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Abstract
We show that an agent with a simple interface, used sparingly, but proactively in alerting trained pilots
of aircraft in simulated situations can dramatically improve aviation safety in recreated fatal accidents.
However, naive implementation can increase the number of fatal accidents due to hallucinations from
large language models. In our simulated evaluation of 23 pilots, we explore the utility and pitfalls of
intelligent user interfaces in the cockpit to surprising results–ones that should serve as a cautionary
tale to integrating seemingly intelligent systems in high-pressure situations. We then demonstrate that
experienced pilots faced with simulated scenarios closely recreating real accidents benefit from such a
system. The effects are remarkable: hardly any pilots would have survived in the control group, whereas
almost all survived among those that used our proactive accident-aware agent. The control group was
given access to a state-of-the-art audio LLM with an extensive aviation RAG, which even led directly to
two crashes in our experiment, the first such result.

1. Introduction

Aviation depends on complex human-machine cooperation enabled by user interfaces that
convey crucial information and manage cognitive load. Alone, these systems are clear, but in
conjunction with multiple system failures, they can overwhelm even experienced pilots with
cascading alerts, as observed in the Air France Flight 447 and Qantas Flight 32 accidents [1, 2].
These bototm-up systems focus on individual behaviors, often failing to highlight the root cause
of problems, leading to cognitive overload in high-stress situations.

To address this, we introduce LISA (Lightweight Interaction and Storytelling Archive), a
general-purpose, top-down alerting system that compares aircraft states to past accidents and
provides concise, actionable alerts. We tested LISA against a control group using a general-
purpose, voice-activated Large Language Model (LLM) with Retrieval-Augmented Generation
(RAG) tuned for aviation knowledge. Pilots with LISA avoided most crashes, while those using
the RAG LLM overwhelmingly failed. The study highlights the critical importance of interface
design: tailored, succinct interventions significantly outperform general-purpose AI when
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responding to time-critical environments, such as aviation.
Additionally, we detail an experimental protocol for simulating aviation accidents, allowing

future research on intelligent interface development in aviation. The findings caution against
deploying generic AI systems without rigorous testing, as seemingly some AI behaviors, such as
hallucinations, can have catastrophic consequences in critical domains like aviation. This work
underscores the need for domain-specific solutions to improve safety and decision-making.

Our contributions are:
1. A new aviation interface with an intelligent agent trained on past accidents for the cockpit,

LISA (the Lightweight Interaction and Storytelling Archive).
2. A demonstration of a naive, but plausible, implementation of a RAG LLM interface for

aviation and its pitfalls.
3. A large-scale simulation framework for evaluating similar interfaces.
4. A demonstration that pilots remain susceptible to past accident conditions.
5. A description of components in interfaces that improve aviation safety and possibly other

high-stress environments.
6. The first report that LLM hallucinations in high-stress environments can result in simu-

lated fatal aviation accidents.

2. Related Work

HFACS. The Human Factors Analysis and Classification System (HFACS) is a framework used
to analyze human error in aviation and other high-risk industries. Derived from James Reason’s
“Swiss Cheese Model”[3], HFACS categorizes errors into four levels: unsafe acts, preconditions
for unsafe acts, unsafe supervision, and organizational influences. Developed in 2001 for the
U.S. Navy and Marine Corps, HFACS has since been applied in civil aviation to investigate
accidents[4]. Studies show that 60-80% of aviation accidents are caused by human error, often
due to supervisory or organizational failures rather than individual mistakes[5]. With the rise of
automation and AI in high-risk industries, HFACS is now being used to analyze human-machine
interfaces and address errors associated with autonomous systems[6].

Accident Simulation. Simulated flight environments are vital for aviation safety investiga-
tions, enabling the analysis of pilot performance, decision-making, and accident hypotheses.
They are often used in NTSB reports to determine the root cause of accidents[7]. Notable exam-
ples include US Airways Flight 1549, or the "Miracle on the Hudson"[8], and Air France Flight
447[1], where simulations revealed pilot confusion following autopilot disconnection. Likewise,
analysis of Colgan Air Flight 3407 in 2009 led to improved stall recovery training[9]. These
cases highlight the role of simulations in understanding human factors, such as workload, stress,
and decision-making during emergencies, and their impact on aviation safety advancements.

