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Abstract
We demonstrate three new user interface security capabilities at the individual, group, and organizational
level that are enabled by LLMs. Together, these ensure that information is securely managed and does
not leak intentionally or unintentionally. All three capabilities are built on top of traditional operating
system permissions and operate similarly. The first capability allows an LLM to provide targeted answers
only about the resources which a user has access to. Instead of retraining the LLM from scratch for
each user, which would be prohibitively expensive, we synthesize at runtime an LLM that only has
the knowledge that that user has access to. The group level capability allows models to monitor a
conversation, either between humans and machines or just between a group of humans, and determines
if any of the information being exchanged is above the permission levels of anyone in the group. The
third capability monitors an entire organization and adjudicates if any information is sensitive before it
leaves the organization. These capabilities make LLMs more like traditional programs — they reconfigure
to have certain permissions at instantiation time. Together, they create a safer environment and allow
for the deployment of LLMs into highly sensitive spaces.

1. Introduction

Traditional interfaces provide a fairly simple security guarantee: that process isolation in
combination with filesystem permission bits make a program behave as if it only has access
to the files and memory that a user has access to. The same program behaves differently for
different users. As LLMs proliferate and become integrated into user interfaces, supporting this
kind of traditional computer security becomes difficult. The best models must be trained or
fine-tuned on a user’s data, yet training cannot be performed when a process starts. Alternatives
like employing RAG, Retrieval-Augmented Generation, don’t provide the same integration and
knowledge of a user’s files. We demonstrate how to apply this traditional idea of security to
LLMs by building a compositional model that reconfigures itself at runtime for every user.

At present, the best that models can offer are imperfect guardrails, which attempt to detect
unauthorized or malicious use, but can easily be jailbroken [1, 2, 3, 4]. For enterprises where
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security must be guaranteed by local laws and regulations, such as finance, healthcare and
national security, guardrails are not legally sufficient to prevent the leakage of sensitive infor-
mation. No prior work offers a method that guarantees data security for information silos that
must be stored separately and maintain credential-based access controls, which severely limits
LLM adoption in security-focused fields. We provide the first method to build provably secure
LLMs by reflecting the compositionality that allows LLMs to be as secure as credential-based
security.

We consider the scenario where an organization has a set, 𝑁 , containing separate and
confidential data silos that must be kept separate for legal purposes, but there are also users
who have access to some arbitrary subset of 𝑁 . We make the following assertions of properties
that must be present to call a model secure:

1. Can accurately respond to prompts on data that the user already has verified access-
credentials

2. Can accurately response to prompts that require the intersection of segregated data silos
3. Will provably never reveal information to an unauthorized user

Trivially, one could fine-tune many models on the power set of 𝑁 , but this has a major flaw.
Using this trivial method, the number of models required to satisfy our Secure Model Properties
is 2𝑛, or 2𝑛−1 if we reasonably do not consider the empty set. This quickly becomes impractical
for values of 𝑛 > 4. Instead, we show how to achieve the same goals with a linear number of
LLM fine-tunings (fig. 1). While using only one fine tuned model per silo, we can configure and
compose a model specific to the user’s permissions at runtime.
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Figure 1: Assuming a perfect compositional function 𝑓 that
runs at inference time, we propose a method that
guarantees information security. Each model is fine-
tuned on a previously segregated information silo.
The user’s credentials are validated using traditional
security methods, and inference is only run on mod-
els for which the user has verified access. The out-
puts of each fine-tuned model are composed at in-
ference time with the function 𝑓 , and that single
composition is passed to the user. Thus, SecureLLM
reduces the problem of LLM security to that of exist-
ing information security systems. Existing compo-
sitional fine-tuning methods fail in this challenging
environment. SecureLLM presents a new method
that better approximates the function 𝑓 .

