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Abstract

Large Language Models (LLMs) are increasingly employed to evaluate complex, large datasets in automated ways.
By combining LLMs’ rationale capabilities with user-defined criteria, LLM-as-a-judge systems can automate the
evaluation of thousands of observations based on predefined criteria, offering a scalable and flexible solution.
However, users often struggle to define and articulate clear evaluation criteria. Moreover, human preferences and
criteria definitions evolve, and predefined templates fail to account for the context-specific nuances necessary for
effective evaluation. To address these challenges, we presentMetricMate, an interactive tool that supports users
in defining and iterating evaluation criteria for LLM-as-a-judge systems. MetricMate introduces hierarchical
criteria definitions and curated examples of success and failure to promote human-AI criteria negotiation and
alignment. Additionally, MetricMate provides several visualizations to help users iterate and comprehend
how their criteria affect the overall evaluation process. We aim to provide a tool for a wide range of users, from
annotators to software developers.
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1. Introduction

Assessing and evaluating content demands considerable effort because of the complexity, contextual
nature, and large volume of datasets. Recent advancements in Large Language Models (LLMs) provide
new opportunities for evaluating text, documents, and other types of content using their assessment
pipelines and rationale capabilities [1, 2, 3]. Based on customized assessment instructions, criteria, and
examples, users can provide detailed judgments and evaluate content in an automated manner. This
approach, known as “LLM-as-a-judge,” enables users to employ LLMs to evaluate and rank content using
predefined criteria [4, 5]. Compared to automated evaluation techniques like BLEU [6], ROUGE [7],
or Perplexity [8], LLM-as-a-Judge approaches consider the subjective and contextual nuances that
are crucial in many LLM applications and evaluations [9], scaling more effectively than fully manual
evaluations and offer more robust insights [10].

Though powerful, there are considerable drawbacks to relying entirely on LLM-as-a-judge approaches.
First, its workflow depends on how users originate, formulate, and define evaluation criteria. Although
this step may appear straightforward, previous research indicates that users often struggle to clearly
formulate evaluation criteria and articulate their intentions to LLMs [11], which can result in a mismatch
between users’ actual goals and the stated criteria in the LLM.

Second, both data and domain knowledge play a crucial role in criteria generation, challenging the
notion of static, objective criteria definitions. Szymanski et al. [12] found that different stakeholders rely
on both their expertise and observed data points to define and iterate over evaluation criteria. Moreover,
users frequently redefine their evaluation criteria as they examine more data points and evaluation
outcomes, a phenomenon known as “criteria drift” [13]. Instead of systematically identifying why a
particular criterion is appropriate for a dataset, criteria drift causes certain data points to influence users’
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adjustments to their evaluation criteria [12]. Given the subjective and exploratory nature of criteria
generation, achieving alignment between the LLM-as-a-judge’s executions and human expectations
becomes even more challenging.

To address these gaps, we introduceMetricMate, an interactive tool that enables users to iteratively
define and calibrate evaluation criteria for an LLM-as-a-judge workflow (Figure 1). The design of
MetricMate is informed by insights from prior LLM-auditing studies [12] and findings from a
formative study involving users and developers of LLM-based systems. MetricMate helps users
define high-level criteria, supported by executable assertions and examples of success and failure
sampled by the system. In addition, to assist users in articulating their desired and undesired model
behaviors, MetricMate allows the grouping of similar and contrasting data, enabling users to form
affinities that represent various evaluation dimensions. Lastly, MetricMate identifies patterns within
the data and suggests potential criteria, helping users refine their criteria on the fly and aligning their
evaluations more effectively.

This paper is structured as follows: We begin by situating our work within the existing literature and
present the results of a formative study that informs the design of our proposed tool. Next, we present
MetricMate’s design and implementation details. Finally, we conclude with the key insights and
next steps of this work.

