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Abstract 
Automated Requirements Engineering (RE) activities can streamline development processes, reduce errors, 
and facilitate informed decision-making, particularly for low-level hardware requirements where 
modifications are costly. Classification is a widely studied automated RE activity for software requirements. 
Yet, its applicability remains underexplored due to the lack of structured datasets. This study adapts and 
evaluates software requirement classification techniques for hardware by extracting low-level requirements 
from open-source hardware design artifacts of Embedded Control Systems. We evaluate two classification 
methods: fine-tuning a BERT-based model and zero-shot prompting with a quantized LLM (Qwen2.5). 
While fine-tuning achieved high accuracy, zero-shot classification with specific prompts outperformed it 
in overall performance, achieving an average F1-score of up to 90% on the hold-out test set. Our findings 
suggest that automating downstream RE activities for low-level hardware requirements may not require 
large, task-specific datasets; however, classification performance can be further improved and can serve as 
an enabler for advanced tasks. 

Keywords  
Requirements Classification, Large Language Models, Embedded Control Systems.1 

1. Introduction 

Embedded Control Systems (ECS) are widely employed in automotive, aerospace, and consumer 
electronics. Their hybrid hardware-software nature and ubiquity make them an intriguing subject 
for Requirements Engineering (RE) research [1].  Managing their hardware requirements is critical, 
as changes impact physical design and production, often incurring high costs and delays [2,3].  
Requirement classification can support this process, enabling downstream activities such as class-
based test planning or physical feasibility analysis.  

While classification is well-studied for software requirements, hardware requirements differ due 
to factors such as interdependencies and quantitative constraints. They often involve strict 
quantitative constraints (e.g., minimum and maximum values) rather than the abstract definitions 
found in software. In addition, interdependence between requirements [4] adds complexity, where 
altering one can necessitate additional changes or create new constraints. Despite these differences, 
software requirement classification techniques can be adapted if suitable datasets are available. 
However, open-access low-level hardware datasets are scarce, as most requirement documents are 
proprietary or embedded within technical documentation. 
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To address this, we collaborated with domain experts (DEs) to create and annotate a dataset 
derived from open-source hardware design materials, refining inferred constraints to align with 
established dataset-creation frameworks. Then we experimented with two baseline classification 
methods—fine-tuning a BERT-based model and applying a quantized large language model 
(Qwen2.5) with zero-shot prompting—evaluating their performance using precision, recall, and F1-
score. Our findings suggest that in highly specialized domains, leveraging larger models with well-
crafted prompts is a more efficient alternative to constructing extensive datasets for fine-tuning. 
Furthermore, our analysis of misclassified requirements underscores the critical role of context in 
classification accuracy. These insights form a basis for downstream RE tasks and more advanced 
applications, including the integration of Large Language Model guardrails for industrial 
deployment. 

The remainder of this paper is organized as follows: Section 2 reviews automated RE tasks for 
natural language requirements. Section 3 details the methodology and dataset creation. Section 4 
presents the classification results, while Section 5 outlines assumptions, limitations, and exclusions. 
Section 6 discusses the findings, and Section 7 summarizes key insights and future directions for 
applying RE tasks in the ECS domain. 

2. Related Work 

Automated RE tasks have been extensively explored using Natural Language Processing (NLP) and 
machine learning in the embedded systems domain. Applications include, but are not limited to, 
requirements modeling [5], ontology-based specification [3], and Named Entity Recognition (NER) 
for requirement analysis [6].  Although the application of automated requirements classification 
tasks in the context of embedded systems is not particularly popular, it is widely studied in the field 
of software engineering [7]. Recently, transfer-learning approaches have shown their effectiveness 
both through approaches such as fine-tuning [8,9] and through approaches such as prompting 
[10,11] for software requirements classification. However, these methods rely on structured 
requirement datasets, limiting their direct applicability to ECS and hardware requirements due to 
the numerical and physical constraints that complicate direct adaptation.  