While other methods have demonstrated
compositionality for similar tasks, there are
none that have been designed for situations
where information silos are entirely orthog-
onal and disjoint from one another. To rigor-
ously demonstrate the compositional proper-
ties of SecureLLM, we formulate a new compo-
sitional task using natural-language-to-SQL
translation. In this task, each SQL schema is
entirely disjoint and prompts do not contain
the exact table or column name, thus requir-
ing the model to have perfect parameterized
knowledge of the schema. SQL translation of-
fers an extreme test of compositionality, and
only serves to demonstrate in an easily veri-
fiable manner the efficacy of SecureLLM com-
pared to other compositional methods. For
practical SQL translation of the same task, it
is simply easier to pass the siloed database
schemas as part of the prompt to achieve the
same result.

Another important aspect of information security is detecting when information has poten-
tially leaked and preventing it, otherwise known as Data Loss Prevention (DLP). By leveraging



aspects of model perplexity, we deploy an unsupervised method of detecting leaks that requires
no additional training and a lightweight supervised method for classifying those leaks. We
present a new task called Leak Identification based on the refinement of Anomaly Detection
(AD) where the primary purpose is to identify the source of a given sample from several other
possible sources that also includes the intersection of some, none, or all of the sources.

Our contributions are:
1. a new compositional task for LLMs where they are reconfigured at runtime to behave as

if they were trained only on the data that users have access to,
2. a new task where LLMs must detect data leaks without being jointly trained on all of the

secure data,
3. a refinement of that task where they must identify the source of the data leak.

2. Related Work

Model Composition. Recent works like LoraHub [5] composes fine-tunings. Given a target
task, LoraHub selects a set of fine-tunings, Low Rank Adapters (LoRAs) [6], that are added
together. However, LoraHub is designed for soft tasks, where a model already tends to perform
well. Most methods like PEM Addition use arithmetic operations directly on the weights [7] of
adapters like LoRA fine-tunings [6].

Data Loss Prevention. The study of Data Loss Prevention (DLP) is an information security
field that specifically covers the creation of applications and methods to detect or prevent the
leak of sensitive information to an unauthorized user, and is the primary focus of organizational
information security systems. Most organizations use some form of classifiers with TF-IDF
implementations in order to detect when a data loss or leak has occurred [8]. However, a recent
paper shows that machine learning approaches outperform other methods used in DLP [9].
Because DLP is inclusive of other information security practices like firewalls or VPNs, we
narrow our focus on methods of detecting leaks as the primary mechanism to prevent leaks. In
this way, our DLP method is closely aligned to Anomaly Detection.

Anomaly Detection (AD) involves identifying patterns or instances in data that deviate
significantly from expected behavior. In the context of text generation, AD aims to identify
generated text that does not conform to the patterns or characteristics of the training data
[10]. Thus, measuring perplexity across various combinations of information silos is a form
of AD. Since perplexity reflects the model’s uncertainty in predicting text, a higher perplexity
score would signify detection of anomalies. One-Class Support Vector Machines (OC-SVM) are
popular trained, unsupervised classifiers [11]. An OC-SVM variant called Deep-SVDD boasts
the best performance and combines machine learning with traditional OC-SVM [12].

3. Framework

SecureLLM takes several fine-tunings, each trained on distinct information silos, and composes
them at inference time. The goal of the composed model is to answer questions about both
individual silos and questions that span silos. For example, in our case, a natural-language
to SQL LLM would need to be able to generate joins across the databases of multiple silos to



answer complex questions that have never been seen at training time. This is a trivial task
for humans, but one that challenges LLMs. We go a step further: not only must such an LLM
work, it must operate through a combination of fine-tunings, i.e., not only has it never seen
combinations of silos at training time, its fine tunings have only ever seen a single silo each.
This challenges and defeats current fine-tuning methods. The upshot of this difficult task is that
it solves several key security problems for LLMs.

