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Abstract
The aviation sector is rapidly advancing towards the next generation of aircraft, expected by 2035, propelled by
Artificial Intelligence (AI), cloud computing, and cybersecurity technologies. The Digital Twin is at the forefront
of these advancements as it aims to integrate all these technologies. However, significant challenges arise in
implementing Digital Twins, particularly for in-service aircraft with limited computational resources. This
research aims to develop a power-efficient Digital Twin framework tailored for predictive maintenance. After an
extensive review of the latest Digital Twin research, considerable effort was focused on creating a high-fidelity
model of a critical aircraft component. Based on this model, a methodology for fault data simulation has been
developed. The simulated data, generated through fault injection in a multi-physics model, will be the foundation
for designing an effective machine-learning algorithm for predictive maintenance. Finally, the algorithm will be
deployed on a device with limited computational resources without compromising the system’s reliability.
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1. Introduction

Digital Twins are increasingly gaining traction across various industries, notably in the aerospace
sector [1]. A Digital Twin (see Figure 1) is a virtual representation that accurately mirrors a physical
system, be it natural, engineered, or social. This model is continuously updated with real-time data
from its physical counterpart, enabling it to predict outcomes and support decision-making processes
that enhance value. A key feature of a Digital Twin is the two-way interaction between the virtual
model and its physical version [2]. The advantages of utilizing Digital Twins in aerospace applications
are numerous, including shortened design cycles and lower maintenance costs compared to traditional
modeling and simulation approaches [3]. In particular, the maintenance aspect is one of the most
important due to the extremely long period of the aerospace product life cycle.

Currently, the industry relies mainly on time-based maintenance protocols, scheduling maintenance
at fixed intervals regardless of the actual condition of the aircraft components. While systematic, this
method often results in either excessive maintenance, which is costly, or insufficient maintenance,
which can compromise safety. In 2022, airlines worldwide spent about $76.8 billion on maintenance,
repairs, and overhauls, accounting for 10.9% of their total operational costs [4]. Consequently, the
aviation industry is on the brink of a major shift due to advancements in condition-based and predictive
maintenance methods [5]. In fact, the Advisory Council for Aeronautics Research in Europe (ACARE)
envisions that by 2035, condition-based maintenance will become the standard practice [6]. To reach
these goals, Digital Twins will be a major player in this transition.
Based on these developments, this research aims to address the challenges associated with imple-

menting Digital Twin technology for predictive maintenance in aerospace. The following sections will
introduce the open problems and detail how this research seeks to resolve them.
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Figure 1: Illustration of the Digital Twin concept. The virtual representation continuously updates with data
from the real object and provides feedback for decision-making. The inclusion of both a Cyber-Physical System
and a human underscores the imperative to consider human factors in the decision-making process.

2. Open challenges

Despite the significant potential of this technology discussed in the previous section, Digital Twin is
still largely unexplored, and many challenges must be addressed:

• Lack of formal definition of Digital Twin: At the time of writing, many different definitions
of Digital Twins existed; however, there was no standardized methodology to effectively create a
Digital Twin for predictive maintenance in the aircraft domain. The lack of consensus complicates
the development and deployment of Digital Twin technologies, leading to variations in implemen-
tation, functionality, and expectations. A standardized definition and framework are essential for
ensuring interoperability and consistency across different systems and applications [2].

• Models andDataAvailability: A significant challenge is the scarcity of publicly available models
and datasets due to proprietary restrictions, which limits research advancements. In the aerospace
sector, data related to aircraft operations, maintenance records, and performance metrics are
often considered sensitive and not readily shared. The lack of access hinders researchers and
developers from building, validating, and improving Digital Twin models. Additionally, the
absence of standardized models obstructs benchmarking and comparative analysis, which are
essential for technological progress [7].

• Data Imbalance and Quality: Available datasets used to train and benchmark the proposed
machine learning models are commonly imbalanced and skewed towards normal operations with
insufficient failure data. Thus, affects the model’s ability to learn from and predict rare failure
events. Most datasets heavily favor normal operational data, while failure or anomalous data
points are scarce. The data imbalance can lead to biased models that perform well under normal
conditions but fail to accurately predict or detect failures, thereby undermining the reliability
and effectiveness of predictive maintenance strategies [7].

• Explainability andUncertainty Quantification: The increased use of artificial intelligence and
empirical modeling in engineering highlights two significant issues. First, there is no standardized
method for reporting on model verification, validation, and uncertainty quantification [2]. The
absence of standardized procedures makes it difficult to assess the reliability and robustness of
models, leading to potential risks in critical applications. Second, there is often a lack of focus



on how confident we can be in the results these models produce. Explainability in AI models is
crucial for gaining trust from stakeholders, particularly in high-stakes industries like aerospace.
Without clear explanations and quantifiable measures of uncertainty, it is challenging to interpret
the results and make informed decisions based on model outputs.

