
Designing an Agentic AI Assistant for Chemical
Discovery
Siya Kunde1,*, Stephanie Houde2 and Rachel K. E. Bellamy1

1IBM Research, Yorktown Heights, NY, USA
2IBM Research, Cambridge, MA, USA

Abstract
We employ a human-centered approach to design an agentic system that can address the unique challenges
faced by chemists in the replacement of "forever chemicals". We conducted two formative studies with an
aim to understand the current processes followed by chemists and the potential role of AI in augmenting
and accelerating their scientific process. There’s a plethora of open source tools available for use that are
specifically geared towards chemical and materials discovery and yet they pose a high barrier to entry
for non-coding populations. Through the design of a system that not only allows access to such tools
but also additional functionalities from generative AI to domain specific features, we hope to bridge
the gap between subject matter experts and AI tools and functionalities that can help them. This work
benefits chemists, scientists in domains like materials and drug discovery, toxicologists, regulators and
other parties that form a multi-speciality team in tackling the global problem of forever chemicals.
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1. Introduction

Advancements with large language models (LLMs) have created a wave of research on con-
versational assistants across a variety of fields like customer engagement [1], library [2, 3],
robotics [4], law [5, 6, 7], software coding [8, 9] etc. Each field has its own opportunities and
challenges. The task of integrating an LLM powered conversational AI agent into scientific
systems is a challenging one due to the level of accuracy necessary, not just for a general task
like summarization, but also for tasks specific to science like reasoning.

We can harness the power of Artificial intelligence (AI) to accelerate the scientific discovery
process by using it to predict outcomes, generate new artifacts guided by desired attributes
and/or make decisions. It is important to ensure a seamless integration of the technology with
the human chemists in charge to engender trust in the capabilities of the AI system and ensure
optimal results. In most cases however subject matter experts (SMEs) may be left guessing as to
the capabilities of the new system or tool that they are asked to use. They may have to spend
time familiarizing themselves with a new interface or learn an entirely new skill like coding to
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launch and use APIs. We bridge this gap through a human-centered approach to the design of
such AI systems.

We conducted two formative studies with SMEs to understand their needs, wants and ex-
pectations in their work on replacement of "forever chemicals", and the potential role of an AI
assistant in supporting that work. In the first study, we interviewed seven chemists using a
think-out-loud protocol while attempting to find a fluorine free superacid for photo-lithography
using tools of their choice. This was followed up with questions about what role an AI assistant
could play in helping them achieve these same tasks. We gained insights into chemists’ method-
ology in tackling the discovery process, the types of tools currently used to achieve this, and how
an AI assistant could fill gaps in current technologies and provide a user-friendly interface that
would help experts focus on the innovation process. In the second study, we organized feedback
sessions with six of the same chemists to present storyboards on various design scenarios. The
vignettes showcased ideas to support individual as well as collaborative contributions, while
utilizing a conversational AI assistant to search, generate, visualize, manipulate and curate
solutions.

2. Background

Per- and poly-fluorinated alkyl substances (PFAS) (also known as "forever chemicals") have
over 200 diverse industrial uses [10]. Due to their stability, these materials can be used in harsh
environments, and offer unique capabilities. They are however persistent in the environment
(estimated lifetimes of 1000 years or more) [11], bio-accumulative and toxic. On the one hand,
there is strong regulatory pressure to restrict and eventually eliminate their use (in EU [12]
and US [13]). On the other hand, PFAS are critical to many tools, processes and materials in
semiconductor manufacturing that are expected to see growth in the near future (CHIPS and
Science Act of 2022 [14]). This dissonance between a vision of growth through industrial policy,
and a desire for environmental protection through regulatory policy has created an urgent need
to replace, redesign and remediate the use of PFAS. In our work, we adopt this as a use case,
and aim to create a tool that will help SMEs, in the field of chemistry and material science,
discover PFAS replacements that the industry can use to satisfy both the need for growth and
for environmental safety.