Given 𝑁 data silos {𝑆1, 𝑆2, · · · , 𝑆𝑁} and 𝑁 fine-tuned LLMs {𝑀1,𝑀2, · · · ,𝑀𝑁} where
𝑀𝑖 has been fine-tuned on the data silo 𝑆𝑖, and given a set of target indices 𝑇 ⊆ {1, 2, · · · , 𝑁},
the goal is to obtain a composed model 𝑀𝑇 := 𝑀𝑇1 ⊕ · · · ⊕𝑀𝑇|𝑇 | at inference time with no
additional training such that 𝑀𝑇 is able to correctly answer any question about the information
contained in the target silos 𝑆𝑖, ∀𝑖 ∈ 𝑇 and should fail to answer any question about information
not contained in the target silos 𝑆𝑗 ,∀𝑗 /∈ 𝑇 as to not leak any information that the desired model
𝑀𝑇 is not intended to have. Additionally, the target model 𝑀𝑇 should be able to answer new
union questions 𝑞𝑢𝑛𝑖𝑜𝑛,𝑖𝑗 ∈ 𝑆𝑖∪𝑗 where 𝑖 ∈ 𝑇 ∧ 𝑗 ∈ 𝑇 where the question relies on information
contained in both 𝑆𝑖 and 𝑆𝑗 . We note that the union questions 𝑞𝑢𝑛𝑖𝑜𝑛,𝑖𝑗 are not answerable
by any individual data silos, thus none of the individual models 𝑀𝑖 are able to answer any
union questions while a successfully composed model should be able to answer such questions
without the need of any training.

It is critical that the composed model 𝑀𝑇 has no knowledge of any information silo that the
user is not authorized to access, i.e. data silos 𝑆𝑖, 𝑖 /∈ 𝑇 . Without this condition, a trivial solution
is to train a single model 𝑀𝐴𝑙𝑙 on all data silos {1, · · · , 𝑁} however this approach is susceptible
to leaking confidential information as the model would have knowledge of information contained
in silos that users are not authorized to view and violates the third principle outlined in the
introduction. We refer to 𝑀𝐴𝑙𝑙 as the Exponential Model that has seen every combination and
such a model is used as an insecure upper bound to performance in our experiments.

We compare the following existing methods for composing fine-tunings against our methods:
LoraHub [5], PEM Addition [7].We also considered Weight Averaging [13], Energy Based
Modeling [14] and Concatenation [15], but each method performed much worse at our secure
composition task when compared to LoraHub and PEM Addition.

Ours: Maximum Difference For each adapter, we select the embeddings from each fine-
tuning with the strongest response (either positive or negative) at each attention layer. In order
to accomplish this, each LoRA fine-tuning is evaluated separately on input 𝑥. Then a mask of
zeros with the same dimension as the output is created, ℎ𝑚𝑎𝑥, to aggregate LoRA responses. For
each LoRA fine-tuning response 𝐿𝑖, an element-wise comparison is made, and if the absolute
values of the fine-tuning response is greater than the aggregated response, then the signed
response from that fine-tuning replaces the element in the aggregated response.

Ours: Logit Composition Given fine-tunings to compose 𝑀1, · · · ,𝑀𝑛 and input 𝑥, we
define logit composition as performing the complete forward pass for each fine-tuning indepen-
dently to obtain logit probabilities. We select the maximum value of each logit.

Compositional Perplexity We can use model perplexity starting from plain-text to evaluate
the likelihood that it could come from a given composed model 𝑀𝑇 . For instance, let 𝑀𝐺 be a
general knowledge model that was autoregressively trained on a very large dataset. Given 𝑛



data silos {𝑆1, 𝑆2, · · · , 𝑆𝑛}, 𝑛 fine-tuned LLMs {𝑀1,𝑀2, · · · ,𝑀𝑛} are created. By iteratively
evaluating the perplexity of a plain-text statement ℎ0, we can determine if ℎ0 ∈ 𝑆𝑖,∀𝑖.