2. Related work

2.1. LLM Auditing and Evaluation

LLM evaluation and auditing involve domain experts or crowd workers rating the model’s outputs [14,
15]. While this method is straightforward, it can be prohibitively costly and susceptible to human
biases [16]. Additionally, standard evaluation benchmarks (e.g., BLEU [6], ROUGE [7]) fail to capture
the subjective and context-dependent nature of LLM-generated responses, where multiple outputs may
be equally valid despite differing in style, tone, or structure. Although human reviewers can navigate
these nuances, manual evaluation is inherently not scalable. To address these limitations, researchers
have explored LLM-as-a-judge approaches, where LLMs themselves evaluate generated text based on
predefined criteria [4]. This method offers scalability, but it introduces new challenges. Since LLM
outputs exist within an unbounded generative space, users often struggle to form clear mental models
of what constitutes an ideal response [17]. Furthermore, LLM evaluations are often based on broad and
loosely defined criteria, making it difficult to ensure consistency and reliability [18].

A key challenge in user-driven LLM evaluation is that many users lack expertise in prompt engi-
neering, limiting their ability to craft effective evaluation criteria [19, 11]. Without clear, well-defined
prompts, users may unintentionally reinforce biases or fail to capture important aspects of model
performance. To address these challenges, previous work has explored sense-making techniques that
enable users to better understand and utilize generative domains. One such system, Luminate [20],
allows users to explore different dimensions of a prompt, processing user input and providing a variety
of directions, adjustments, and modifications. Similarly, EvalLM [21] is an interactive evaluation tool
that assists users in creating prompts better suited to their desired criteria.

Despite these advancements, identifying and articulating desirable versus undesirable model behaviors
with precision remains an ongoing challenge [22]. Without a structured approach, users struggle to
define evaluation criteria that align with their intent, leading to inconsistencies in the LLM evaluation. To
address this gap, MetricMate provides an interactive framework that enables users to systematically
discover, define, and refine evaluation criteria. MetricMate integrates programming-by-example
(PBE) [23] in criteria definition to help users gain greater control over the evaluation process.

2.2. Test Case and Criteria Generation

In software testing, the behavior of the program and the test environment are deterministic and
constrained [24]. This characteristic enables testers to discover and define precise inputs and expected



outputs [25]. Writing testing criteria for LLM-as-a-judge follows a set of guidelines similar to those in
software engineering. First, high-quality test cases in software engineering are essential components
for their development, and they should be clear, comprehensive, and decomposable [26]. Second,
testing engineers must understand all the paths a program can follow to write comprehensive test
cases [27]. Third, software testing emphasizes breaking down test suites into smaller modular test
assertions [28]. One study Zhang and Mesbah [29] found that test decomposition through assertions is
strongly correlated to the effectiveness of a test suite.

Assertions allow testers to explore multiple paths in the program systematically, ensuring that all
components are tested independently. Providing a mechanism to hierarchically break down high-level
evaluation criteria into smaller, granular assertions can enable more precise and structured testing for
testing LLM-as-a-judge criteria. For example, instead of evaluating the LLM on ambiguous criteria such
as “friendliness”, decomposing it into assertions such as “the use of greetings” or “friendly tone”, testers
can systematically provide context and definitions to evaluate “friendliness”, ensuring that the LLM
aligns with their intended behavior across diverse scenarios. Therefore, we argue that LLM-as-a-judge
workflows can benefit from systematic frameworks in software testing.

3. Formative Study

To better understand the current practices and challenges of evaluating LLM behaviors, we conducted a
formative design study [30]. Our goal was to gather information on how users (1) define evaluation
criteria, (2) align and reason with LLM-as-a-judge models, and (3) work with multiple evaluation criteria
in parallel. We build on the evaluation workflow recommended by Pan et al. [31], which focuses on
interactive and iterative criteria generation, to guide the design of our prototype1. We compensated
each participant with a USD $30 gift card for their participation. The interviews lasted about an hour
and were carried out in person or virtually over Zoom depending on the preference of the participants.

3.1. Participants

We recruited six participants for this study through referrals. Among them, five had prior experience
using LLMs, while one participant had no prior experience. Four participants were professional software
engineers, and two were Ph.D. students in computing-relevant disciplines. Five sessions were held
in-person, and one session was conducted virtually via Zoom. We provide more details about the
participants in Table 1 in Appendix A.1.

3.2. Study Protocol

The study consisted of two parts: a criteria generation exercise and a prototype design walk-through.
In the first exercise, participants engaged in a scenario involving a patient-intake chatbot designed
to collect user information at a hospital and relay it to healthcare professionals. Participants were
instructed to assume the role of a chatbot engineer and evaluate the chatbot by identifying desired
behaviors and establishing evaluation criteria. Specifically, we randomly selected 50 patient inputs [32]
paired with the chatbot’s corresponding outputs and asked the participants to review and generate
a list of criteria for how the chatbot should behave and interact. We generated the outputs using a
prompt adapted from Li et al. [33] and OpenAI’s GPT-4o (prompt in Appendix A.2).