In adjacent domains like chip design [12,13], Large Language Models (LLMs) have been employed 
for design validation and documentation synthesis, demonstrating their potential in processing 
technical constraints. Their applications extend across various industries, including aerospace [14] 
and automotive [15], underscoring the versatility of LLMs in solving complex engineering problems 
in different domains. However, such applications typically require domain-specific fine-tuning, a 
challenge given the lack of open datasets for hardware RE. A significant barrier to their broader 
application is the lack of open datasets tailored to domain-specific tasks. The performance of LLMs 
is highly dependent on the quality and relevance of the datasets used for training and evaluation 
[16]. 

Although zero-shot learning allows LLMs to operate in the absence of domain-specific datasets, 
its limitations become evident as even advanced models can struggle in such settings [17]. Therefore, 
the creation of high-quality datasets is indispensable. This study addresses these gaps by adapting 
NLP-driven RE techniques to a dataset derived from hardware design sources, exploring LLM-based 
classification within the constraints of ECS hardware requirements. To this end, annotation 
development frameworks, such as the MATTER cycle [18], along with dataset documentation 
frameworks [19-22], are essential for preparing datasets that support the effective application of 
LLMs in new domains. 



3. Research Design 

3.1. Research Questions & Scope  

This study investigates the feasibility of adapting requirement classification techniques widely used 
in software engineering to ECS hardware requirements. To structure our investigation, we define 
the following research questions: 

 RQ1: What are the challenges in creating a representative annotated requirements corpus 
from hardware design sources to enable automated classification? 

 RQ2: How effective are fine-tuning and zero-shot approaches with large language models 
(LLMs) at accurately classifying ECS hardware requirements? 

RQ1 addresses the methodological challenges by investigating how to extract, annotate, and validate 
hardware requirements in a structured manner. RQ2 evaluates the ability of existing classification 
techniques, adapted from software RE, to perform effectively in the hardware domain. 

3.2. Dataset Creation Process & Its Practical Implications  

In our case, hardware requirements are embedded within circuit diagrams, technical documentation, 
and component datasheets, unlike common software RE datasets compiled from textual 
specifications. Therefore, we developed a hardware requirements dataset by reverse-engineering 
design artifacts from open-source ECS projects.  This approach introduced several challenges 
addressing RQ1:  

 Implicit vs. Explicit Requirements: Unlike explicitly defined requirements, low-level ECS 
hardware requirements need to be inferred from design constraints and physical elements. 

 Interdependencies: Hardware requirements can exhibit a higher degree of interconnectivity 
and interdependency; a single modification in one requirement often cascades into multiple 
downstream constraints. 

 Quantitative Features: Unlike software requirements, which frequently describe system 
functionalities, hardware requirements predominantly involve numerical constraints (e.g., 
voltage ratings, timing requirements, and temperature tolerances). 

 Size: To ensure effective model training, the dataset should be sufficiently large, similar to 
established datasets like PROMISE [23], which has been used in similar software requirement 
classification tasks with comparable complexity.  

To overcome these challenges, we adopted an iterative annotation framework with DEs. We 
systematically managed both the requirement writing and annotation processes using guidelines 
developed according to the MATTER cycle [18]. This annotation development cycle, recognized 
within the RE community [24,25], employs an iterative and incremental approach to ensure accuracy 
and reliability throughout the dataset creation process. The details of the process are presented in 
the following subsections. 

3.2.1. Domain Expert Selection 

The selection criteria for the contributing DEs were critical to the creation and annotation of the 
ECS requirements corpus. As emphasized by [26], experts must demonstrate significant skills, 
knowledge, and experience. Addressing these, three electrical and electronics engineers with 10 to 
15 years of experience in the R&D departments of ECS/embedded systems contributed voluntarily 
to this study. Bayerl and Paul [27] recommend that annotators possess comparable domain 
knowledge and receive appropriate training. Accordingly, comprehensive training sessions on RE 
and NLP tasks were provided to the DEs.  



3.2.2. Classification Problem 

The DEs identified five basic functionality categories by analyzing the functional blocks of the ECS, 
which form the basis of the annotation problem.  Our labeling structure was designed to imitate the 
general architecture of feedback control systems. While alternative taxonomy approaches, such as 
categorization based on design expertise (e.g., analog, digital, or power circuit design), could have 
been applied, we determined that a more pragmatic, exploratory classification was appropriate since 
no clear guideline exists in the ECS domain to support it yet. Finally, we aimed to make the categories 
as inclusive as possible while ensuring broad applicability across different ECS application domains. 
The identified categories and their definitions are presented in Table 1.  

