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Abstract
Context and motivation. In today’s fast-paced software development, stakeholders expect frequent deployments
that incorporate the newest requirements and needed adaptations. Such fast pace poses significant pressure on
site reliability engineers (SRE), who ensure software quality while managing transitions through stages (testing,
development, or production stages). Problem. The primary challenge SRE face is the amount of ubiquitous data
ranging from requirements to test results (often) interconnected from the different software development phases
(requirements elicitation, development, testing, and deployment) that requires effective analysis to inform staging
decisions. Solution. This challenge has motivated us to establish the AI-SQUARE innovation project; in which
we envision the creation of an intelligent end-to-end software staging support platform for decision making
and feedback. We propose to leverage the use of knowledge graphs to analyse data from various sources and
facilitate quality analysis of aggregated data. Results and conclusions. In this poster & tool paper, we share our
progress on designing the knowledge graph that supports the AI-SQUARE platform, enhancing intelligent agents
and supporting site reliability engineers during software staging. We share our vision and open challenges in
implementing and evaluating our knowledge graph.
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1. Introduction and Motivation

Nowadays, software stakeholders are used to receiving new versions of their software with a fastening
frequency. Behind the scenes, the trend towards more and faster releases stresses software quality
assurance. Especially site reliability engineers—i.e., the role in charge of assuring software quality in
continuous integration/continuous deployment pipelines (CICD)—face challenges to guarantee the
software quality, the alignment with the software requirements, and its software staging through the
development, testing, and production stages.

In CICD pipelines, staging represents the decision on how software goes from different environments
as development, testing, or to production—i.e., stages. This decision is based mainly on software quality
data analysed in quality gates (often in a cumulative way from one stage to another) and the experience
of site reliability engineers (see Figure 1). OpenTelemetry initiatives [1] have used observability tools
such as Dynatrace [2], Prometheus [3], and Jaeger [4], among others, serving as a way to extract
software quality data and support site reliability engineers’ decisions on when to transition from one
stage to another. However, some challenges have arisen:

• Software quality assurance data is ubiquitous (data is everywhere): Software requirements,
software test description, regulations, performance metrics, unit test results, application logs, test
logs, and distributed traces, among others, are examples of potential software quality-related
data—a.k.a. data sources—present for analysis on staging decision.
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Figure 1: Example of Software Staging

• Software quality assurance data is ubiquitous and (often) relates to each other but is
often not well interconnection: Isolated analysis of a metric, log, or requirement may neglect
the effect on overall software quality. Thus, site reliability engineers must analyse software
quality, considering often implicit relationships and connections among software quality data,
often relying on their intuition.

• Justify a software staging decision: Time to market is critical in software development. If a
staging decision for a software deployment should be aborted, site reliability engineers need to
justify this decision based on observed data and, mainly because of the difficulties to analyse vast
amounts of quality data, on their expertise.

Some authors have used taxonomies [5] and ontologies to produce toolkits for events and anomalies
analysis. Others have used knowledge graphs [6, 7, 8] for root cause analysis and anomaly detection
in cloud applications, focusing mainly on microservice applications. Other commercial tools have
supported reliability engineers by providing data-specific analysis, such as correlations between per-
formance metrics [9]. However, there is still a gap in the solution to providing end-to-end support for
software staging decisions compiling different sources of data and quality attributes.

This gap has inspired the Swiss Digital Network (SDN) [10] and three research groups in Switzerland
to develop the AI-SQUARE project: an Intelligent Staging Management Platform. The AI-SQUARE
platform aims to support site reliability engineers in deciding where to or when not to transition stages
using intelligent agents. In this poster & tools paper, we share our design (see Section 2) and vision (see
Section 3) of the knowledge graph that supports the AI-SQUARE platform to address the aforementioned
challenges and provide end-to-end staging support (see Figure 2).

2. AI-SQUARE Knowledge Graph Design and OpenTelemetry Example

A knowledge graph is a structured representation of real-world entities and their interrelationships
organized within a directed graph, whose nodes represent entities and edges represent relations
between them [11]. Knowledge graphs have been used in different domains to extract facts and
assertions based on cross-domain data, such as Wikidata [12] and DBPedia [13]. This shows how
knowledge graphs can ingest data from various sources and formats, demonstrating their flexibility for
storing interconnected ubiquitous and heterogeneous data from multiple sources. Moreover,
knowledge graphs have been used to support root-cause analysis (RCA) in anomaly detection [6, 7, 8].
This progress shows that knowledge graphs allow to support decision-making, providing facts and
potential causes when anomalies are detected.

In this Section, we show the progress in designing the AI-SQUARE knowledge graph. To show our
design, we follow the framework for designing and building enterprise knowledge graphs [14]: first
identifying the source of data, then defining the target knowledge graph, and, finally, defining how to
map them. In addition, we exemplify the design by means of the OpenTelemetry [15] running example.



