
Evaluating the Capabilities of LLMs in Traceability
Maintenance for Automotive System and Software
Requirements
Vibhashree Hippargi

1,2
, Erik Kamsties

1
and Jürgen Naumann

2

1Dortmund University of Applied Sciences and Arts, Germany
2Area 21 Software GmbH, Dortmund, Germany

Abstract
Various researchers have explored the potential of Large Language Models (LLMs) for several software engi-

neering tasks, including design solution generation, coding, and test case creation. This paper presents five

empirical studies performed on OpenAI’s ChatGPT-4o to analyze its performance to support different requirements

engineering tasks related to requirements traceability. Using a dataset from an ongoing automotive project and

industry experts’ assessments as ground truth, we evaluate ChatGPT-4o’s ability to assess trace link quality
between system requirements, software requirements and test cases, to predict the trace links and also to analyze

the quality of the requirements itself. We also tested ChatGPT-4o with an existing project ticket. Our findings in

these studies indicate that ChatGPT-4o demonstrated strong performance, as evidenced by the metrics. These

results suggest that ChatGPT-4o can be effectively integrated into daily industry practices as a support tool. The

dataset is available on GitHub [3].

Keywords
traceability, link quality, automotive, large language model, trace link prediction

1. Motivation

Requirements traceability is a crucial aspect of automotive software engineering, ensuring that all

requirements maintain clear and meaningful connections throughout the software lifecycle. Within the

framework of Automotive SPICE (ASPICE 4.0) standard Base Practices (BP4: Ensure consistency and

establish bidirectional traceability), not only must requirements be traceable, but the trace links must

also exhibit consistency, meaning that each link must be relevant and logically meaningful. Achieving

this level of consistency requires significant effort from human analysts to verify the quality of trace

links. As project complexity increases, so do the requirements and their subsequent connections, leading

to the search for tools to support.

Maintaining accurate trace links between system requirements, software requirements, and test

cases is resource-intensive, especially when human analysts must verify each link. Furthermore,

inconsistencies in requirements documentation can lead to missed or weak links, negatively affecting

quality and compliance. The problem this short paper addresses is whether LLMs can effectively support

requirements traceability by assessing the link quality and predicting trace links, potentially reducing

the effort needed by human analysts.

2. Research Design and Evaluation

This section discusses the empirical studies performed on ChatGPT-4o along with their results. The

studies’ design and methodology were inspired by foundational AI-assisted requirements engineering

In: A. Hess, A. Susi, E. C. Groen, M. Ruiz, M. Abbas, F. B. Aydemir, M. Daneva, R. Guizzardi, J. Gulden, A. Herrmann, J. Horkoff,
S. Kopczyńska, P. Mennig, M. Oriol Hilari, E. Paja, A. Perini, A. Rachmann, K. Schneider, L. Semini, P. Spoletini, A. Vogelsang.
Joint Proceedings of REFSQ-2025 Workshops, Doctoral Symposium, Posters & Tools Track, and Education and Training Track.
Co-located with REFSQ 2025. Barcelona, Spain, April 7, 2025.
$ vibhashree.hippargi001@stud.fh-dortmund.de (V. Hippargi); erik.kamsties@fh-dortmund.de (E. Kamsties);

juergen.naumann@area21-software.com (J. Naumann)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:vibhashree.hippargi001@stud.fh-dortmund.de
mailto:erik.kamsties@fh-dortmund.de
mailto:juergen.naumann@area21-software.com
https://creativecommons.org/licenses/by/4.0/deed.en


research [7], [2]. The studies are supported by and conducted in Area 21 Software GmbH, a software

member of Elmos Semiconductors. 21 system and 24 software requirements (low complexity, no

IP) were selected from an ongoing project on firmware for an Ultrasonic Park Assist IC. Parameter

values were obfuscated, and the dataset was reviewed and approved by experts for integrity. We used

Elmos ChatGPT-4o Workspace equipped with ChatGPT-4o. To simulate real-world challenges, minor

inconsistencies and ambiguities were introduced in the requirements to test the robustness.

Figure 1: Approach for Study 1

Study 1: Trace Link Quality check between System and Software Requirements. For this study,

ChatGPT-4o was prompted to assess and comment on the quality of the trace link with regards to two

aspects, meaningfulness (logically relevant) and completeness (all aspects are reflected). This is based on

how well the software requirement details its linked system requirement. To account for variability in

ChatGPT’s responses across different sessions, the task was performed in five separate sessions. The

responses across these sessions were largely consistent. However, to ensure reliability, findings that

appeared in multiple sessions were identified as ChatGPT’s final response.