Table 1  
The five functional categories 

Label Category Definition 

F Feedback 
Any requirement defining a specification for sensing the controlled physical entity. Typically, 
they may refer to current delivered to the controlled load, position information according to the 
controlled motion of an actuator, pressure, humidity, or temperature. 

C Controller 
Any requirement defining a specification for the “smart” functionalities regarding the 
processing cores of the system. Typically, any requirement consisting of any digital or analog 
control specification including processing or memory capabilities relates to this category. 

I Interface 
Any requirement defining a specification for the connections of the system and the external 
world, as well as physical user interfaces such as buttons, switches, status LEDs, screens, etc. 

P Power 
Any requirement defining a specification for managing the power delivered to or from the 
system. These include conversion, limits, fluctuation, EMI/C specifications, as well as power 
lines of the system peripherals such as sensors. 

D Driver 
Any requirement defining a specification for driving the controlled load. Typically, the load 
may refer to electric motors, heaters, fans, pumps, or any type of actuator. 

 
3.2.3. Open-Source Hardware ECS Project Selection 

[18] emphasizes that to prevent bias in model training, the over-representation of features rarely 
encountered in real-world scenarios must be avoided. To represent a product inventory emulating 
an industrial setting that can be used for AI training, we selected source projects based on the 
following criteria: (1) permissive licensing, (2) representation of real-world ECS applications, (3) 
diversity in products and functional blocks to enhance dataset representativeness, and (4) availability 
of structured design documentation.  

Based on these inclusion and exclusion criteria, eight open-source ECS projects were selected 
from the project list maintained by the Open-Source Hardware Association2 or published in the open-
source hardware journal HardwareX3. These projects were identified through targeted keyword 
searches focusing on representing a diverse range of physical entities, including pressure, weight, 
and velocity, and involve control instruments such as pumps and fans. Each selected project 
underwent review and consensus by the DEs to ensure alignment with the four mentioned criteria. 
Table 2 presents the complete list of projects along with their IDs and functional domains. The 
functional domain descriptions here aim to provide insight into system complexity, component 
dependencies, and diversity across projects. For example, domains like robotics and power 
electronics feature tightly integrated components, while food processing and agricultural automation 
rely on more modular architectures. This also reflects the variety and number of components, as 
different domains inherently require distinct sets of sensors, actuators, and control mechanisms, 
ensuring a representative dataset of diverse functional blocks. 
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Table 2 
List of selected open-source ECS projects 

ID Source Functional Domain 

P001 [28] Generic Embedded Control Systems (Flexible IoT control board for various applications) 

P002 [29] Robotics (Hydraulic quadruped robot control system) 

P003 [30] Additive Manufacturing (Multifunctional extruder with sensing and monitoring capabilities) 

P004 [31] Food Processing & Preservation (Automated dry-aging system for beef) 

P005 [32] Actuator Control (High-current driver for magnetic actuators) 

P006 [33] Agricultural Automation (Automated sensing and control for irrigation scheduling) 

P007 [34] Environmental Monitoring (Autonomous ocean profiler for hazardous area measurements) 

P008 [35] Power Electronics (Modular control platform for voltage source inverter) 

 
3.2.4. Requirement Extraction and Annotation 

Our reverse-engineering approach for extracting and annotating requirements from hardware 
projects has two key aspects: (1) Expert-Guided Requirement Identification, where DEs defined 
extraction guidelines, manually extracted requirements from design documents and categorized 
them; (2) Iterative Annotation and Refinement, where DEs refined guidelines, requirements, and 
dataset through consensus-based adjudication. For example, DE review meetings identified 
ambiguities, especially in multi-board projects and connector requirements. The guidelines were 
then revised to focus on electronic circuit structures while excluding mechanical and environmental 
constraints, as they had minimal impact on functional categorization.  