Figure 2: AI-SQUARE Architecture.

The OpenTelemetry application has different microservices related to an online Astronomy shop.
In our running example, we assume two stages: i) a testing stage and ii) a production (deployment)
stage. The site reliability engineers propose a quality gate to evaluate the transition between testing
and production, evaluating the software performance—specifically, based on the desired response time.
This quality gate data ranges from the expected performance requirement to observability-related data
such as performance metrics and logs.

2.1. Data Sources

Software quality and staging-related data are distributed into structured and unstructured data. we
name our data source as Resources. Resources represent files with quality data relevant for further
analysis, such as metrics, logs, timestamps, containers, pots, tests, and requirements IDs. Using the
OpenTelemetry example, we extract the following data: the performance requirements (in CSV format),
CPU and memory usage metrics (from Dynatrace), and testing logs of a response time test (from
TestKube). We show an excerpt of the data sources in our running example in Figure 3.

Figure 3: Example of Data Sources.



2.2. The Target Knowledge Graph

The target knowledge graph is a conceptual model (a.k.a. ontology/vocabulary/taxonomy/schema),
which uses the lingua franca of data consumers [14]. As previously mentioned, software staging data is
ubiquitous and (often) interconnected. Staging-related data can come from several phases of the software
development lifecycle, from requirements and development to testing. Thus, our target knowledge graph
for the AI-SQUARE platform must provide a vocabulary (i.e., lingua franca) that adapts, grows, and
evolves over time, considering the diversity and context of software development projects. As an initial
conceptual model, we consider abstract concepts as Stage, Requirement, Test, Observable (Metrics, Logs),
Source, File, and Anomaly. These abstract concepts are the core of the target AI-SQUARE knowledge
graph, allowing the extension of the core vocabulary as needed for each software development project.

For instance, the OpenTelemetry example has a set of microservices in the context of specific stages,
sources, requirements, and observable types. In Figure 4, we show the tailored target knowledge graph
for the OpenTelemetry example, defining a project-specific vocabulary by extending the core concepts
and instances.

These concepts are derived from existing schemas and based on observations from practice but are
far from being complete. We acknowledge that further formal alignment (a.k.a. ontology alignment) is
needed to generalize and provide soundness to the target knowledge graph core vocabulary—e.g., with
existing ontologies such as SEPSES [16] or SEON [17]. We discuss this further in Section 3.2.

Figure 4: Target knowledge graph exemplified withing the context of our running example.

2.3. Mapping to the Target Knowledge Graph

Mappings are declarative associations between the data source and the target knowledge graph vo-
cabulary. Having defined a vocabulary for our knowledge graph, we must provide a way to map
the data sources to the target knowledge graph schema. Thus, we use the RDF Mapping language
(RML)—specifically the YAML version, a.k.a. YARRRML [18]. RML is a mapping language that expresses
customized mappings from heterogeneous data structures to RDF (Resource Description Framework).
Figure 5 shows an example of a mapping following the YARRRML notation, extracting CPU metric
triplets—i.e., subject + property (p) + object (o)—to build the target knowledge graph.



Figure 5: YARRRML mapping example.

3. The AI-SQUARE Knowledge Graph: The Vision

The AI-SQUARE Knowledge Graph is a work in progress and in constant evolution. Two main data
consumers (a.k.a. knowledge workers) benefit from getting answers to the knowledge questions that
can be asked to the graph: i) intelligent agents and ii) site reliability engineers. In this Section, we
describe how data consumers will benefit, observed challenges and vision for further steps and open
research questions.

3.1. Supporting Intelligent Agents and Site Reliability Engineers

At the current stage of the AI-SQUARE Knowledge graph, we observe two potential benefits:
Enhancing intelligent agents with specific and augmented staging data. Some authors have

used knowledge graphs in other domains to find vocabularies, automatically reasoning on formalized
definitions and axioms, analyse multimodal data, agent collaboration, and improve explainability [19, 20].
Due to the nature of software staging data, intelligent agents at the AI-SQUARE platform can benefit
from our knowledge graph by querying specific data, and augmenting it for collaboration among them.

For instance, in the OpenTelemetry example, if an intelligent agent specialises in detecting anomalies
in response time metrics by correlating them with a specific target response time requirement, the
intelligent agent can query the knowledge graph (by using SPARQL, for example) to gather this data
and proceed with the analysis, including augmented data if needed—e.g., other requirements, sources,
or anomalies—providing a context-aware data to the analysis (see Figure 6).

Figure 6: Example of how intelligent agents can benefit from the AI-SQUARE knowledge graph.