Conversion from plain-text to logits used to compute perplexity is done by tokenizing the
plain-text, and then assigning a value of 1 to the corresponding index 𝑖 of the logit vector 𝑋1×𝑁

for each token 𝑘 and 0 for every other index in the logit vector.
The Compositional Perplexity Score is computed using the natural exponent of the fine-tuned

loss minus the vanilla model loss. For these experiments we use Llama-2-7b as are baseline
vanilla model, and we fine tune a LoRA adapter for each data silo, 𝑆1, 𝑆2, 𝑆3. The vanilla model
is defined as 𝑓𝜃 , the fine-tuned as 𝑓𝜃′ , the labels as 𝑧, and model loss as ℓ(𝑓𝜃, 𝑧). The anomaly

score 𝑆𝐿𝐿𝑀 for LLM Perplexity is defined as 𝑆𝐿𝐿𝑀 = −𝑒ℓ(𝑓𝜃′ ,𝑧)

𝑒ℓ(𝑓𝜃,𝑧)

How inference-time composition protects security SecureLLM ensures that only the fine-
tuned adapters corresponding to silos a user is actually permitted to access are loaded into the
model at runtime. Ideally, this is controlled by standard enterprise security checks (e.g. verifying
user credentials and group memberships). If a user does not have the necessary privileges for
a particular silo, that silo’s adapter is never applied and it is nevery accessed from the user’s
perspective. As a result, the composed model simply lacks the relevant parameters for that silo’s
knowledge—and, crucially, cannot leak it. This arrangement differs from a single “fully-trained”
model that has all data in its weights and must rely on imperfect guardrails to block disallowed
content. Evan RAG often requires carefully engineered prompts and adjacency metadata,
can struggle to combine knowledge from disjoint resources, and may not preserve the same
parametric “fluency” for complex tasks where the LLM must have deeper learned representations.
By contrast, SecureLLM never even loads or sums the parameters for unauthorized silos, so
there is no risk of prompting the model to “jailbreak” that disallowed knowledge.

4. Data generation

While there are countless other NL2SQL datasets, none specifically focus on SQL queries for
disjoint and unrelated databases silos. We present Secure-NL2SQL which contains three silos
of disjoint schemas pertaining to different subjects, as well as the superset of unions between
those three silos for a total of seven permutations (𝑆1, 𝑆2, 𝑆3, 𝑆1∪2, 𝑆1∪3, 𝑆2∪3, 𝑆1∪2∪3). The
dataset contains automatically generated questions and corresponding SQL queries across silos.

We generate SQL databases, one per silo, with 2-3 tables per database, that share columns
which can be joined together between databases. However, the databases are otherwise disjoint
and contain different topics. For each database we generate natural language questions along
their equivalent SQL. Then, we generate questions and SQL pairs that span pairs and triples
of databases. Two methods are used to generate these pairs: a CFG and ChatGPT 4. The CFG
generates both the SQL and the question in parallel. We do this at scale, with 100,000 pairs per
silo or combination of silos. For the unioned questions, we also generate 300 pairs per silo or
combination of silos.

Crossover-FanFic Using the publicly available data on ArchiveOfOurOwn.org, we compiled
human-written fanfiction from three very popular fandoms to constitute three silos: Harry
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Potter (HP), Marvel Universe (MCU), and DC Comics (DCU). These fandoms were chosen
in particular because four crossovers between each universe also have existing and highly
appraised works which constitute the union data silos to test compositionality. This dataset
contains over 100,000 lines of text, which is more than enough to autoregressively fine-tune
models on the concepts unique to each silo. With this dataset, we demonstrate that Perplexity
in combination with Compositional Security from SecureLLM can accurately classify human-
generated that the a particular has likely never seen. This dataset is only used to evaluate the
performance of our derivative Data Loss Prevention and Anomaly Detection method.

5. Experiments

Inference-Time Composition We first begin by obtaining individual fine-tunings that are
knowledgeable in a single silo by fine-tuning a Llama-2-7b model for each silo separately. The
fine-tuning results in a Low-Rank Adaptation (LoRA) for each silo which can independently be
applied to the base Llama-2-7b model. These fine-tunings are combined at inference-time in our
experiments. We additionally train two insecure baseline models that act as an upper-bound
using LoRA; the baseline generalized model is trained on all the individual silos together and
must then generalize its knowledge to the union silos for which it has not been trained on.
While the baseline exponential model has been trained on all the individual silos along with the
union silos. We fine-tune all models with one epoch until saturation.