3. Evolution and Future Directions of Digital Twin Approaches

The aforementioned challenges are at the base of the two primary approaches for building Digital
Twins: the model-driven approach and the data-driven approach [3, 8]. Both have their strengths and
weaknesses, and recent trends aim to combine these approaches into a hybrid model to leverage their
respective advantages.

3.1. Model-Driven approach

The model-driven approach, also known as the physics-based approach, relies on creating detailed
mathematical models based on the fundamental physical principles governing the system. These
models are developed using domain knowledge and are typically derived from first-principle equations,
empirical relationships, and high-fidelity simulations. One of the significant strengths of the model-
driven approach is its high interpretability; the mathematical equations and relationships used in the
model are based on well-understood physical laws, making the results easy to interpret and validate.
Furthermore, these models possess strong predictive power as they can forecast the system’s behavior
under various conditions, including those not directly observed in the data. The consistency and stability
of model-driven approaches are also noteworthy, as they are generally stable and consistent across
different scenarios due to their basis in physical principles. However, the model-driven approach is not
without its drawbacks. Developing accurate physics-based models can be time-consuming and costly,
requiring significant expertise and computational resources. These models often lack flexibility and
struggle to adapt to new data or unforeseen conditions that were not included in the original equations.
Additionally, scalability issues can arise as the complexity of the system increases, rendering the models
extremely complex and computationally intensive [9].

3.2. Data-Driven approach

The data-driven approach leverages large datasets and advanced statistical methods, such as machine
learning, to build models that learn patterns and relationships directly from the data without relying
heavily on prior domain knowledge. The proposed approach is highly adaptable, with models that
can quickly adjust to new data and mutable conditions. The efficiency of data-driven methods allows
for relatively quick development and deployment, provided there is sufficient data and computational
power. Furthermore, these methods can handle large-scale data and complex systems, making them
suitable for applications involving big data. Nevertheless, data-driven models have their limitations.
Many of these models, particularly those based on deep learning, can act as ”black boxes,” providing little
insight into how decisions are made. The accuracy and reliability of data-driven models heavily depend
on the quality and representativeness of the training data, meaning that imbalanced or noisy data can
significantly impair model performance. Additionally, without careful management, data-driven models
can overfit the training data, leading to poor generalization of new or unseen data.

3.3. Hybrid approach

Given the complementary strengths and weaknesses of model-driven and data-driven approaches, a
hybrid approach seeks to integrate both methodologies to create more robust and versatile Digital
Twins. By incorporating physical principles and data-driven capabilities prediction, hybrid models
can offer better interpretability than purely data-driven models. The integration allows the model to



Figure 2: An overview of the proposed hybrid framework for implementing and deploying an In-flight Digital
Twin for predictive maintenance. The proposed framework wants to exploit the benefit of the two main
approaches to building Digital Twins. The numbers represent the different steps described in section 4.

leverage the adaptability of data-driven methods while maintaining the consistency and stability of
physics-based models.

4. Possible Solution

Starting from these open challenges and approaches described in the previous sections, the paper wants
to tackle these challenges by developing a hybrid Digital Twin framework (see Figure 2) delineated as
follows:

1. Design a high-fidelity model and robust methodology for faulty data simulation: The
first step involves creating a detailed model of a critical aircraft component to simulate various
fault conditions. The objective is twofold: firstly, to align with the current trends in the aerospace
industry for designing and validating aircraft systems, and secondly, to enhance existing fault
simulation methodologies. The high-fidelity model will replicate real-world conditions as closely
as possible, ensuring that the simulated data accurately reflects potential faults and their impact
on the system.

2. Develop a tool for data augmentation: The step focuses on using data augmentation techniques
to improve the quality of the dataset. The goal is to make these enhanced techniques accessible
to engineers who possess strong domain expertise but have limited knowledge of artificial
intelligence. By doing so, we aim to bridge the gap between domain experts and AI, enabling
more effective utilization of AI-driven insights in the design and maintenance processes. Based
on the distribution of the model-based data, the tool will generate diverse and representative data
that can improve the training and validation of predictive maintenance models.

3. Develop and evaluate a predictive maintenance supervisor: The step focuses on designing
a predictive maintenance supervisor using state-of-the-art machine learning algorithms. The
supervisor will monitor the health of the aircraft systems in real-time, predicting potential failures
before they occur [10]. The focus will be on the explainability and reliability of the proposed
solution, ensuring that the algorithms provide transparent and understandable results that can be



Figure 3: Close-up view of the model-driven methodology for fault injection and synthetic data generation
applied to a landing gear system. The framework encompasses critical component selection, literature analysis,
sensor capability assessment, development of custom fault injection blocks, and synthetic data generation.

trusted by pilots during the flight and by the maintenance personnel. Rigorous evaluation will be
conducted to validate the accuracy and effectiveness of the supervisor in predicting faults.

4. Deployment on hardware with limited computational power: Finally, the proposed so-
lution will be optimized for deployment on hardware with limited computational resources,
typically found in flight operations. The optimization process will aim to minimize space and
resource requirements without compromising efficiency and reliability. In this way, the predictive
maintenance system can operate effectively within the constraints of the aircraft’s onboard sys-
tems, providing real-time insights and alerts without overwhelming the available computational
capacity.