Supporting staging decision and explainability. The AI-SQUARE knowledge graph stores the
dependencies among ubiquitous and interconnected staging data. When anomalies are detected by



humans or intelligent agents, the AI-SQUARE knowledge graph holds the potential to build a causality
graph and explain the occurrence of anomalies to support a staging decision. Some authors [6, 7, 8] have
used knowledge graphs for root cause analysis and identifying the root of bugs, errors, or exceptions.
We foreseen root cause analysis to complement results from intelligent agents such as large-language
model agents when explaining the staging decision after analysis. This extra graph-based data will
provide site reliability engineers with a tool to verify intelligent agents’ outcomes. For instance, in
our OpenTelemetry example, after intelligent agents analyse the response time, they report anomalies
in a microservice, suggesting site reliability engineers to not stage from the testing to the production
stage. Then, site reliability engineers can benefit from the dependencies stored in our knowledge graph
and root cause analysis to justify and explain this decision, finding, for example, that the anomalies in
response time are due to a specific requirement, microservice, or observable type (see Figure 7).

Figure 7: Example of how site reliability engineers can benefit from the AI-SQUARE knowledge graph.

3.2. Challenges, Open Research Questions and Next Steps

With the current design and implementation of the AI-SQUARE knowledge graph, we have identified
the following challenges and open research questions:

Can we provide dependency/causality among all ubiquitous data involved in software stag-
ing using the AI-SQUARE knowledge graph? As mentioned in Section 2.2, our target knowledge
graph must evolve, grow, and adapt to specific software development projects, specifically in their
staging process. This implies that the AI-SQUARE knowledge graph requires flexibility to represent
dependencies and causality between ubiquitous data. Therefore, research questions arise: how adaptable
the AI-SQUARE knowledge graph is? Is it feasible to include existing vocabularies/ontologies from
literature? What are the missing core concepts that allow the knowledge graph to be flexible enough to
represent all ubiquitous data? can the AI-SQUARE knowledge graph support finding dependencies/-
causalities from earlier software development lifecycle phases till the staging decision—e.g., finding
dependencies from software requirements to staging quality gate results? These questions motivate
further research on the AI-SQUARE Knowledge graph vocabulary.

Can we measure software staging maturity based on data stored in the AI-SQUARE knowl-
edge graph? Some authors have proposed maturity models in DevOps environments to assess their
CICD pipelines’ maturity [21]. Maturity models are extensive bodies of knowledge that require certain
data, stages, processes, and practices to be considered to guarantee a certain maturity level in the
software development process. Considering that the AI-SQUARE knowledge graph stores dependencies
from the software staging and lifecycle, research questions arise: can the dependencies and entities
stored in the AI-SQUARE knowledge graph serve as input to assess the software staging maturity?
What would require a maturity model to assess the staging process? What are the required observables,
stages, requirements, and tests (among other concepts) to be included in software development staging
to assess its maturity? These open research questions motivate further research on how the AI-SQUARE
knowledge graph can be used in maturity assessment for software staging.



What are the effects for both intelligent agents and site reliability engineers when using
the knowledge graph in the AI-SQUARE platform? The AI-SQUARE knowledge graph currently is
under design and implementation, being actively developed in the context of the AI-SQUARE platform.
Nevertheless, the effect of using or not using the AI-SQUARE knowledge graph to support staging
decisions in the AI-SQUARE platform is still an unaddressed question. Thus, we plan to conduct
empirical efforts—a.k.a., treatment validation cycles in Design Science [22]—following empirical methods
such as quasi-experiments, focus groups, and case studies [23] to understand the effect of the AI-
SQUARE knowledge graph when supporting a staging decision—including effectiveness, efficiency, and
satisfaction [24]. Therefore, we can measure and conclude about how site reliability engineers perform
staging decisions with and without the support of the AI-SQUARE knowledge graph.

4. Conclusions

In today’s fast-paced software development market, the demand for rapid and frequent releases poses
significant challenges for site reliability engineers. They are tasked with ensuring software quality
throughout the continuous integration and continuous deployment (CI/CD) pipeline, encompassing
development, testing, and production stages. The complexity of modern software staging pipelines
introduces high volumes of ubiquitous data in all phases of the software development lifecycle, making it
challenging to make a staging decision. This observed complexity from industry has inspired the Swiss
Digital Network and three research institutions to propose the AI-SQUARE platform: an intelligent
decision-support platform for end-to-end software staging management.

In this poster & tools paper, we shared our progress on designing a knowledge graph that supports
the AI-SQUARE platform. We exemplified our design with the OpenTelemetry example in the context
of staging from the testing environment to production. Moreover, we illustrated and provided our vision
on how the AI-SQUARE knowledge graph can benefit intelligent agents and site reliability engineers
by enhancing the software quality staging data and providing root cause analysis for explainability of
staging decisions.

The AI-SQUARE knowledge graph is under constant development, which means there are research
and implementation challenges to be addressed. We reflected on the vision steps to answer the research
questions. We expect the AI-SQUARE platform will foster software’s rapid evolution and requirements
validation with continuous deployment while meeting required quality standards.
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