3. Experimental Setup

All tests were performed in the same physical location. Pilots are first taken to the planning
room where they are given a short description of the scenario (type of flight, aircraft, take-off
and destination airport) and the weather conditions. Pilots have an unlimited amount of time to



plan their intended flight for the simulated scenario. They have access to ForeFlight, a popular
flight planning tool, and are permitted to use a web browser to search for any information they
deem useful. They are also given access to paper planning charts to plot their route if they
wish to use a more traditional form of flight planning. ForeFlight comes pre-loaded with the
Pilot Operating Handbook (POH) for the relevant aircraft, a Beech G36. The POH contains
information regarding aircraft performance and limitations. Such planning before a flight is
routine and each pilot has their own procedure for doing so. Our goal was to facilitate this
process as a pilot would normally engage with it.

After the pilot finalizes the flight planning process, they proceed to the simulator room
(shown in fig. 1) to commence the flight.

We simulated our flights with commodity hardware and Microsoft Flight Simulator 2020.
This simulator is very popular with Flight Sim enthusiasts for its aircraft realism and expansive
world, and is considered one of the best in-home flight simulators available.

Figure 1: The flight room is where participants
are tested under each scenario in MSFS.
Each primary control surface has its
own dedicated external device that
mimics the tactile feel of real-world
flight controls.

Pilots interact with the simulator through the con-
trols on the desk in front of them. A Honeycomb Alpha
Yoke provides control input for pitch and roll axes of
the aircraft, but also has added functions for aircraft
pitch-trim, lights, and engine starter. To the right of
the yoke is the Logitech Throttle Quadrant with three
levers. From right to left they are the air-fuel mixture
setting, the propeller RPM, and the engine throttle. Be-
low the levers are buttons to raise and lower the aircraft
landing gear. Below the yoke are Logitech Rudder Ped-
als, largely occluded by the chair in fig. 1, which control
the yaw axis of the aircraft as well as the wheel-brakes.

On the left is a RealSimGear G1000 panel, that dis-
plays various instruments from the cockpit on a cohe-
sive display. It simulates a real G1000 glass cockpit as
found in many high-end general aviation and some commercial aircraft. Pilots were instructed
not to use the autopilot during testing, as it was not relevant to either of the scenarios we tested.
The pilots wore push-to-talk headphones to communicate with or receive aural alerts from the
assistant.

A second identical station to the right is also shown, but all experiments took place with a
single pilot at the controls, so this station is not used.

3.1. Baseline LLM with Aviation RAG

The control baseline assistant is a state-of-the-art LLM, Claude 3 Opus, extended with an aviation
RAG that contained manuals of the relevant aircraft, videos about how to fly correctly collected
from YouTube (which is a rich resource of information), and information about relevant runways
and airspace classifications from published aviation documents. The RAG ensures that the
same documents that were ingested into LISA were also available to the baseline. Claude was
provided with a custom system prompt describing the aircraft being flown and the intended
departure and arrival airports. Participants could interact with the baseline either via text in a



Figure 2: LISA outputs are presented on the right of the screen while the participant flies in the simulator. First LISA
warns of the dangers of taking off from runway 9, then reminds the pilot to set the propeller and flaps before takeoff. Once
off the ground, LISA states an ideal speed for climb, reminds the pilot to raise the landing gear, then provides time-critical
alerts related to airspeed.

prompt window next to the flight simulator, or via a speech-to-text interface with Whisper [10].
Our instructions encouraged participants to use the system, but they were not required to use
the system or listen to its recommendations.

We chose this baseline for two reasons. First, such systems are trivially buildable today
and invariably, they will be proposed for cockpit operations. Knowing if they are effective
as chat-based agents in avoiding accidents is critical. Second, without a baseline system, the
experiment would have been unblinded because the participants would have been aware that
they were testing an AI system for aviation.

3.2. LISA — Our Assistant

We developed LISA to be a proactive agent that interprets aircraft systems in a wholistic, top-
down approach, from which it actively provides recommendations to the pilot for safe operation.
LISA provides information that the pilot needs to know based on the state of the flight and the
airplane rather than by responding to questions from the pilot. This is unlike the baseline and
other chat agents which are reactive, and are driven by user interactions. LISA provides text and
aural warnings to the pilot. To simplify the experimental variables, we did not provide a blend
of chat-based reactive systems and a proactive LISA-based system, which actively provides
suggestions to the pilot based on current conditions. Although, as will be seen later, this would
not have made a difference: LISA alone avoided almost all accidents.

LISA is connected to the flight simulator through a custom plugin. It has access to the basic
flight parameters (location, airspeed, attitude, bank angle, heading, fuel gauges, engine RPM,
and oil pressure), just like the pilot does, with no privileged access to systems the pilot might
not be able to know.