To facilitate this process, the data points (i.e., the patients’ input and the chatbot’s output) were
provided in a shared spreadsheet and as printed copies. Participants had the option to use pens,
highlighters, or paper to take notes or to digitally add new columns to the spreadsheet. They were
encouraged to think aloud as they defined and refined their criteria, recording them in a shared
Google Doc. We also asked participants to join a Zoom meeting and share their screens to record each
session. Each session lasted 20 minutes. We then conducted a semi-structured interview with questions
concerning participants’ thought processes as they defined their criteria.
1The study was reviewed and approved by the IRB at the lead author’s institution.



For the second exercise, a researcher provided a walk-through of an initial prototype of Metric-
Mate, showcasing each feature and collecting feedback. Researchers conducted a prototype design
walkthrough. In-person participants were guided through a paper wireframe walk-through, while
online participants used a shared Figma design2. We encouraged participants to provide feedback, make
annotations, or suggest design improvements for each screen as they deemed necessary. We gathered the
feedback of the participants on the prototype and ended each session with a semi-structured interview
reflecting on their current workflow and their feedback on the design of the MetricMate prototype.

3.3. Analysis Methods

We analyzed the data collected from the study using the thematic analysis [34] method. Two researchers
independently reviewed the session transcripts to generate initial codes. They then met to cross-check
and validate the codes, collaboratively developing a unified codebook. This codebook was subsequently
used to recode the transcripts. Using the refined codes, the researchers identified themes, which we
discuss in Section 3.4.

3.4. Key Insights

Our formative study revealed that participants employed a hypothesis-driven approach when defining
initial evaluation criteria, leveraging their domain knowledge and expectations. As they interacted
with real data, they iteratively refined and adapted their criteria based on observed patterns and edge
cases. We found that criteria definition and refinement were shaped by subjective judgment, contextual
nuances, and the inherent ambiguity of evaluating LLM outputs. Additionally, participants encountered
several key challenges, including difficulty in articulating rationales for poor examples, managing
trade-offs between competing criteria, and aligning criteria with dynamic values and contexts.

3.4.1. KI1: Participants’ evaluations were divergent and subjective as they depended on

individual knowledge and experiences

Consistent with previous work [12, 31], we found that participants often began with anticipated criteria
based on their domain expertise and lived experiences as LLM users or developers. When going
through the data, the participants used a range of comparative examples that showcased desirable
and undesirable behaviors in the output to define criteria. As a result, the evaluations could differ
significantly across participants. For instance, while P4 included a criterion specifying that the bot
“should not waste much time on chit chat like – I am sorry you are not feeling well” but should directly get
to the point, P1 and P2 opted to treat initial ‘chit chat’ as a positive behavior, viewing it as a way for the
bot to demonstrate empathy. This divergence in individuals’ judgments, even when working with the
same data, underscores that criteria generation in this context is inherently subjective.

Given this variability, evaluation tools should allow users to define and personalize criteria based on
their values, professional norms, and contextual needs rather than enforcing a one-size-fits-all approach.

3.4.2. KI2: Participants struggled to articulate why example outputs were poor, even when

they could easily identify them

While participants were capable of distinguishing between good and bad examples, they found it much
harder to articulate why certain responses were problematic. They often relied on gut instinct or
comparative reasoning but struggled to translate these preferences into formalized criteria. For instance,
P3 spoke about a negative response example, but took a pause before relating the example to a potential
criteria: “Okay number 42 uses ‘it sucks’. This language could not be avoided [...] I do not know. They [the
data] should not be like that.”

This difficulty underscores a gap in current LLM evaluation methods: while users can distinguish
high-quality and flawed outputs, they often struggle to formalize their reasoning into explicit, actionable
2https://www.figma.com



criteria. Effective evaluation tools should provide mechanisms to help users articulate and refine their
rationales, such as prompting them with guiding questions, offering templates, or clustering similar
examples to reveal implicit patterns.