The process resulted in 366 requirements from eight projects over 191 DE hours spanning 184 
days. After ensuring, through consensus, that the requirements extracted by the DEs for each project 
comply with the guidelines, they were all randomly shuffled and reassigned to the DEs as a list for 
annotation. The resulting annotation consistency for the complete set was assessed using 
recommended [36,37] Inter-Annotator Agreement (IAA) metrics: Fleiss’ Kappa [37] (0.76) and 
Cohen’s Kappa [38] (0.66–0.74), indicating strong agreement. Based on these scores, labeling 
repetition was unnecessary. However, the adjudication process aimed to establish a gold standard 
by achieving consensus among annotators, ensuring high data quality through error correction and 
consistency checks.  

During adjudication meetings, non-consensus requirements were reviewed through discussions 
where DEs explained their classification rationale. If disagreements stemmed from requirement 
quality issues, such as violations of agreed-upon guidelines or inconsistencies with the design 
artifacts, necessary corrections were made to align them with the established criteria. Requirements 
that failed to meet technical sufficiency standards were either revised or removed, ensuring 
coherence and reliability in the final dataset. As a result, 28 out of 366 requirements were removed 
due to insufficient technical details, while 24 were modified to resolve ambiguities. These 
refinements addressed violations of predefined guidelines but did not introduce a significant shift in 
distribution or category representation. 

The final gold standard revealed category imbalance, reflecting real-world distributions. Project-
level requirement distributions varied based on complexity, and differences among the three DEs’ 
annotations (DE Distribution) were influenced by their distinct writing styles. An example of a 
feedback requirement can be seen in Table 3, while the finalized dataset's statistical distribution is 
presented in Table 4. 

 
 



Table 3 
DE writing styles across four original Feedback requirements targeting the same functionality. 

Req ID DE ID Requirement 
R107 DE001 The system shall be capable of measuring relative humidity and temperature with accuracy 2.0% 

and 0.5C respectively that communicate over SPI with the sensor. 
R057 DE002 The system shall measure relative humidity (RH) with an accuracy level of  ±2.0% and temperature 

with an accuracy level of  ±0.5% via sensor with digital output.   
R051 DE003 The system shall read relative humidity sensor with accuracy ± 2.0% 
R044 DE003 The system shall read a temperature sensor with accuracy ± 0.5 °C 

 

Table 4 
Statistical Distributions of the Adjudicated ECS Dataset. 

 Count Percentage (%) 

Label Distribution 

I 99 29.29 
P 77 22.78 
F 77 22.78 
D 55 16.27 
C 30 8.88 

Source Project  
Distribution 

P006 59 17.51 
P005 48 14.24 
P002 47 13.95 
P007 44 13.06 
P001 37 10.98 
P003 36 10.68 
P004 35 10.39 
P008 31 9.20 

DE Distribution 
DE003 125 36.98 
DE002 110 32.54 
DE001 103 30.47 

 

4. Automated Classification 

4.1. Baseline Model: A Fine-tuned Approach with BERT 

We utilized NoRBERT [8] as a baseline model for classifying ECS requirements, , which has reported 
F1 scores of up to 94% in multi-class software requirement classification performance. However, due 
to differences in classification schemes and domain-specific terminology, the pre-trained NoRBERT 
model could not be directly applied in this study. Instead, we adopted NoRBERT's methodology and 
fine-tuned it for classifying ECS requirements. 

4.2. Zero-shot ECS Requirement Classification with LLMs 

 Given the limited availability of datasets, prompt-based classification with LLMs is a viable 
alternative to dataset-heavy fine-tuning methods. Our zero-shot prompting approach consisted of 
two main steps: Prompt Design and Model Selection/Setting. 

In Prompt Design, we adapted the strategy and methodology from [10], who applied similar 
techniques in the RE domain to develop prompts that leverage the pre-trained capabilities of LLMs 
for multiclass requirement classification. Based on their recommendations, we considered four 
prompt patterns, which were shown to be effective for the binary classification of software 
requirements. Table 5 demonstrates how we adapted these patterns to the ECS low-level 
requirements classification problem. 

We considered the model selection criteria based on potential needs that may arise in industrial 
use, as ECS design teams typically prioritize solutions that align with their operational and technical 
constraints. These include (1) non-commercial solutions to address data privacy and control 
concerns, (2) scalable solutions that do not require significant local computation investments, and 
(3) less restrictive licenses for broader adaptability. Based on these criteria, we selected a quantized 



variant of Qwen2.5-72B-Instruct. These models can be locally hosted on a single machine using 
popular open-source libraries, such as llama.cpp and GPT4All [15]. 