While Exact Match (EM) accuracy is typically recorded for NL2SQL datasets, this metric is
not granular enough to show differences in method performance. Instead, we calculate the
tree-edit distance [16] between the ground query and the generated query. By computing the
number of edit operations required to transition between the two, we can show how close a
given generated query is to the correct query, whereas using only EM is a binary representation
of correctness.

In table 1, we report performance against the SecureSQL dataset. For every probe silo
combination, our methods have by far the lowest tree edit distances of all compositional
methods. Our Logit Composition method approaches the upperbound established by the
insecure Generalized Model, indicating an efficient inference-time composition with minimal
losses. Furthermore, our method exceeds the capabilities of a generalized model trained on all
individual silos when it comes to responses that require parameterized knowledge over the
intersection of multiple data silos.

Anomaly Detection Regarding Anomaly Detection (AD), we report the Area Under the Curve
(AUC) of the computed anomaly score and its associated Density. Anomaly scores cannot be
compared directly as they are relative to each method, so instead we measure the separation
of anomaly scores from the inlier and outlier data silos and the area generated under that
separation.

All three methods tested are trained unsupervised using 80% of the inlier data silo at train
time. At test time, we provide the other 20% of the inlier data silo and 100% of the outlier data
silos. For the SecureSQL Dataset, we compute scores over each sample. In the CrossOverFanFic
Dataset, because each story is continuous, we compute anomaly scores over a sliding window



CFG Baseline Baseline Ours
Generated Exponential Generalized PEM (Maximum Ours

Model Model LoraHub Addition Difference) (Logits)

Silos1 0.0 (100.0%) 0.0 (98.3%) 1.9 0.9 0.4 0.1
Silos2 0.0 (96.7%) 0.0 (100.0%) 2.6 0.8 0.3 0.1
Silos3 0.0 (100.0%) 0.0 (100.0%) 1.2 0.7 0.2 0.1
Silos1∪2 0.0 (99.2%) 0.5 (0.0%) 1.7 0.7 0.7 0.2
Silos1∪3 0.0 (100.0%) 0.4 (1.7%) 2.0 0.7 0.6 0.3
Silos2∪3 0.0 (100.0%) 0.5 (1.7%) 2.4 0.7 0.7 0.2
Silos1∪2∪3 0.0 (98.3%) 1.0 (0.0%) 1.8 1.0 0.9 0.2

𝜇± 𝜎 0.0± 0.0 0.35± 0.38 1.95± 0.47 0.78± 0.15 0.56± 0.26 0.19 ± 0.1

Table 1
Normalized tree edit distance for CFG-generated question and SQL pairs with accuracy reported in parentheses (average
and std. dev. only applies to normalized tree edit distance). The exponential baseline sees all combinations of silos at
training time, this is intractable and insecure, but has maximal performance. The generalization baseline sees all silos but
not combinations of silos at training time, this is tractable but insecure. The other methods are used to build a SecureLLM.
As described above, we do not include detailed reports on methods which underperform both LoraHub and PEM Addition.
Note that our methods significantly outperform prior work. They retain all the generalization performance there is (since
the generalization model sees all silos at once, while the fine-tunings each see silos separately, the generalization model
should nominally perform better), even outperforming the generalization baseline.

of 128 tokens.
DeepSVDD generates its own anomaly score and we record this raw score for the comparison.

We use the standard implementation of TF-IDF from the python package sklearn. Finally, we
implement Compositional Perplexity as described above.

In fig. 2, we show anomaly score-density curves for 𝑆1 and HP, respectively from SecureSQL
and CrossOverFanFic. The separation is immediately apparent for Compositional Perplexity;
there is significantly more overlap with both DeepSVDD and TF-IDF, whereas LLM Perplexity
shows much stronger separation and shorter tails minimizing overlap and maximizing the AUC.