3.4.3. KI3: Criteria definition and validation were iterative and dynamic

The participants emphasized that defining and refining criteria was an inherently iterative process,
shaped by ambiguity, evolving requirements, and the need for validation. For instance, P3 observed
that “sometimes the requirements look good on paper,” but may not fit well with the range of data and the
user’s needs, highlighting the challenges posed by ambiguity in natural language definition for criteria.
Building on this, P4 underscored the importance of validation, suggesting that a system demonstrating
it “understood a criterion” was critical for refining its design and definition. P5 discussed the use of
versioning to “test different priority schemes,” acknowledging how criteria often drifted or evolved as
the participant gained more insights. These perspectives illustrate the nature of criteria generation as
an iterative and non-linear process. When the defined criteria failed to capture the data observed by
the participants, participants would introduce additional criteria to the list.

This dynamic process aligns with the concept of “criteria drift” [13], where users adjust and expand
their evaluation criteria as they encounter new data and evolving contexts. Participants also demon-
strated a bi-directional refinement process [22]. When criteria failed to capture observed behaviors,
participants introduced additional criteria to cover missing aspects. If data points challenged existing
criteria, participants were likely to redefine or adjust their criteria to better reflect their evaluation
needs. These findings suggest that LLM evaluation tools should support flexible, real-time adaptation
of criteria, allowing users to refine their definitions dynamically as they analyze new data.

3.4.4. KI4: Participants viewed criteria weighting as a dynamic and customizable process

We found that criteria can highly depend on other criteria. Participants frequently discussed the option
of weighting criteria and expressed a desire for flexibility in how they were applied. For instance,
P5 described criteria weights as “a lever for designers,” enabling them to experiment with different
importance levels before landing on a final implementation. This metaphor illustrates the perceived
utility of systems that allow dynamic adjustments to criteria weights based on context. Further,
participants suggested that ordinal or ranking structures were often more meaningful than equal
weighting, reflecting their need for nuanced evaluation methods. These sentiments were mentioned
together with the awareness of trade-offs between a set of criteria. P3 explained that “priority based
only on safety” was critical for high-stakes scenarios, reflecting a preference for frameworks that make
visible and explicitly handle trade-offs. Similarly, P5 noted that “conflicting criteria [could be] resolved by
prioritizing them”, emphasizing the need for mechanisms to balance competing goals.

These key insights illustrate how the criteria generation process is a complex, subjective, and dynamic
process. Although our participants described a high level of familiarity with using and evaluating LLMs,
the mental effort required by criteria generation is still notable.

3.5. Design Goals

We summarize the following key design goals derived from the findings of our formative study, which
guided the final design of MetricMate:

• DG1: Integrate users’ existing domain knowledge with dynamic data-driven insights from the
evaluation process by providing affordances to compare desirable and undesirable outputs, while
accommodating the subjective nature of criteria generation (Section 3.4.1).

• DG2: Provide structured workflows and guiding mechanisms (e.g., prompting strategies, com-
parative views, or templates) that help users explicitly define criteria and test them against real
examples (Section 3.4.2).



• DG3: Allow users to define, test, refine, and update criteria on the fly by supporting real-
time iteration, enabling users to adjust their criteria dynamically as they recognize ambiguities,
inconsistencies, or emerging patterns in model outputs (Section 3.4.3).

• DG4: Make trade-offs between criteria visible and allow users to understand and change defined
criteria (Section 3.4.4).

4. MetricMate System

Based on the design goals, we designed and implemented MetricMate, an interactive web-based
system to allow users to identify, define, and iterate on evaluation criteria for LLM-as-a-judge work-
flow [31]. MetricMate uses an LLM as a judge (e.g., OpenAI GPT, Meta Llama) and provides users
with different points of intervention and abstraction of data to define and calibrate high-level criteria.
The system combines a visual interface with the LLM-as-a-judge model to evaluate users’ uploaded data
and generate criteria recommendations. In the following subsections, we outline an example scenario
of MetricMate and highlight its key features.

A

C

B D

E

F

Figure 1: MetricMate leverages evaluation criteria by allowing users to define both high-criteria (A, B) and
executable assertions (C), which include sampled examples to provide users with multiple points of calibration.