Table 5 
Designed Zero Shot Prompt Patterns for ECS Requirements Classification 

Pattern (ID) Prompt 

Cognitive 
Verifier (1) 

Classify the given hardware requirement into one of the five functional labels. These labels are 
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and 
controller (labelled as C). The label definitions are as follows: (…) Ask me questions if needed to 
break the given task into smaller subtasks. All the outputs to the smaller subtasks must be combined 
before you generate the final output. The requirement: (…) 

Context 
Manager (2) 

Classify the given hardware requirement into one of the five functional labels. These labels are 
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and 
controller (labelled as C). The label definitions are as follows: (…) When you provide an answer, 
please explain the reasoning and assumptions behind your response. If possible, address any 
potential ambiguities or limitations in your answer, to provide a more complete and accurate 
response. The requirement: (…) 

Persona (3) 

Act as a requirements engineering domain expert in embedded control systems and classify the given 
hardware requirement into one of the five functional labels. These labels are feedback (labelled as 
F), driver (labelled as D), interface (labelled as I), power (labelled as P) and controller (labelled as C). 
The label definitions are as follows: (…) The requirement: (…) 

Question 
Refinement (4) 

Classify the given hardware requirement into one of the five functional labels. These labels are 
feedback (labelled as F), driver (labelled as D), interface (labelled as I), power (labelled as P) and 
controller (labelled as C). The label definitions are as follows: (…) Ask me questions if needed to 
break the given task into smaller subtasks. All the outputs to the smaller subtasks must be combined 
before you generate the final output. If needed, suggest a better version of the question to use that 
incorporates information specific to this task and ask me if I would like to use your question instead. 
The requirement: (…) 

 
4.3. Experimental Setup 

Various methods exist for splitting datasets into training, validation, and test sets, such as random 
or stratified sampling.  However, rather than using cross-validation approaches, this study held out 
the requirements from two entire projects as the test set to prevent data leakage and ensure 
evaluation on a distinct dataset. The DEs selected these projects by consensus, choosing one that 
closely resembled the others in terms of diversity and complexity and another that was least similar. 
This strategy enabled a more comprehensive assessment of the model’s generalizability under strict 
time and computational cost constraints. The test set was strictly excluded from all stages of the 
study, including training, fine-tuning, and model selection experiments. 

Our BERT-based baseline model was fine-tuned using the remaining six projects, with 
hyperparameters optimized via Grid Search. For Qwen2.5-72B-Instruct, the llama.cpp library was 
used on a local machine. Each requirement was processed individually to prevent cross-influence, 
and results were logged separately. To ensure inference independence, the model was reloaded for 
each requirement.  For handling anomalies in prompting results, we treated the following cases as 
misclassifications: when the model ignored requirement details, generated outputs outside the five 
predefined categories, or returned null. 

4.4. Results 

This section presents the results of the classification of ECS low-level hardware requirements, 
addressing RQ2 through the evaluation of two models: fine-tuned BERT and zero-shot Qwen-2.5, 
applied with four distinct prompt patterns.  Table 6 summarizes the performance of the four prompt 
patterns: (1) Cognitive Verifier, (2) Context Manager, (3) Persona, and (4) Question 
Refinement, evaluated using Qwen-2.5 (N) and fine-tuned BERT (T-0) on a hold-out test set. The 
results are presented for each category with precision (P), recall (R), and F1-score (F1) metrics, along 
with average accuracy (A) and weighted F1-score (w.F) for each model. 



Table 6 
The experiment results for the hold-out test set. 