The evaluation was done using two independent approaches: Pooling and Ranking. In the pooling-

based evaluation, five experts at Area 21 with an average industry experience of 10 years (who will

be referred to as ’expert respondents’ going forward) were requested to perform the same task as

ChatGPT-4o. Their responses were pooled into a consolidated ground truth, against which ChatGPT-

4o’s assessment was compared to evaluate its alignment with human judgment and reliability as a

support tool. Its performance was then evaluated for Precision, Recall, and F1 score using TP (ChatGPT-

4o matches respondents’ findings), FP (ChatGPT-4o flagged insignificant issues that respondents did

not), FN (ChatGPT-4o missed valid issues that respondents identified), and TN (ChatGPT-4o found

valid issues that respondents overlooked, extending TN’s traditional definition to reflect AI’s ability to

uncover additional insights).

In the ranking-based evaluation, an expert evaluator, i.e., the Head of Embedded Software Devel-

opment at Area 21, was presented with six anonymous responses (five from expert respondents and

one from ChatGPT-4o) and requested to rank them based on response quality and validity, with Rank 1

being the highest. Below is an example of linked requirements given, which ChatGPT-4o analyzed to

assess the trace link quality, evaluating the meaningfulness and completeness of SWRS004 in relation

to its linked SYSRS004.

SYSRS004: IF performing Erase Backup AND IF Addressed with the Unicast Command THEN

the Sensor IC shall respond with CRM_RSP 0x0: Report Acknowledgement.

SWRS004: IF performing Erase Backup AND IF Addressed with the Unicast Command THEN

the Software shall prepare to respond with CRM_RSP 0x0: Report Acknowledgment.

The issue with this linkage is that SWRS 004 states, "the software shall prepare to respond", while



SYSRS 004 explicitly mandates sending the response. This ambiguity was flagged during the complete-

ness check, as it introduces uncertainty about execution. Both expert respondents and ChatGPT-4o

identified this issue, which adds one count to the TP.

The pooling based evaluation result is, P=0.96, R=0.71, F1-Score=0.82. That is, the precision is high,

meaning ChatGPT-4o correctly identified most flagged issues. The recall is moderate, as ChatGPT-4o

missed some valid issues that expert respondents identified leveraging their experience and expertise.

Performance can be improved by refining the prompt to include additional evaluation criteria. The

F1-Score is moderate, balancing precision and recall. Time Efficiency: Expert respondents took 120

minutes, while ChatGPT-4o took 20 minutes, with requirements fed manually sequentially (∼ 1 min per

requirement). Future automation could further enhance efficiency.

The ranking-based evaluation resulted in ChatGPT-4o responses having an average rank between 1
and 2 indicating that they were marked as valid and useful by the expert evaluator. There were only

two outliers that occurred because all responses for those entries addressed similar issues, leading to no

significant differentiation (charts omitted for reasons of space).

Figure 2: Approach for Study 2

Study 2: Trace Link Quality check between Software Requirements and Test Cases. In this

study, ChatGPT-4o was initially provided with possible combinations of parameter values and their

interpretations from the software requirements to store in its memory. It was then prompted to assess

whether or not the test cases entirely covered its linked software requirement and also suggest any

missing cases (referring to its memory) to attain complete coverage. During its analysis, ChatGPT-4o

not only suggested missing test cases but also identified incorrect parameter values being checked in

existing test cases. ChatGPT-4o’s analysis was reviewed by two test experts at Area 21, who rated its

validity and usefulness based on the survey questions: Q1: Is the Meaningfulness and Completeness

Analysis Valid? Q2: Do the suggested missing test cases improve coverage? Q3: Are there any other

critical aspects or test cases missed? Q4: Please comment on the performance of GenAI. The study was

designed as a quick survey to account for the limited availability of the test experts. This approach

helped minimize time demands while still gathering their insights into whether ChatGPT-4o could be

recommended for similar traceability tasks.

The expert responses were analyzed using the priority order: "Partial > Yes > No." For Q1 and Q2,

the ChatGPT-4o achieved a combined "Yes" or "Partial" rating of 100%, with no "No" ratings recorded.

This highlights its consistent ability to address the criteria effectively. Furthermore, for Q3, 100% of

the response was "No", meaning, the evaluators confirmed that ChatGPT-4o did not omit any critical

aspects in its test cases, further validating its thoroughness.