3. Related Work

In this section we present prior work that describes agentic systems, agentic applications
developed in various domains, and finally the current state of AI applications/tools in the field
of chemistry. Through this section we present key characteristics of agentic systems, how
they have been successfully implemented in other domains and identify the research gap in
chemistry domain.



3.1. Agentic systems

The ability of a system to act independently based on a self-generated intention is colloquially
referred to as agency. [15] states that instead of looking at the concept of agency from a binary
perspective (is agentic or is not agentic), we consider it from the point-of-view of "increasing
agency". This might be determined by the degree to which certain characteristics are present
within the designed system and the number of them that are present. Key characteristics of
agentic systems covered in literature include:

1. Goal directedness [15, 16, 17, 18] : The degree to which a system can adapt.
2. Under-specification [15, 19, 16] : The degree to which a system can accomplish the end

goal without exact specification of how to do so.
3. Directness of impact [15, 16, 18] : The degree to which a system can affect the world

without a human-in-the-loop.
4. Long-term planning [15, 19, 16, 18] : The degree to which a system makes temporally

interdependent decisions in service of achieving the final goal vs over a long time horizon.

3.2. Agentic system applications

LLM-powered conversational assistants have been explored in a number of domains [1, 2, 3, 4,
5, 6, 7, 8, 9]. Some of these have been implemented specifically with an agentic design pattern
to take advantage of one or many characteristics we have listed in section 3.1. For example,
Cicero [20] is an AI agent that has demonstrated a strong capability to interact with humans
in complex environments to achieve their goal using planning and reinforcement learning.
LAVE [21] is another LLM-powered assistive agent, which is a language-augmented video
editing tool that enables video editing either by the agent or direct user interface manipulation.
Combining these modes of interaction provides flexibility and enables manual refinement of the
agents actions. In this case, the use of language as a interaction medium enhances multimedia
editing by a broad set of users from different backgrounds. Given that scientific discovery teams
can be comprised of people from across disciplines and experiences, forming a common ground
will be easily done using natural language and our study will explore this as the interaction
medium. ChainBuddy [22] is an AI assistant for generating evaluative LLM pipelines built into
the ChainForge platform. Through a user study, ChainBuddy was found to provide users with a
good starting point for developing their own LLM pipelines. It helped the users across a wide
range of tasks and use cases, reducing the effort required, accelerating their workflow, and
allowing them to readily learn the platform. The qualities and performance gains demonstrated
by these agentic systems [20, 21, 22] are desirable for our use case and we explore these ideas
in the studies.

3.3. Tools and assistance systems for chemistry

[23] describes a compound knowledge graph based AI assistant that uses 25 AI models and
enables natural language interaction between user and AI through SADL 1, while we explore the

1Semantic Application Design Language (SADL) [24] is a formal, structured English-like language and development
environment for authoring semantic models that allows non-semantic domain experts to read, write, and/or provide



idea of a LLM powered agentic system. [25] demonstrates a ChatGPT based text mining tool for
metal-organic framework enabling parsing, searching, filtering, classification, summarization,
and data unification. This prototype demonstrates potential of using LLMs in text-based
retriever augmented generation, but is limited in capabilities and resources. [26] is an open
source package that solves reasoning-intensive chemical tasks. While it provides functionality
important to chemists, it is not accompanied with a user interface, posing a barrier to entry for
our non-coding SMEs. This highlights the importance of considering the needs of actual SMEs
users when designing systems for them, and adopting a user centered approach increases the
likelihood of designing a system that optimally supports SME workflow and doesn’t introduce
new barriers. Our work adopts such an approach and provides insights into how chemists can
be facilitated throughout their discovery process.

4. Iterative User Centered Design

We conducted two formative interview studies to inform our design decisions and iterative
lines of inquiry to further the development process. First we interviewed chemists to explore
how they approach PFAS mitigation now using current methods. Subsequently we invited them
back to participate and help us gather design insights from their reactions to a visualization of
what that same process might be like in the future with integrated conversational AI assistance.