Internally, LISA reasons by reference to prior accident reports from the NTSB and near-



accident reports from ASRS, using a combination of rules-based logic and machine learning.
The visual presentation of LISA and the baseline LLM are identical, and both use Whisper to
speak to users as well as write responses. Figure 2 shows several alerts from LISA for one
participant during scenario 2.

4. Flight Scenarios

We tested two scenarios mirroring two real accidents which took place under similar conditions
in mountainous terrain [11, 12]. The conditions of our scenarios were designed specifically to
mirror these two accidents, as well as other aviation accidents in mountainous conditions. For
simplicity, both our scenarios take place at the Telluride Regional Airport (KTEX). To ensure
that the scenarios are sufficiently difficult, we set the Outside Air Temperature (OAT) to 39°C.
This corresponds to a density altitude of 14,065 feet. We loaded the aircraft to its maximum legal
take-off weight, which places the aircraft at the limits of its performance envelope for take-off.
We configured a 10 knot wind from the east to encourage pilots to take off from Runway 09, a
very dangerous and fateful decision, but one that is easy to overlook. Runway 27 is the safer
option, despite the unfavorable winds.

Our volunteers are asked to play the role of a commercial pilot. This provides a level of
urgency to the flight. However, if a pilot was uncomfortable with any part of a flight, refusing
to fly would be a natural and safe choice. In training, pilots are encouraged to do so when
conditions exceed their personal comfort level. We only report the results of pilots who opted
to fly the scenario despite the conditions.

4.1. Scenario 1

To pass Scenario 1, pilots encounter an engine failure on take-off. In the simulator, we engineered
a partial failure of the engine at the beginning of the scenario. Given the environmental
conditions, this means that a climb after take-off becomes nearly impossible even for the most
skilled pilot. This failure is observable from the pilot’s perspective, but only by observing the
reduction in power by way of the tachometer. Under normal operations, the G36 indicates 2,650
to 2,700 RPMs on take-off; however, in this case, the engine only indicates 2,500 RPMs.

A participant is considered to have failed the scenario if the pilot attempts take-off.

4.2. Scenario 2

Immediately following Scenario 1, the simulator is reset. This time, the aircraft is mechanically
sound throughout the scenario. The aircraft is placed on the departure end of Runway 09
at KTEX. Despite the fact that the winds favor taking off from Runway 09, this is far more
dangerous than departing from the opposite direction, Runway 27, due to obstacles, a 0.4%
upslope, and the presence of a box canyon immediately after departure from Runway 09.

Next, the pilots must overcome their unfamiliarity with the aircraft. Pilots must utilize the
419 page Pilot Operating Handbook (POH) in order to determine that the flaps should be set to
UP for take-off in the simulated conditions. This aircraft procedure is counterintuitive to what
most pilots learn in commonly available training aircraft.



Figure 3: Distribution of pilot certificates by type for both the US population and for this paper’s study. Private pilots
are over-represented and Airline pilots are under-represented by the study volunteers. Student pilots are intentionally
omitted from the first chart for greater ease in visual comparison.

If the pilot correctly chooses to take off on Runway 27 and set the flaps to UP, they still need
to contend with the reduced performance due to the very high density altitude. A theoretical
500 foot per minute climb is possible, but with the addition of turbulence and imperfect control
inputs from pilots, it is very easy for a pilot to find themselves momentarily unable to climb.
Close to the ground, especially right after take-off, this usually triggers an instinctive, but
often fatal, reaction: the pilot pulls back on the control yoke in an effort to climb. This reduces
airspeed, further reducing the rate of climb. Unchecked, this intuitive, but wrong, reaction leads
to a feedback loop and an eventual stall followed by impact with terrain.

Once the pilot leaves the runway environment and has climbed their first 1,000 feet of altitude,
flying becomes psychologically easier as the ground is further away. However, the participant
has one final challenge to overcome: climbing over mountainous terrain that rises more than
14,000 feet to the east. Due to the extreme temperatures combined with the aircraft capabilities,
it is only capable of maintaining a mediocre 300-400 foot per minute climb.

For the purposes of the experiment, the scenario ends when the pilot reaches 14,500 feet,
which is high enough to clear the surrounding terrain.

5. Experiments

The experiment itself is a single-blind study. Upon arrival at the testing facility, participants are
informed that two systems have been developed and they have been randomly assigned to one
of those systems. They are told that both systems use some form of automated assistance and
that they will be evaluating how well that system helped them in their flight.

As part of the recruitment process, all participants were informed that they would participate
in simulated flights with an AI assistant in scenarios based on real aviation accidents. However,
the solution to those scenarios is trivial if presented with the right information.