             Classifier 
Category 

N-1 N-2 N-3 N-4 T-0 

Feedback 
(Support: 24) 

P 0.89  0.89  0.91  0.90  0.82 
R 0.71  0.71  0.83  0.75  0.75 
F1 0.79  0.79  0.87  0.82  0.78 

Interface 
(Support: 32) 

P 0.78  0.77  0.83  0.81  0.81 
R 0.91  0.94  0.94  0.94  0.94 
F1 0.84  0.85  0.88  0.87  0.87 

Controller 
(Support: 7) 

P 0.60  0.75  0.86  0.55  1.00 
R 0.86  0.86  0.86  0.86  0.86 
F1 0.71  0.80  0.86  0.67  0.92 

Driver 
(Support: 13) 

P 0.92  0.92  1.00  1.00  1.00 
R 0.85  0.85  0.85  0.69  0.62 
F1 0.88  0.88  0.92  0.82  0.76 

Power 
(Support: 16) 

P 1.00  1.00  1.00  1.00  0.74 
R 0.88  0.88  1.00  0.94  0.88 
F1 0.93  0.93  1.00  0.97  0.80 

A 0.84  0.85  0.90  0.85  0.83 
w.F 0.84  0.85  0.90  0.85  0.82 

 
The results indicate that the Qwen-2.5 model with the Persona prompt pattern (N-3) generally 

achieves the most balanced performance among the evaluated configurations. Analysis of the 
confusion matrices reveals that N-3 reduces certain types of misclassifications compared to the fine-
tuned BERT model (T-0). For instance, N-3 does not misclassify Power as Feedback, whereas T-0 
records two such errors. Additionally, N-3 demonstrates improved accuracy in distinguishing 
between Driver and Power. For the test set, Power and Driver categories exhibit perfect precision, 
while Controller has the highest variance across most configurations. Since zero-shot settings 
eliminate the need for a test set, we also evaluated the Qwen-2.5 model using the full dataset, 
comprising all 338 requirements, under the same configuration. The results, as summarized in Table 
7, demonstrate similar performance compared to the hold-out set, with category-level consistency 
largely maintained. However, confusion between Interface/Feedback and Controller/Interface persists 
across both models for individual requirements, indicating a common challenge in these categories: 
errors tend to occur when requirements involve communication or control specifications between 
sub-circuits or feedback sensors.  

Table 7 
The experiment results for the complete dataset. 

 

 

             Classifier 
Label 

N-1 N-2 N-3 N-4 

Feedback 
(Support: 77) 

P 0.85 0.92 0.92 0.88 
R 0.78 0.77 0.84 0.82 
F1 0.81 0.84 0.88 0.85 

Interface 
(Support: 99) 

P 0.85 0.80 0.84 0.86 
R 0.88 0.95 0.94 0.87 
F1 0.87 0.87 0.89 0.86 

Controller 
(Support: 30) 

P 0.68 0.79 0.77 0.63 
R 0.90 0.87 0.77 0.90 
F1 0.77 0.83 0.77 0.74 

Driver 
(Support: 55) 

P 0.94 0.92 0.94 0.98 
R 0.87 0.87 0.89 0.85 
F1 0.91 0.90 0.92 0.91 

Power 
(Support: 77) 

P 0.92 0.93 0.93 0.91 
R 0.87 0.86 0.88 0.82 
F1 0.89 0.89 0.91 0.86 

A 0.86 0.87 0.88 0.85 
w.F 0.86 0.87 0.88 0.86 



5. Threats to Validity 

Our dataset is based on open-source ECS projects, which may not fully represent industrial 
requirements. Since contributions were voluntary, only three non-native (but proficient) DEs 
participated, potentially limiting annotation consistency and introducing subjective variations.   
Similarly, to balance computational efficiency and generalization assessment, we manually selected 
the test set instead of applying cross-validation, which would have required retraining the model 
multiple times at a high computational cost. To minimize potential bias, the selection was made 
through the DE consensus. While the DEs were highly skilled in technical domains, they lacked prior 
expertise in computational linguistics or annotation processes. Additionally, differences between 
LLM and library versions may significantly impact the obtained results. Contextual ambiguity also 
remains a challenge, as hardware requirements were classified without explicit system-wide 
references. To mitigate these issues, training sessions were held for the DEs, annotation guidelines 
were refined to minimize ambiguity, the adjudication process was applied at each iteration, and 
misclassifications were thoroughly analyzed to assess model errors. 

While the dataset and code remain unpublished due to ongoing PhD research, we provide a 
detailed methodology and analytical framework to ensure transparency and support reproducibility 
within the constraints of our current research phase. 