Table 2 summarizes the graphs in fig. 2 by reporting only the AUC. From these tables, we can
see that LLM Perplexity outperforms popular methods for Anomaly Detection. In addition to
being the highest performing method, LLM Perplexity is also extremely lightweight because
it relies on training a LoRA adapter for Llama-2-7b. In contrast, Deep-SVDD requires 10x
more time to train. However, TF-IDF is the fastest and most lightweight method as it does not
require any training. Nevertheless, accuracy is superior for LLM Perplexity when finetuned on
Llama-2-7b.

SecureSQL Dataset
Inlier Deep LLM
Data Silo SVDD TF-IDF Perplexity

S1 92.0% 91.50% 98.1%
S2 92.9% 79.82% 99.7%
S3 95.3% 86.16% 100.0%

CrossOverFanFic Dataset
Inlier Deep LLM
Data Silo SVDD TF-IDF Perplexity

DCU 26.4% 75.15% 100.0%
HP 48.0% 63.69% 100.0%
MCU 15.5% 82.24% 100.0%

Table 2
Area Under the Curve (AUC) for the inlier data silo is shown for each anomaly detection method. Our proposed method of
using Compositional Perplexity for anomaly detection outperforms published methods for a simple SQL dataset, and
significantly outperforms published methods by a wide margin for a linguistically similar set of fan fiction stories.



Figure 2: Anomaly Detection comparing Deep-SVDD, TF-IDF, and LLM Perplexity to detect when a leak has occured by
comparing the outlier and inlier anomaly score. LLM Perplexity significantly outperforms common methods used for
Anomaly Detection. Only Harry Potter Fanfic and S1 of the SQL dataset are shown for brevity. The ROC AUC scores for all
data silos are in table 2; graphs for all data silos are shown in Appendix A. Note: anomaly scores are relative to each
method and cannot be compared directly across methods.

Leak Identification Finally, we explore a new task that we call Leak Identification. This is
essentially the refinement of anomaly detection (AD) where instead of detecting that a leak
has occurred, we identify the most likely parameterized source of any given sample of text.
Because AD methods like Deep-SVDD and TF-IDF are not designed for this task, we explore
performance across a number of machine learning approaches based on research that shows
that machine learning methods outperform other methods for DLP [9]. We showcase Leak
Identification over the two datasets previously introduced, SecureSQL and CrossoverFanFic.

We implement SecureLLM using finetuned LoRA adapters from Llama-2-7b. The two datasets
are divided into train, validation, and test splits. From the train set, we create the fine-tuned
adapters. These fine-tuned adapters can be used in isolation to generate unsupervised predictions
by comparing the generated loss for all possible compositions. We then normalize the seven
unsupervised losses by subtracting the mean and dividing by the standard deviation of the data.

For supervised predictions comparable to other deep-learning methods, we train a Random
Forest classifier from the validation set. Finally, using the the seven SecureLLM losses and the
Random Forest classifier, we test on the test set to generate precision and recall scores, which
are then used to report the final f1-score metric for data silo.

For comparison, we present LSTM, GRU, 1d-CNN, BiLSTM, and Transformer networks as
benchmark methods along side our method using Llama-2-7b finetuned LoRA adapters. Shown
in tables 3 and 4, our method is capable of near perfect Leak Identification for the SecureSQL
dataset. In contrast, CrossoverFanFic appears to be a much more difficult task to accurately
identify, particularly when the source samples comes from the crossover of three separate stories.
This difference could be explained by the fact that the SecureSQL contains very unique key terms



Exp. 2 Our Method Our Method
SecureSQL LSTM GRU 1d-CNN BiLSTM Trans. (Unsupervised) Supervised

Silos1 0.61 0.65 0.87 0.52 0.26 0.59 0.96
Silos2 0.61 0.73 0.83 0.58 0.46 0.91 1.00
Silos3 0.66 0.93 0.92 0.88 0.61 0.67 1.00
Silos1∪2 0.47 0.46 0.87 0.43 0.54 0.82 0.97
Silos1∪3 0.46 0.62 0.80 0.37 0.33 0.55 0.93
Silos2∪3 0.61 0.74 0.80 0.53 0.48 0.50 0.96
Silos1∪2∪3 0.38 0.65 0.87 0.52 0.46 0.21 0.96