Figure 4: Left: Age of participants shown in bins of 10 years each. Our Assistant is tested against the oldest participant
in the group. Right: Hours of flight experience for each participant. Our Assistant is tested against the two most
inexperienced pilots in the group.

5.1. Participants

Participants were recruited from the local aviation community, with many pilots eager to
contribute to aviation safety research. The ease of recruitment suggests potential for future
studies. Volunteers were randomly assigned to either the control baseline or LISA groups, with
assignments finalized on the evaluation day to accommodate scheduling flexibility.

The U.S. has over 800,000 active pilots, categorized into Student, Private, Commercial, and
Airline Transportation Pilots, with 39% being student pilots[13]. Our recruitment focused on
pilots with at least a Private Pilot certificate, though students were not excluded.

From an estimated 7,000 pilots in the study’s metropolitan area, 23 volunteered. The study’s
demographic and the broader pilot population are detailed in fig. 3. Women, who comprise less
than 7% of non-student pilots, were overrepresented with three female volunteers participating
in our study. The average age of U.S. pilots is 42.8, while our volunteers averaged 49.85 years
old (fig. 4). There is no age limit for pilots in the US.

Requirements for the three major licenses vary based on demonstrated flying aptitude,
knowledge, and raw flight time. A pilot must obtain a minimum amount of flight time to test
for the next license; 40 hours for Private, 250 hours for Commercial, and 1,500 hours for Airline.
Thus, license is held as a common proxy for pilot experience and is shown in fig. 4.

Although the baseline and LISA groups differed slightly in age and experience, these differ-
ences were not statistically significant in affecting the study results.

5.2. Participant Instructions

Twenty-four hours prior to the evaluation, participants are informed that they will be flying a
Beech G36 in a simulator. At the testing facility, participants are granted the opportunity to
initially fly the simulator for ten minutes in a Cessna 172 departing from a local major airport
that is near sea level. This time allows pilots to familiarize themselves with the physical controls,
locations of the buttons, and how the simulator responds to inputs. Participants are allowed to
do anything they wish with this time, with no stated goals or objectives provided for them.

After practice flights, each participant goes to the planning room where they are given a
simple instruction: You are a commercial pilot for Mountain Air Cargo flying a Beech G36 at
max gross weight from Telluride Airport (KTEX) to Mineral County Airport (C24). Your goal is
to complete the flight safely. This instruction is accompanied by the following Meteorological
Aerodrome Report (METAR), a cryptic text containing the weather report that would only
be interpretable by a trained pilot: METAR KTEX [Current Date and Time]Z AUTO



09010KT 10SM CLR A2992 RMK AO2. As described above, participants are allowed to use
any resource that they wish for flight planning. This also includes an off-the-shelf unmodified
Claude. Participants are allotted an unlimited amount of time for flight planning.

5.3. Simulated Flights

Once flight planning is complete, participants return to the flight simulator for Scenario 1. They
may only use one attempt to pass Scenario 1, and the only way to pass Scenario 1 successfully
is to reject take-off due to an engine malfunction.

Immediately following the conclusion of Scenario 1, the proctors inform the participant that
Scenario 1 involves an engine failure, and the correct answer was to reject take-off.

Then participants start Scenario 2. They are permitted up to two attempts to pass Scenario 2.
This is done to allow for additional familiarization with the flight simulator and eliminate that
as a source of failure for pilots. Flying in real life relies heavily on haptic feedback from the
aircraft, commonly referred to as “Flying by the seat of your pants.” Because there is very little
sensation given to the pilot coupled with the loss of peripheral vision, additional experience
with the simulator is necessary.

Once the participant either crashes twice or reaches 14,500 feet in altitude, Scenario 2 con-
cludes, and the participant takes a short post-flight survey.

The scenarios are completed in this order because scenario 2 naturally builds on scenario
1. Although it was not considered, it would have been possible to perform scenario 2 prior to
scenario 1, but we do not believe this order would have impacted the results of the experiment.

5.4. Survey and Feedback

The survey asks participants to rate the assistant’s helpfulness using the Likert Scale, with 1
being “Not Very Helpful” and 5 being “Very Helpful”. After this single question, they may write
additional freeform comments. Participants are then unblinded and informed of the system
they evaluated only after completing the survey. Some pilots deeply affected by their accidents
participated in a detailed exit interview. Weeks later, they reflected on their experience by
responding to all questions from the System Usability Scale (SUS)[14].

6. Results
The topline summary of each accident scenario is summarized in fig. 5. No participants using
the baseline succeeded in passing Scenario 1. In effect, all fell victim to some of the same blind
spots that caused the original real-world accident. Every pilot took off, experienced a loss of
control, and entered a deadly stall-spin, which resulted in impacting the ground at over 100
mph. This is despite having access to the baseline LLM. With our accident-aware system, LISA,
almost all pilots (80%) avoided the pitfalls of the scenario and would not have crashed.