6. Discussion  

This study explored how software requirement classification techniques can be adapted for low-level 
ECS hardware requirements, addressing dataset construction challenges (RQ1) and classification 
performance (RQ2).  

Low-level hardware requirements were inherently implicit in our case, derived from design 
artifacts rather than explicitly stated. We experienced firsthand the labor-intensive process, a 
difficulty widely acknowledged in the literature [16]. However, the framework outlined in [18] 
provided a structured approach to managing [19-22] this process. Despite adhering to established 
guidelines, the domain’s complexity led DEs to perceive strong interdependencies and a critical need 
for contextual understanding when evaluating individual requirements. Furthermore, constructing 
a dataset comparable in size to established software datasets like PROMISE [23] demanded 
considerable effort, and in our case, we could only achieve approximately half its size. 

Our findings on the classification performance indicate that the fine-tuning approach performed 
well on structured hardware requirements, but zero-shot classification with prompt engineering 
outperformed the fine-tuned approach in certain cases, reducing reliance on dataset curation. 
Aligning with the most related work in the software domain [8-11], fine-tuning remains effective 
but demands high-quality datasets, technical expertise, and computational resources. However, 
contrary to [17], we observed that the zero-shot approach yielded better results for our case, 
considering the domain and dataset size. However, interpreting the impact of specific performance 
metrics, e.g., precision and recall, depends on the downstream task to which classification is applied.  

Hardware requirements introduce strong interdependencies that make classification sensitive to 
contextual ambiguity. Some feedback-related requirements were classified as Interface, likely due to 
internal communication specifications, while some Driver specifications (e.g., DACs) were 
misclassified as Controller due to references to signal processing. Driver and Power categories tend to 
be quantitative constraints heavy while being less dependent on context, leading to higher precision. 
In contrast, Feedback and especially Controller involve significant interdependencies—internal data 
flow and control-related inter-circuit interfaces require either project context or additional 
requirements for accurate classification, making isolated evaluation more challenging. 

Misclassified cases, particularly within the Interface category, often stemmed from pre-consensus 
disagreements among the DEs. A review of adjudication meeting notes revealed that ambiguous 
cases frequently involved multi-board projects, where internal and external interfaces were not 
always distinguishable without context. This suggests that for low-level hardware requirements, 



context is crucial for classification accuracy. Providing the full set of requirements or key system 
attributes as a context could significantly improve performance. Hybrid methods and prompt 
engineering could mitigate these challenges.  

7. Conclusion and Future Work 

This study assessed the feasibility of applying software requirement classification techniques to ECS 
hardware requirements. Dataset construction (RQ1) highlighted challenges in extracting 
requirements from design artifacts and developing a structured classification protocol, demanding 
domain expertise and iterative refinement. Model evaluation (RQ2) found that well-crafted zero-shot 
LLM prompts, particularly the Persona-based prompt, could outperform fine-tuned BERT models, 
eliminating the need for extensive dataset curation and fine-tuning. The findings highlight inherent 
ambiguity due to the interdependencies in low-level hardware requirements, particularly when 
analyzed individually versus holistically. 

While classification currently serves as an auxiliary activity in our case, it can enable systematic 
efforts in ECS design for downstream tasks like analysis, verification, validation, testing, etc. Future 
work will explore dataset expansion and its open-access release as well as confidence-aware systems 
integrating human-in-the-loop approaches to enhance classification reliability. Additionally, 
understanding prompt efficiency can help reduce classification errors and improve requirement 
quality. Beyond the ECS, these advancements could enable cross-domain adaptability, allowing 
requirement classification techniques to be transferred to complex hardware-intensive domains, 
where structured but implicit requirements play a crucial role.  

Finally, an important direction for future work is exploring embedded system co-design, where 
subsystem-level requirements are systematically decomposed into hardware and software 
components. This process could further enable automated test and validation procedures, ensuring 
seamless integration between software and hardware functionalities. 

Declaration on Generative AI 

During the preparation of this work, the authors used ChatGPT and Grammarly to: Grammar and 
spelling check, Paraphrase, and reword. After using these services, the authors reviewed and edited 
the content as needed and take full responsibility for the publication’s content.  
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