4.1. Study 1: Understanding the current process

To help probe how chemists currently work, the interview was structured around a search
task characteristic of what a chemist might do when trying to find replacements for PFAS. The
design of this task was done with the help of a professional chemist.

Task In line with the use-case we chose (described in section 2), we asked the user to envision
themselves as working on the task of "searching for a Fluorine-free super-acid to replace one
containing Fluorine in chip manufacturing". We provided them with a SMILES 2 string of a
molecule to start off their search and observed how they completed the task, information that
they focused on, their thought process and pain-points.

We conducted qualitative interviews with 7 chemists at a large international technology
company. Users were first asked questions about their background such as educational qualifi-
cations, role as a chemist, and what the role entailed (including interaction with AI systems).
This was followed by completing the task. Throughout this task we asked them to think out
loud, so that we could have a better understanding of how they analyzed the problem and to
gain insights about their decision making processes. Participants interacted with an internal
pre-existing tool CIRCA [28, 29, 30] (screenshot shown in Figure 1) that allows patent and
molecule search to facilitate the task execution. They were additionally encouraged to show
us any other tools they would normally use for similar tasks. The interview concluded with a

feedback on ontologies without requiring extensive training in semantic technologies.
2SMILES [27] is a popular string representation of molecules



Figure 1: Search page of CIRCA, a tool to search patents and molecules.

discussion about which parts of the process they would have liked to automate with the help of
a conversational AI assistant.

Following internal guidelines for human subject studies, we maintained user data privacy, and
confidentiality, including obtaining consent and collecting the minimum necessary personally
identifying information.

4.1.1. Analysis

Data collected during each study session included video recordings of each session, audio
transcriptions, and notes taken by 1-2 researchers observed each session. Two researchers
collaboratively reviewed transcriptions and notes to identify notable observations. Using
reflexive thematic analysis[31] we identified the themes presented as results below.

4.1.2. Results

We identified the following themes:

1. Tools: SMEs used a variety of tools, from Google Scholar and Wikipedia to chemistry
specific tools like SciFinder [32] and ChemSpider [33].

2. Analyzing molecular structural diagrams is a key interaction method: These are
easily browsed and understood at a glance. The structural sub-components by themselves
or in combination with others are key in imparting certain molecular properties. The



ability to view, discuss and manipulate molecular structures and sub-structures impact
the task directly and is very important. As P3 put it "its easier to see an invalid structure
if it is drawn out." Five participants emphasized their preference for visual searches by
drawing substructures. As P2 put it, "We chemists like to work with structures."

3. In-lab synthesis is always needed for validation purposes: Users mentioned the need
to go back to the lab and perform validation experiments to confirm whether a compound
could be synthesized. This was because they reported that important implementation
details are oftentimes obfuscated in the reference materials. P5 indicated that he would
"use different search terms to figure out how to synthesize" a molecule. P4 additionally
noted that the feasibility of synthesis would also impact their choices, saying "roughly
how many synthetic steps [would be required] would be a consideration."

4. Contextual requirements are part of their discovery process: When we introduced the
working task to a user, in their think-aloud process we discovered additional questions
they wanted answered. These questions were focused around the purpose of Fluorine
in the current process, if any regulations were applicable, what the regulatory time
frame was, if there was a commercially available compound that will work. They posed
questions around the ease of synthesis and degradation of the compounds. There were
other questions about site specific requirements. P3 said that any real-world search for
a new molecule would be "highly application dependent." P4 said that "it would help to
always keep the context in mind of which regulations are applicable" when searching.

5. They use an iterative winnowing down approach to identify candidates: When the
users started on the task, the results of initial searches were huge and there were a variety
of strategies for winnowing this down to a smaller set appropriate to synthesize. These
seemed to vary from chemist to chemist, from filtering for known sources in publications
and looking at claims section of patents, to understanding the function that Fluorine was
performing in the current application, as a guide to find solutions. P1 commented that
"you were trying to reduce the set down" with iterative search filters. P6 noted the need
to "whittle [the choices] down to a reasonable number.