4.1. Motivating User Scenario

Jane, a software developer responsible for creating an LLM-based system, wants to evaluate how
effectively her system’s model-generated outputs align with specific inputs she has collected. To
accomplish this, she employs MetricMate to systematically evaluate the outputs against her preferred
criteria. While Jane has some understanding of the core requirements for her use case, she is also keen
to identify criteria that may apply based on the current model’s behavior and outputs. To support this
process, she uploads her inputs and the corresponding LLM-generated outputs to MetricMate.

Jane begins by uploading her dataset, selecting an LLM-as-a-judge model to evaluate it, and evaluating
the quality of the outputs relative to the given inputs. As she inspects the data points, she observes
that some pairs meet her expectations while others fall short. To externalize her thought process, Jane



organizes the data into groups by dragging and dropping input-output pairs into different categories
(Fig. 1-A). Once she has grouped several data points, MetricMate suggests potential criteria that
might define the patterns in the grouped data. Jane can then click the add button (+) to incorporate the
suggested criteria into her evaluation (Fig. 1-B) or continue refining the groups by adding more data.

For each criterion she adds, Jane has the option to define assertions manually or request recommen-
dations generated by MetricMate. The system uses another LLM to generate detailed, concrete
assertions based on Jane’s high-level criterion definition. To refine and calibrate the assertions, Jane
explores a subset of representative examples by clicking on the unfold, which displays examples that
either pass or fail the assertions (Fig. 1-C). Jane can edit each assertion to ensure it aligns with her
intended definition. If she agrees with the assertion’s definition but disagrees with the interpretation
provided by the system’s LLM-as-a-judge model, she can click the ¸ button to modify the outcome for
the specific data point.

After iterating through the assertions and reviewing example data points, Jane confirms the refined
criterion by clicking the � button (Fig. 1-D) and the system’s LLM-as-a-judge model classifies the entire
dataset. To interpret the evaluation results, Jane hovers over the charts in the results view (Fig. 1-E).
The popup window provides her with a detailed breakdown of which assertions passed and which
failed, offering a nuanced understanding of the performance of the system’s LLM-as-a-judge model. For
a broader analytical perspective, Jane navigates to the evaluation analytics tab (Fig. 1-F), where she can
explore the results in an aggregated format to identify overarching trends and insights. After observing
the performance of the criteria or assertions, Jane can iterate on their definitions or calibrations until
her interpretations align with the interpretation of the system’s LLM-as-a-judge model.

4.2. Key Features

In this subsection, we outline the key features of MetricMate, which include suggesting data-driven
criteria, strategies to help users understand how the system’s LLM-as-a-judge model interprets these
criteria, and methods for iteratively calibrating and aligning those interpretations to better match user
expectations.

4.2.1. Supporting Affinity Diagramming for Comparative LLM Evaluation

Our formative study and prior research [12] demonstrate that subjective LLM evaluation is inherently
a comparative process. Users rely on identifying similarities and contrasts among data points and
their own experiences to develop generalizable evaluation criteria (DG1). Affinity diagramming is a
technique for organizing and prioritizing information by grouping similar items together [35]. This
heuristic plays a crucial role in the process of defining evaluation criteria by enabling users to draw
insights based on the perceived similarity or dissimilarity of data points.

To support this cognitive process during the evaluation of the model output, MetricMate provides
a feature that allows users to group data points they are uncertain about while reviewing the dataset.
After users add data points into groups (Fig. 1-A), we prompt the LLM to generate a list of contrasting
descriptions that represent the data points in every group (See Prompt 1). Users can then use these
descriptions to formulate their own criteria. The grouping facilitates the discovery of patterns among
similar or contrasting examples and allows users to define evaluation criteria based on the data points
they observe. By allowing users to set aside data during their uncertainty, we provide a framework that
enables them to disambiguate and create generalizable evaluation criteria.

4.2.2. Supporting Hierarchical Criteria Definition

LLM-as-a-judge approaches rely on natural language specification of user-defined criteria [18]. However,
natural language is inherently ambiguous, and criteria are subjective [36, 37]. Previous work attributes
the inconsistency in LLM evaluation results to the subjectivity of some criteria [38]. For example, a
criterion might be that the data is ‘ethical’ without clarifying which ethical principles or values should



be considered. Despite its high level of abstraction, this information can still be valuable to users, as the
meaning of ‘ethical’ in the context of the presented data can be subjective and nuanced.