The "Partial" ratings for Q1 and Q2 were attributed primarily (70%) to deficiencies in the quality of the

software requirements rather than the GenAI’s output, indicating that software requirement’s lack of de-

tail also contributes to the ambiguity in writing test cases. The remaining 30% of the issues were related



to missing preconditions and negative test scenarios or redundant tests for some of the SWRS - Test

cases pair. However, this can be tackled by refining the prompts. Finally, the evaluation of ChatGPT-4o’s

responses for SWRS test cases showed strong performance. Here is the comment from one of the test

experts (also agreed by other) regarding the overall impression of GenAI: "AI is already highly advanced
for evaluating test cases and even requirements. However, there is still room for improvement. It is on a
promising path toward being fully utilized for such purposes. In the future, GenAI might take over such tasks
entirely, leaving us as reviewers to ensure that it has correctly understood and implemented our expectations."

Study 3: Trace Link Prediction between System and Software requirements. This study evaluates

ChatGPT-4o’s performance in predicting trace links between system requirements (SYSRS) and software

requirements (SWRS) in the so-called Standard Firmware project. Existing links, established by engineers

at Area 21, serve as the ground truth. The process involves providing a prompt and presenting SYSRS

and SWRS in randomized order.

The analysis is conducted seven times, each using the same SYSRS list but a different SWRS list. In

each iteration, some SWRS are randomly removed (making it different from the previous list), leaving

their originally linked SYSRS unlinked. ChatGPT-4o’s predicted links are then compared to the ground

truth to evaluate precision, recall, and F1 score using TP (correctly linked), FP (falsely linked), TN

(correctly unlinked), FN (falsely unlinked). The final performance is averaged across all runs as P=1,

R=0.97, F1-Score=0.98. Both precision and recall are high, with a slight drop in recall due to a FN.

ChatGPT-4o correctly flagged an incomplete lower-level requirement but was marked false negative as

the ground truth retained the link.

Study 4: Anomaly detection to identify gaps or ambiguities in requirements. In this study,

ChatGPT-4o was instructed to flag any linguistic or content-based ambiguities that may exist within

the requirements. Linguistic ambiguities include lexical, syntactic, semantic, syntax, and pragmatic

ambiguity [4], [6]. Content based ambiguities include Noise (irrelevant information), Silence (missing

important details), Over-specification (including unnecessary solution details), Contradiction (conflicting

definitions), Ambiguity (multiple interpretations of a requirement), Forward reference (referring to

undefined concepts), and Wishful thinking (unrealistic or unverifiable requirements) [5]. The outcome

of this experiment aims to determine whether GenAI can support quality monitoring and improvement

by identifying potential ambiguities in requirement documentation. Below is the requirement and

ChatGPT-4o’s response in the outlined box.

SYSRS 016: AFTER Reception of the Valid CRM_FCC_CMD, THEN the Sensor IC shall set the

PDCM_RSP Parameter KAC = 0x0.

For the system requirement SYSRS 016 shown above, the term valid leaves room for interpretation.

Such terms like right, valid, graciously, fast, slow cause pragmatic ambiguity and hence should be

avoided in the requirements, especially without a proper definition of what constitutes them. ChatGPT-

4o correctly identified this: "The context around what makes CRM_FCC_CMD valid could lead to

misunderstandings. Is the validity based on the correct syntax, values, or another condition? This needs

to be explicitly defined to avoid confusion". For the other requirements, it also identified the presence

of noise and contradiction.

Study 5: Inconsistencies between system and software requirements - Real Project Ticket. In

this study, ChatGPT-4o was tested on an existing project ticket at Area 21 to determine its ability to

identify gaps in system-software requirement alignment.



Description: The requirement SYSRS 021 is not sufficiently detailed by the related downstream

requirements SWRS 023 and SWRS 024.

SYSRS 021: The firmware shall allow configurability to select the retry for open and short faults

independently.

SWRS 023: IF the software detects an open or short error AND retry is configured as enabled in

the DEFAULT_OPEN_SHORT_RETRY value in the COMPILE TIME CONFIGURATION data, the

affected channel shall be re-enabled for one TIMESLICE with the following setup at least every

200 milliseconds. SWRS 024: The COMPILE TIME CONFIGURATION data shall contain values

for DEFAULT_OPEN_SHORT_RETRY.

The missing piece is "independent configuration": SWRS has only one parameter "requiring open and

short retries to be configured simultaneously." If an application needs separate timing parameters, a

single parameter DEFAULT_OPEN_SHORT_RETRY is insufficient.