6. Getting close enough with AI help is good enough: To arrive at a shortlist, users
mentioned how getting close might be good enough (or even preferred). P2 mentioned
how queries may filter out options that might actually be "close enough" for them to
adapt and use, and seeing them as part of the search would be preferred. P6 mentioned
how all that’s needed is chemical “intuition” sparked through new ideas produced by
their existing generative model. He also showed interviewers a drawing of a molecule
that had an interesting way of providing a function to the molecule and explained how
that had sparked ideas that were fruitful in a collaborative discussion between a small
group of chemists.

7. Source attribution is crucial to trust in the output and decision making process:
Many users commented that they would not trust output of patents because the imple-
mentation details that are important in the synthesis process are typically obfuscated
for reasons of intellectual property protection. P2 said that it helps to see "a lot of big
suppliers" for a molecule because it shows that is is viable to make or buy it. Similarly
P6 included "commercial availability" among the important ways to search for viable
molecules.
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1. Ben, Anna, and Kenji are materials chemists. They need to work 
together to find or create a fluorine-free superacid to meet a new 
manufacturing requirement. They begin by meeting a virtual collaboration 
space where they all write notes about project requirements. A 
conversational AI Assistant is available in a chat window. They ask the 
assistant to listen to their discussion and read their notes to generate a 
summary.

2. The assistant generates a formatted requirements document with 
summary content in place. The team opens the document in a shared 
document editor. The document is not perfect - the AI has made some 
mistakes and some content is missing, but it’s a good starting point. They 
work together to complete the document. The same assistant, already 
prompted with project content, is available to answer questions and 
generate new text options in the context of project goals and 
requirements already established. 

3. Next, the three chemists decide to search for solutions individually 
with a plan to share ideas later. Ben opens a molecule search tool, where 
the same AI Assistant is available. As an expert chemist, he can use 
natural language to ask the assistant to filter custom options quickly 
without needing to search the direct manipulation UI. After several 
search refinements, he identifies two superacid candidates and asks the 
assistant to copy them ot the collaboration space.

4. Anna searches for candidates using a visualization tool. She also opens 
the same AI assistant and asks to filter and view candidate molecules. 
She iteratively filters and visually browses options. When she finds an 
example she likes, she asks for more options with specific properties like 
“this” as if she were pointing to an example while working with a human 
assistant.  She identifies three options to share.

5. Kenji opens a molecule drawing tool where he can draw molecule 
diagrams. He loads a diagram of an existing superacid and selects the 
fluorine components that need to be replace. He asks the assistant to 
generate alternate versions of the same superacid that do not contain 
fluorine.  After browsing the results, he chooses two to ask the assistant 
to copy to the group collaboration space. 

6. All three chemists asked the assistant to save their selections to the 
shared virtual collaboration space. The assistant groups and labels the 
options by author on a new part of the shared canvas which allows the 
group to jump right into a discussion when they come together.

7. After they discuss the superacid candidates they have each offered, 
they select them as a group and  ask the assistant to generate more 
molecules “like those”.  The assistant generates a set of candidates. 
Some are not very good, but two seem interesting and the group chooses 
to add them to the canvas. 

8. They ask the assistant for input on how well the different superacid 
candidates meet the requirements determined at the beginning. The 
assistant provides answers to their questions and informs them of other 
criteria to be considered. Armed with this information the group votes to 
select two molecules to synthesize in the lab.

Figure 2: A vision scenario of AI support for creative exploration and collaboration. A large
language model powered AI Assistant, fine tuned for the materials science domain, offers contextual
support throughout a creative search process. A group of chemists use the assistant in both independent
and collaborative scenarios to co-creatively define requirements, generate alternatives, and shortlist
candidates for synthesis.

