

for a human observer.

A future direction is to streamline the pipeline, which is currently computationally intensive, by

developing a Vision-Language Model (VLM). This model would not only recognize emotions but also

provide a coherent explanation for each identified expression, thereby enhancing interpretability and

efficiency.

We will also use XFERa a Human-Robot Interaction (HRI) context to see if this type of interaction

can help users trust robots more by creating an empathetic and natural relationship.
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