Accuracy 0.54 0.68 0.85 0.55 0.46 0.60 0.97

Table 3
Leak Identification for SecureSQL dataset. We report the F1-Scores for each method according to the methodology
described in Experiments: Supervised Leak Identification as well as the Weighted Average Accuracy for each method
along the bottom line. All methods except Our Method (Unsupervised) are supervised methods. When comparing
overall weighted accuracy it is notable that our Unsupervised method outperforms the supervised LSTM, BiLSTM, and
Transformer. Our Supervised method clearly outperforms all other methods across all metrics. As previously mentioned,
there is not a perfect method to compare against the unsupervised leak detection method, the F1-score is only provided
to show how an unsupervised method outperforms even the best supervised methods in some instances.

that link to one specific data silo, whereas the CrossoverFanFic dataset is a lot more ambiguous
over a small 128 token context window. However, despite these challenges identifying one of
the datasets, our method doubled the best accuracy when compared to the other methods tested.

Exp. 2 Our Method Our Method
X-overFanFic LSTM GRU 1d-CNN BiLSTM Trans. (Unsupervised) Supervised

HP 0.10 0.12 0.20 0.16 0.16 0.70 0.99
MCU 0.11 0.07 0.34 0.15 0.09 0.39 0.98
DCU 0.03 0.02 0.10 0.04 0.16 0.15 0.98
HP-MCU 0.59 0.57 0.59 0.58 0.59 0.00 0.83
HP-DCU 0.05 0.03 0.07 0.07 0.07 0.03 0.20
MCU-DCU 0.18 0.11 0.14 0.20 0.20 0.10 0.64
HP-MCU-DCU 0.03 0.05 0.05 0.02 0.02 0.00 0.05

Accuracy 0.33 0.31 0.36 0.35 0.35 0.14 0.75

Table 4
Leak Identification for CrossoverFanFic dataset. See table 3 and our methodology in Experiments: Supervised Leak
Identification, for a detailed explanation. Our Supervised method clearly outperforms all other methods across all metrics.
As previously mentioned, there is not a perfect method to compare against the unsupervised leak detection method, the
F1-score is only provided to show how an unsupervised method outperforms even the best supervised methods in some
instances

6. Conclusion

LLM security is critical in numerous commercial and government applications. We take a
different view of LLM security compared to that of prior work, one where we import the
traditional notion of access security to LLMs. This is enabled by the new compositional methods
we introduce that prove themselves to be effective. We showed that these novel composition
methods are able to take advantage of the generalization capabilities of the LLM with SQL edit
distances that are the same or even at times better than the baseline LLM when it attempts
to generalize. In other words, fine-tuning the LLM on each silo jointly, performs as well as



fine-tuning on each silo individually and combining the fine-tunings. This is as much as one
could hope for. Practical applications would need to use a far stronger underlying LLM to
achieve high execution accuracy.

When leveraging inference-time composition, we blend concepts from the field of Data Loss
Prevention (DLP) and Anomaly Detection (AD) to arrive at a novel interface. Compositional
Perplexity is extremely effective and lightweight to detect the presence of anomalies in both
generated text and human-written text. When combined with a Random Forest Classifier, it can
also be used to identify and effectively categorize a single sample from a permuted compositional
dataset.

There are numerous possible extensions of this work, including interfaces to document QA
where each silo is a collection of documents rather than a database. One possible follow-up
could look at the converse task: when given a question, determine the silos necessary to answer
it. This could be used to monitor conversations or to automatically mark the appropriate access
level of an exchange between users. Another possible direction would be to look at negative
silos that exclude information. A negative silo would explicitly avoid a topic, which would
prevent accidental leaks. Models could rewrite text or data to refer to or exclude particular silos.
The traditional world of access security is rich with problems for LLMs to address, and our
work opens up the path to doing so. In addition, by providing provable security, i.e., there can
be no leaks from silos the user doesn’t have access to, we take a key step toward enabling the
use of LLMs in secure environments.
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