Beyond our thematic analysis we additionally prompted participants to think about a future
where an AI assistant would help them in some or all parts of the process, users mentioned:

1. Lab automation (help synthesizing chemicals in the lab)
2. Conversational access to tools
3. Generating and identifying productive paths to pursue
4. Data analysis process (help create visualizations)
5. Maintain contextual requirements of the task and act as guardrails

4.2. Study 2: Design scenarios for the future

The themes identified from Study 1 together with user feedback on how AI assistant could
help them in their process, we designed vision scenarios (as shown in Figure 2). We conducted
a second round of interviews with six of the same chemists from Study 1. In this study we
presented users with the vision scenarios of AI support for exploration and collaboration for
chemical discovery. The vignette guided users through a process somewhat similar to what they
had followed in the first study, strengthened with AI support. Additionally we had incorporated
their visions from Study 1 for how an AI assistant might help them in the discovery process.
Through this study we obtained feedback on concrete representations of what the users had
discussed with us in the first study.



As in the first study, data collected in the second study included one hour video recordings,
audio transcriptions, and observer notes. Our analysis of data from the second study was more
agile and informal than the first study, consisting primarily of interactive theme identification
and discussion between 3 researchers during 30 minute debrief sessions immediately following
each session in the manner described by Krug[34] for purposes of informing near-term pro-
totyping efforts. At the conclusion of all sessions the most salient observations, listed below,
were agreed upon.

Features in the vision scenario assessed to be beneficial by users included:

1. AI transcription and summarization of meeting notes and discussions helps team focus
on tasks and content instead of documentation and formatting.

2. Presence of the same assistant across tools facilitates in-context searching, question-
answering, maintaining a detailed record of project requirements in which they are
evaluating options.

3. Ability to easily refer to a selection from the chat. Understanding the contextual references
(for e.g. when one might say "what is this molecule’s acidity?" not only saves time (from
re-drawing structures), but is a common and efficient way during in-person discussion
for SMEs to reference images and items mentioned previously.

4. Ability to express search criteria using domain specific language. This can mean either
using an LLM that understands chemistry specific terms and can produce scientifically
accurate responses, or it could be drawing a molecule using a tool that allows such
functionality.

5. Ability to combine direct manipulation with natural language requests allows for a natural
interaction (like pointing in a discussion with a colleague).

6. Generation of alternatives provides new ideas and directions to explore.
7. AI generation of grouping, labeling, and placement of artifacts (like reports and molecules)

provides a default level of organization.
8. AI generation of alternatives based on some criteria (like property similarity for example)

in the shared space allows the group to view and consider ideas that teammates had not
thought of.

5. Discussion and Conclusion

In this paper we present the findings of two formative studies conducted with chemists, the
first to understand their current discovery process when looking for molecules with certain
properties, and second to gauge the Chemists reactions to design vignettes visualizing a future
AI system that might assist them in this task in the future. From the first study, we were able to
understand their approach to the task, their current tool use and the constraints within which
they need to operate. The second study provided feedback on specific features of the prospective
AI system.

Our studies highlight the benefits of incorporating AI technologies in Chemist’s discovery
systems. Not only did the users ideate features that were specific to their task, but they also



pointed out how integration of additional general AI features would benefit them in their
workflow. The more general AI features mentioned were natural language interfaces, use
of generative models, automating transcription, summarization and organization of artifacts,
contextual referencing, searching and question/answering. Chemistry related features included
integration of specialized tools for drawing and visualizing molecules, and relevant knowledge
bases. Other insights from the study were related to 1) the need for source attribution as this
allowed them to infer how well tested the molecule was, and 2) the need for any new tool to
integrate into the Chemist’s existing workflow. We hypothesize these would be well supported
by an agentic AI system style. We discuss below the design of an agentic AI assistant for
chemistry from a user interaction and experience perspective.