Given a set of data points: <Groups of data points>, generate descriptions that clearly highlight
the distinguishing characteristics of each group, ensuring no overlap between the descriptions.
Analyze all groups of input-output pairs to identify unique patterns or themes within each group.
Emphasize contrasts between the groups that could indicate user preferences. Consolidate these
findings into clear and distinct descriptions for each group, ensuring they remain mutually
exclusive.

Prompt 1: Prompt for similarity heuristics

To address this issue, MetricMate provides users with a structured approach to defining high-level
criteria and breaking them down into executable assertions (DG2). After defining a criterion, users
can either create an assertion manually or request suggested assertions recommended by Metric-
Mate. It uses dynamically sampled data to generate suggested assertions for users. Specifically,
the system first generates text embeddings for both the criteria and the data points using OpenAI’s
text-embedding-3-large model. It then treats the criteria embeddings as central reference points
for clustering and computes the similarity between each data point’s embedding and these central em-
beddings. Finally, it assigns data points to clusters based on their similarity to the most relevant criteria
(details in Algorithm 1). This algorithm provides grouped data points that align closely with different
aspects of the criteria. MetricMate then prompts the LLM to summarize the clusters and generate
suggested assertions that best describe the characteristics of each cluster. These suggested assertions
are presented to the user for validation, where they can choose to include them in their criteria, edit
them for better alignment, or remove them altogether. Both suggested and manual assertions can be
expanded to show representative examples. Employing an LLM-as-a-judge approach on these examples
allows users to validate assertions and observe their application (prompt in Appendix A.3).

Algorithm 1 Dynamic Central-Point Clustering
Require: Dataset 𝐷 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, Central Point 𝐶 , Max Clusters 𝑘max
Ensure: Clusters {𝐶1, 𝐶2, . . . , 𝐶𝑘}, where 𝑘 ≤ 𝑘max

1: Compute distances 𝑑𝑖 ← distance(𝑥𝑖, 𝐶) for all 𝑥𝑖 ∈ 𝐷
2: Sort points in ascending order of 𝑑𝑖
3: Initialize clusters: 𝐶1, 𝐶2, . . . , 𝐶𝑘 ← ∅
4: Initialize 𝑘 ← 1 (starting with one cluster)
5: Assign the closest point to 𝐶1

6: for 𝑖 = 2 to 𝑛 do
7: Compute distance gap: Δ← 𝑑𝑖 − 𝑑𝑖−1

8: if Δ exceeds a threshold (e.g., mean gap, std deviation, or significant jump) then
9: if 𝑘 < 𝑘max then

10: Increment 𝑘: 𝑘 ← 𝑘 + 1
11: end if
12: end if
13: Assign 𝑥𝑖 to cluster 𝐶𝑘

14: end for
15: return {𝐶1, 𝐶2, . . . , 𝐶𝑘}

4.2.3. Criteria Calibration and Data Sampling for Alignment

To enable users to calibrate and iterate on their defined criteria, MetricMate provides the following
two criteria calibration features (DG3): (1) through assertion definition, and (2) through evaluation
outcomes. We define each one in the following subsections.

(1) Calibration Through Assertion Definition: If users disagree with the execution of defined
assertions (Fig 2-B) as seen in the sampled data (Fig 2-C), they can edit the natural language assertion
definitions to better match their preferences. When a user modifies an assertion, MetricMate re-
executes it on the sampled data, allowing the user to either accept the revised assertion or refine it
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Figure 2: MetricMate allows users to define high-level criteria (A) alongside lower-level executable asser-
tions (B). Each assertion has sampled data associated with it (C). Users can refine criteria definitions by iteratively
modifying assertions and observing their impact on the sampled data.

A

B

Figure 3: Using MetricMate users can view the individual results for each data point (A) as well as the
aggregated evaluation result over the whole data (B).

further until the recommendation of the system’s LLM-as-a-judge model aligns with the user’s intent.
This interactive process enables users to iteratively refine assertion definitions by experimenting with
different phrasings. By reviewing assertion executions on validation data, users can ensure the system
accurately captures and applies their intended criteria across the dataset.