By using this hybrid framework, we can leverage the decades-long experience of the aeronautical
industry with model-driven design and high-fidelity software tools such as CATIA, ANSYS, Autodesk,
and Simulink. The integration will facilitate the generation of analytically created and deterministic
fault data. Consequently, this deterministic faulty and healthy data will serve as a foundation for
generating additional data through Generative AI, thereby enhancing the overall quality and reliability
of the synthetic datasets. The proposed approach wants to address the current limitations posed by the
scarcity of data, allowing traditional machine-learning techniques to perform better than deep-learning
techniques [7]. Additionally, this framework’s reliance on well-established and widely used technologies
and instruments will guarantee its usability and seamless integration into existing workflows in the
avionics field.

5. Preliminary results

Our preliminary work has focused on validating system failure modes through fault simulation as a
foundational step toward developing an effective Digital Twin framework for predictive maintenance.
Fault simulation has recently gained attention for its potential to enhance predictive maintenance
strategies. However, the field is still in its early stages, and comprehensive fault libraries and standardized
methodologies are not yet fully developed. A generic methodology (see Figure 3), applicable to different
aircraft parts, has been proposed [11]:

1. Critical Component Selection: The first step involved selecting a critical component. We
selected the landing gear system, a crucial component that ensures aircraft safety during the
essential takeoff and landing phases. Despite the weight and initial aircraft cost of the landing
gear system, it contributes to 20% of the airframe’s direct maintenance costs.

2. Failure Data Gathering: After identifying the critical component, we gathered data on common
failure modes by reviewing the literature. Additionally, we identified the sensors available on the



system to monitor its health.
3. Development of Fault Blocks: Given the early state of fault simulation research, we developed

specialized fault blocks within Simscape to simulate conditions such as actuator leaks, pipeline
wear, and hydraulic supply issues.

4. Data Collection and Analysis: Consequently, we collected extensive data through these simu-
lations, meticulously analyzing it to identify patterns and correlations in system behavior under
different fault conditions. Our analysis indicated that the framework could effectively simulate
fault conditions across multiple domains—mechanical, hydraulic, and control systems—providing
a comprehensive understanding of the system’s behavior under fault conditions.

The initial results from these models demonstrated promising accuracy and reliability, suggesting their
potential application in real-world scenarios. The fault simulation framework successfully replicated
various failure modes, offering valuable insights into the system’s resilience and identifying potential
areas for improvement. It is important to note that the proposed methodology tightly depends on the
quality of the model, and developing such high-fidelity models can be a costly and lengthy process.
However, the expertise required to develop these models is well-established in the aerospace industry.

6. Future works

Based on the work presented in the previous section, our future work will mainly focus on the Data-
driven part of the framework:

1. Enhancing Data Quality and Generating Explainable and Reliable Data: The first step will
involve generating explainable and reliable data. We will develop a pipeline that engineers with
limited AI knowledge but strong domain expertise can easily use, bridging the gap between model-
driven and data-driven approaches. Diffusion models, a type of Generative AI, will be employed to
create synthetic datasets that augment the existing data. These models are particularly effective in
generating high-fidelity data that can simulate a wide range of fault conditions, thereby addressing
the scarcity of failure data, which hampers traditional machine learning models.

2. Creating an Explainable Predictive Maintenance Algorithm: Subsequent efforts will fo-
cus on creating an explainable predictive maintenance algorithm to monitor the health state.
Explainable AI techniques will be integrated to show the transparency and interpretability of
the machine learning models used. The model’s explainability is crucial for gaining the trust
of pilots, maintenance engineers, and regulatory bodies, as it allows for a clear understanding
of how predictions are made and facilitates better decision-making processes. Moreover, if the
algorithm is not performing well, the explainability will make it easier to identify which part of
the model is incorrect, allowing for targeted adjustments and improvements to the predictive
maintenance supervisor.

3. On-Board Deployment with Limited Computational Capabilities: Finally, we will deploy
the proposed solution on hardware with limited computational capabilities. We will explore
edge and split computing techniques to minimize space and energy requirements during in-flight
operations.

For scenarios where the solution needs to operate locally without in-flight connectivity, data gathered
during flight can be securely transferred using a secure transfer protocol at the end of the mission [12].
Ensuring robust security against potential threats is essential to maintaining the integrity and confiden-
tiality of the data and allowing the system to be updated after every mission. By tackling the numerous
challenges associated with Digital Twin implementation, including data scarcity, model interpretabil-
ity, and deployment constraints, this framework offers a robust and comprehensive approach. The
integration of advanced AI techniques and high-fidelity simulations promises to significantly enhance
predictive maintenance capabilities, ultimately leading to more reliable, efficient, and sustainable op-
erations within the aerospace industry. The potential positive outcomes far outweigh the challenges,
marking a transformative step forward for Digital Twin technology.
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