There are several advantages to designing this conversational assistant as an agentic system.
One is the ability of the agent to manage the contextual requirements of the goal. For example,
the scientist does not need to go and search for regulations across geographic locations, but can
incorporate the necessity to abide by regulations as part of the goal given to the system. Some
of these requirements can potentially be specified as part of goal setting when a team, individual
or organization starts to work with the system, while others will develop over time. Here we
can utilize the goal-directedness characteristic of an agentic system [15, 16, 17, 18]. Having the
system manage such contextual requirements can benefit cross-domain, multi-stakeholder, cross-
functional teams with members having varying types and levels of experience, so individuals do
not have to fully understand all the contextual requirements, but can have the system manage
them, and explain them at the appropriate time. Exactly how to design such a system so it is
effective remains a challenge.

Another advantage of agentic systems is under-specification [15, 19, 16], i.e. their ability
to act upon a high-level goal specification. Being able to use the appropriate tools to arrive
at the solution further enables the agent in pursuing an under-specified goal. While there
are always security and vulnerability concerns with software agents accessing tools [15, 35],
given appropriate safeguards agentic systems allow the many tools currently used by users
(like PubChem [36], RDKit [37], GT4SD [38], RXN for Chemistry [39]) along with the many
open source models (like [40, 41, 42]) and databases (like [43]) to be integrated in the system as
resources to be invoked by the agent when needed. This can eliminate the barrier to entry for
non-coding users to access tools that might typically require some amount of coding for setup
and use.

Sequential reasoning using chain-of-thought thinking [44] is an important capability for
planning (in reference to the characteristic of long-term planning [15, 19, 16, 18]) in agentic
systems and very useful in emulating the process followed by scientists such as our users.
This might mean executing one small query that requires gathering information from multiple
tools/sources, or something more longer term like detection of PFAS used in current products,
suggesting actions for remediation and following though on the discovery process by searching
for replacement materials.

The in-lab synthesis of materials for validation purposes was another feature of their workflow
deemed important by users we interviewed. Efforts are underway to automate this process
in the real world [45, 46, 47], and despite this emphasis on automation, users will want to
remain in-the-loop to avoid unintended consequences like synthesizing a toxic material or
by-products. Similarly, there will need for a high degree of involvement from scientists in



other parts of the agentic system workflow. Scientists may need to draw molecules, assess
the shortlist of candidate molecules proposed by the agent, etc. The scientists will also need a
level of transparency from the system. For example, the scientists in our study mentioned the
importance of source attribution in their decision making process, and would want the system
to be transparent about where information came from. While working with a complex agentic
system, scientists might additionally seek greater level of transparency in other parts of the
system like the agents plan, model performance metrics, and tools and the data used. Due to the
potential for harm without the supervision of an expert, we propose the system needs human
oversight prior to acting in the physical world, having a lower level of autonomy than for less
risky actions [15, 16, 18].

We conducted this study with a very small sample size as we were limited by the available
number of SMEs in the company. Despite these limitations we gained insight into how to design
our system’s first prototype. This situation will potentially ease up a little in the next phase of
evaluation as we plan to recruit users who are not just expert chemists but also other people
who play a role in the PFAS remediation process. These user personas will include, but are not
limited to, machine learning specialists and model builders, toxicologists, scientists working
on various applications of PFAS, and regulation and policy experts. Though our focus in this
study was exclusively on PFAS replacement, our results are highly relevant to other sub-fields in
chemistry like drug discovery and this case-study provides insights that might also be valuable
for other’s designing AI tools for SMEs.

It should be noted that a recent study of materials scientists using AI in their daily work for
two years found that while innovation was significantly increased, 82% of the scientists reported
reduced job satisfaction when using the AI, and expressed concerns like skill under-utilization,
repetitive nature of tasks, credit allocation and complexity of the AI tool [48]. Considering
human factors other than innovation and productivity when designing and evaluating future
agentic systems, such as job satisfaction, will be critical to their broad success.

Common findings across multiple case studies [49, 50, 51, 48], such as the one described in
this paper, provide rich domain-specific findings that can in-turn inform human-centered AI
more generally.
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