(2) Calibration Through Evaluation Outcomes: Each sampled data point and the execution results
are used as few-shot examples when applying the criteria to the entire dataset. Previous research shows
that few-shot prompting enhances the LLM’s ability to follow instructions by leveraging examples to



guide its responses, improving consistency in evaluation [39]. Beyond editing assertions, users can also
directly modify the system’s LLM-as-a-judge model’s evaluation outcomes on the sampled validation
data (Fig 2-C). As they refine the system’s judgments, these corrected data points are incorporated into
MetricMate’s final execution through few-shot learning (See prompt in Appendix A.3).

4.2.4. Support Individual and Aggregated Views of the Evaluation Execution Results

Evaluating LLM outputs in an LLM-as-a-judge pipeline resembles interactive machine learning (ML)
approaches in which users update and align ML models by observing outputs and providing feedback
[40]. In this bi-directional interaction, users validate the model’s outputs or adjust their interaction
strategies based on the model’s responses [22]. Our formative study further highlights that users
perceive the criteria generation process as dynamic and iterative.

To support the user’s sense-making and understanding of their defined criteria and assertions,
MetricMate provides two main views to visualize the evaluation results (Fig. 3). The first one allows
users to see the evaluation results for each data point (Fig. 3-A). The second view shows aggregated
evaluation results using radar plot-based visualization (Fig. 3-B), allowing users to analyze the trade-
offs across each criterion’s assertions and identify potential misalignment between their expectations
and evaluation results (DG4). Both views enable users to compare multiple outcomes, providing a
comparative sense-making and a better understanding of how the system’s LLM-as-a-judge behaves [41].

4.3. Implementation

We built this interactive web application with ReactJS3. The backend server uses Python’s FastAPI4

library to facilitate communication between OpenAI’s API and the frontend. The back-end integrates
OpenAI’s GPT-4o model through API calls and utilizes OpenAI’s text-embedding-3-large model
to compute embeddings for the data and user-defined criteria. We use OpenAI’s GPT-4o model as the
LLM-as-a-judge model with prompt adopted from Kim et al. [21] (full prompt in Appendix A.3).

5. Conclusion

By supporting key processes from users’ natural workflow in the criteria generation process, Metric-
Mate facilitates the use of LLMs for evaluation purposes, allowing users to create criteria that better
align with their intentions. Suggesting criteria from user-defined desirable and undesirable outputs, as
well as calibrating to users’ expectations of criteria evaluation results through a hierarchical criteria
breakdown, will help users define satisfying criteria iteratively.

Our next steps include conducting a formal user study to examine the effectiveness of MetricMate
with different evaluation tasks and datasets. We will evaluate this system against a baseline system
that only affords criteria creation, editing, and testing. We hope MetricMate can serve as a valuable
resource for evaluators, software developers, product managers, and annotation managers seeking to
automate the analysis of complex, highly contextual datasets.
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A. Appendix

A.1. Formative Study Participants

Participant

ID

Gender Education Level Occupation

Years of LLM

Experience

LLM Previously Used

P1 Female Master’s Degree PhD student 1-2 years GPT
P2 Male Doctorate PhD student 1-2 years GPT,Claude, Llama, Gemini
P3 Male Bachelor’s Degree Research Software Engineer None None
P4 Male Bachelor’s Degree Software Engineering Director 1-2 years GPT, Llama, Other
P5 Female Master’s Degree Data Engineer Less than 1 year GPT, Llama
P6 Male Master’s Degree Research Software Engineer 1-2 years GPT, Llama, Gemini

Table 1

Formative participant demographic data

A.2. Data Generation Prompts

You are a patient-intake bot. You will introduce yourself as a physician assistant bot whose role is
to ask the patient some questions about their visit. Your role is to ask the user a followup question
based on their input in a medically professional manner, one question at a time. Do not make
medical recommendations to the user. Input:input

Prompt 2: Prompt to generate outputs as a patient intake bot.

A.3. Prompts Used for LLM-as-a-judge model

You are a helpful assistant that can check the quality of a data point based on a list of provided
requirements. You can objectively evaluate the output on the given criteria based on its quality
of responses by assessing how well the responses satisfy the given requirements in the criteria
and assertion. The requirements will have examples that satisfy (pass) the requirements and
examples that fail. You should provide comprehensive feedback on the responses according to the
criteria and provide detailed justification for your feedback. If you refer to specific fragments of
the responses in your feedback, you should also return these fragments as evidence. You should
return your final answer as a valid JSON object of the following format: JSON

Prompt 3: Prompt used to generate evaluation results
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