It was tested with ChatGPT-4o, to see if it was able to spot the issue. Prompt: "I will provide you a

system and its linked software requirement. Can you tell me if the latter sufficiently details the former?

if not, please explain the issue and suggest revisions." Response: "SYSRS 021 emphasizes independent

configurability for open and short faults. However, SWRS 023 doesn’t clarify how open and short fault

retries are configured separately. The statement -if retry is enabled in DEFAULT_OPEN_SHORT_RETRY

- implies a single retry configuration for both fault types, lacking the necessary independent configurability.

There is no mention of whether the retry for open and short faults can be configured separately, which

is essential according to SYSRS 021. Suggested revision-Parameters- DEFAULT_OPEN_RETRY and

DEFAULT_SHORT_RETRY for open and short fault retries, respectively." The response shows that

ChatGPT-4o successfully identified the misalignment, demonstrating its ability to detect inconsistencies

between system and software requirements and suggest revisions.

3. Threats to Validity

This section outlines the potential threats to the validity of these empirical studies. Complexity and
Quantity of Requirements: The dataset was small and consisted of low-complexity requirements, as

more complex ones were restricted due to IP and confidentiality constraints. GenAI Tool Used: The

study utilized ChatGPT-4o, but outcomes may vary with other tools like Gemini or even the newer

versions of ChatGPT. Prompt Engineering: The prompts were designed with specific criteria checks

for the task. However, further refinement to include additional criteria could result in more diverse

and comprehensive outputs. Human Responses: The quality of responses from expert respondents was

influenced by their understanding, motivation, and approach to the evaluation task.

4. Conclusion and Future Work

The results indicate that ChatGPT-4o demonstrates strong performance during the mentioned use cases

(refer to P, R, F1-score), positioning it as a valuable tool for preliminary analysis. As highlighted in the

GPT-4 Technical Documentation [1] and by other researchers, human verification is crucial for accuracy

and reliability. ChatGPT-4o shows promise as an efficient assistant for a draft. Readers can refer to

GitHub [3] for a detailed view of the prompts and responses, as well as to replicate the case studies.

Future work can explore ChatGPT-4o for broader Requirements Engineering tasks, including custom

GPT models tailored for collaboration and efficiency. OpenAI’s API could enable batch processing,

allowing large-scale requirement analysis overnight for review the next day, significantly improving

the time required for the evaluation.



Acknowledgments

Sincere appreciation and gratitude are extended to Area 21 Software GmbH for supporting the empirical

studies and the participants for providing valuable insights. Furthermore, we acknowledge Jianwei Shi

for his valuable feedback about the study on trace link prediction.

References

[1] GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. url: https://arxiv.org/abs/2303.08774.

[2] Jin L. C. Guo et al. “Natural Language Processing for Requirements Traceability”. In: To appear in

Handbook on Natural Language Processing for Requirements Engineering, Springer, 2025. 2024.

arXiv: 2405.10845 [cs.SE]. url: https://arxiv.org/abs/2405.10845.

[3] Vibhashree Hippargi. Case Study on ChatGPT for RE. 2025. url: https://github.com/VibhaHippargi/

CaseStudyonChatGPTforRE.

[4] Erik Kamsties. “Understanding ambiguity in requirements engineering”. In: Engineering and
Managing Software Requirements (2005). Publisher: Springer, pp. 245–266.

[5] B. Meyer. “On Formalism in Specifications”. In: IEEE Software (1985). doi: 10.1109/MS.1985.229776.

[6] Fatin Muhamad et al. “Fault-Prone Software Requirements Specification Detection Using Ensemble

Learning for Edge/Cloud Applications”. In: Applied Sciences 13.14 (2023), p. 8368. doi: 10.3390/

app13148368.

[7] Krishna Ronanki, Christian Berger, and Jennifer Horkoff. “Investigating ChatGPT’s Potential to

Assist in Requirements Elicitation Processes”. In: 2023 49th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). IEEE. 2023, pp. 354–361. doi: 10.1109/SEAA60479.

2023.00061.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2405.10845
https://arxiv.org/abs/2405.10845
https://github.com/VibhaHippargi/CaseStudyonChatGPTforRE
https://github.com/VibhaHippargi/CaseStudyonChatGPTforRE
https://doi.org/10.1109/MS.1985.229776
https://doi.org/10.3390/app13148368
https://doi.org/10.3390/app13148368
https://doi.org/10.1109/SEAA60479.2023.00061
https://doi.org/10.1109/SEAA60479.2023.00061

	1 Motivation
	2 Research Design and Evaluation
	3 Threats to Validity
	4 Conclusion and Future Work