In Scenario 2, only 36% of participants using the baseline reached 14,500 feet and cleared the
mountainous terrain, while the remaining 64% lost control and crashed shortly after takeoff. In
contrast, all participants using LISA safely climbed above 14,500 feet. Moreover, they achieved
this consistently safer and more efficiently, using 10.8% less time on average to reach the required
height, demonstrating enhanced efficiency due to LISA.



Figure 5: Results from each scenario divided by group. For each bar chart, Base-
line participants are on the left and LISA participants on the right.
All participants in the Baseline failed to identify the engine failure in
Scenario 1, and only some were able to successfully fly the aircraft to
14,500 feet in Scenario 2.

Interestingly, nine out of
the eleven baseline participants
chose not to use the baseline
LLM at all during scenario 2,
which is an indication of their
frustration and loss of trust in
the system after using it in sce-
nario 1. The two participants
that used the baseline for sce-
nario 2, received invalid infor-
mation that reduced the perfor-
mance of the aircraft and con-
tributed to the pilot’s loss of con-
trol and subsequent deadly impact with terrain. The LLM hallucinated the response to a question
regarding the least-optimal flap setting for take-off. Because the vast majority of trainer aircraft
exhibit improved take-off performance with the flaps slightly deployed, the LLM assumed that
this applied to the Beech G36. This confirmed the incorrect assumption that most pilots had,
which contributed to their accidents. In effect, the LLM made an already bad situation much
worse: a pilot who had doubts had them put to rest by a hallucinating LLM which then resulted
in a crash. This is the worst-case outcome for deploying such agents in cockpits, one that had
been feared before by aviation regulators.

We found no statistically significant factor (age, experience, recency of experience) other
than system used that explain the results of the experiments.

Figure 6: Participants were asked to answer the question
“Were the responses or suggestions provided by the
AI Assistant helpful?” using a Likert Scale of 1 being
“Not Very Helpful” and 5 being “Very Helpful”.

Pilots scored each system on a scale of 1 to
5 after each scenario. As expected, pilot opin-
ions of the system were correlated with their
own performance. LISA received much more
favorable scores compared to the baseline; see
fig. 6. Curiously, in the exit interview, outliers
that rated the baseline either a 3 or 4 did so
because they felt they didn’t engage with it
and thus could not accurately give it a score
and because they did not want to offend the
evaluation team. These effects explain why
the experiment needs to be blinded. One sub-

ject rated LISA as 1, “Not Very Helpful”. That subject, a new pilot, intentionally ignored advice
from the agent and then in their comments blamed the agent for not preventing the accidents.
Otherwise, the freeform feedback for LISA was overwhelmingly positive.

System Usability Scale (SUS) [14] questions were asked after the experiment was unblinded,
but their scores aligned well with the previous single Likert scale helpfulness question. This is
a well-known effect where even binary net promoter scores, NPS, correlate highly with SUS.
We found a strong positive correlation, 0.81, between the single helpfulness question and the
ten-question SUS survey.



7. Conclusion

We find that the thoughtful implementation of intelligent user interfaces is incredibly important
to their effectiveness and impacts on safety in high-stress environments like those found in
aviation. Based on the results of our study, and from the solicited feedback of participants, we
find that good interface for these environments is one that is succinct, accurate, and timely.
Many users of the baseline simply stopped using the LLM after a few interactions, and many
became frustrated with its verbosity, which is a common feature of modern LLMs today.

We also find that alerting systems that aggregate and present information in a top-down
systems-focus approach are superior when timely decisions are the difference between life and
death. Current bottom-up, systems-focused approaches that rely on users to interpret the root
cause of multiple, sometimes seemingly disjointed system failures can cause cognitive overload.
Once cognitive overload is encountered, humans fall back on instinctive responses that are
often catastrophically wrong for environments for which humans are not adapted.

Finally, we provide a word of caution: just because a system is knowledgeable, appears to
be helpful, and is even often helpful, does not mean that it should be deployed in high-stress
situations. Our results show that providing the wrong answer to a question or offering the
wrong information can lead to fatal outcomes. Systems like LLMs are inherently susceptible to
hallucinations, and no current approach can prevent this. Their deployment is not a neutral
decision with only upside; it is a deliberate choice to trust these systems that can have disastrous
downsides. We hope that this can inform policymakers as the integration between humans and
intelligent agents progresses.
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